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Abstract. Willingness to pay WTP(X) for a lottery X , represented by a finitely-supported prob-
ability distribution on R , is the highest amount an individual is willing to pay for X . Willingness
to accept WTA(X) is the smallest amount for which an individual would accept the sell of X .
We deal with these notions under Rank-Dependent Utility, one of the behavioral models of de-
cision making under risk. Applying some results concerning a comparison of quasideviation
means, we characterize the properties of willingness to pay and willingness to accept related to
the experimentally observed disparity between them.

1. Introduction

Assume that X is a family of lotteries, that is all finitely-supported probability
distributions on R . For every n ∈ N , with n � 2, denote by 〈x1, . . . ,xn; p1, . . . , pn〉
the lottery in which payoffs x1 < x2 < .. . < xn occur with probabilities p1, . . . , pn ∈
(0,1) , respectively.

The lottery pricing problem is an important issue in many models of decision
making under risk. It consists on assigning to each lottery a real number, interpreted as
a price for the lottery. In experimental settings, it has been observed that the price of a
given lottery depends on whether a decision maker intends to buy or sell it. Therefore
in many models a buying price and a selling price for a given lottery are defined in
different ways. A buying price of a lottery X is the highest amount an individual is
willing to pay for X . A selling price of a lottery X is the smallest amount for which an
individual would accept the sell of X . There are several ways of defining the buying
and selling prices. Some of them have been recently discussed in [1].

In a recent paper [6], a model based on the assumption that the decision maker
derives preference over lotteries from changes in the initial wealth implied by accepting
the given lottery, has been investigated. This approach has been inspired by earlier
works [5] and [9]. In this setting, for every X ∈ X , a buying price for X , called
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willingness to accept (WTA(X)), and a selling price for X , called willingness to pay
(WTP(X)), are determined by

E[u(WTA(X)−X)] = 0

and
E[u(X −WTP(X))] = 0,

respectively, where u : R → R is a strictly increasing continuous function such that
u(0) = 0. Thus, for every X ∈ X , both prices are defined implicitly.

It follows from several experiments that WTA(X) for a given X ∈ X usually is
much higher than WTP(X) (see e.g. [4], [10], [11]). In a recent paper [3] a disparity
between WTA(X) and WTP(X) has been characterized in terms of the properties of
the generating function u .

In this paper we investigate willingness to accept and willingness to pay under
Rank-Dependent Utility, one of the alternative behavioral models of decision making
under risk. In order to define them let us recall that, if X = 〈x1, . . . ,xn; p1, . . . , pn〉 ∈X ,
then the Choquet integral with respect to a probability distortion function g , that is a
non-decreasing function mapping [0,1] into [0,1] and satisfying the boundary condi-
tions g(0) = 0 and g(1) = 1, is given by

Eg[X ] =
n

∑
k=1

[
g

(
n

∑
i=k

pi

)
−g

(
n

∑
i=k+1

pi

)]
xk, (1)

with a convention ∑n
i=n+1 pi = 0. Then, for every X ∈ X , the numbers WTA(X) and

WTP(X) are defined by
Eg[u(WTA(X)−X)] = 0 (2)

and
Eg[u(X −WTP(X))] = 0, (3)

respectively, where u : R → R is a strictly increasing continuous function with u(0) =
0. It is not difficult to note (cf. Remark 3) that, for every X ∈X , the numbers WTA(X)
and WTP(X) are uniquely determined by (2) and (3), respectively.

The aim of this paper is to characterize a disparity between willingness to accept
and willingness to pay in the model defined by (2)–(3). An effective tool for dealing
with this issue is a notion of a quasideviation mean. Let us note that in [2] quasidevia-
tion means were applied to characterize some properties of the principle of equivalent
utility, one of the important utility-based methods of insurance contracts pricing.

2. Preliminaries

We begin this section with introducing some notation. If X = 〈x1, . . . ,xn; p1, . . . , pn〉
∈ X , then we set

X + c := 〈x1 + c, . . . ,xn + c; p1, . . . , pn〉 for c ∈ R,
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αX := 〈αx1, . . . ,αxn; p1, . . . , pn〉 for α ∈ (0,∞),

−X := 〈−xn, . . . ,−x1; pn, . . . , p1〉
and

u(X) := 〈u(x1), . . . ,u(xn); p1, . . . , pn〉
for any strictly increasing function u : R → R .

REMARK 1. Let g be a probability distortion function. It follows from (1) that

Eg[X + c] = Eg[X ]+ c for X ∈ X , c ∈ R, (4)

Eg[αX ] = αEg[X ] for X ∈ X , α ∈ (0,∞) (5)

and
Eg[u(X)] � Eg[v(X)] for X ∈ X ,

whenever u,v : R→R are strictly increasing functions such that u(x) � v(x) for x∈R .
Furthermore, if g : [0,1]→ [0,1] is the probability distortion function conjugated to g ,
i.e.

g(p) = 1−g(1− p) for p ∈ [0,1], (6)

then
Eg[−X ] = −Eg[X ] for X ∈ X . (7)

REMARK 2. In view of (1), for any probability distortion function g and X =
〈x1, . . . ,xn; p1, . . . , pn〉 ∈ X , we have

Eg[X ] = x1 +
n−1

∑
k=1

g

(
n

∑
i=k+1

pi

)
(xk+1 − xk). (8)

Thus, if g1 and g2 are probability distortion functions such that

g1(p) � g2(p) for p ∈ [0,1],

then
Eg1 [X ] � Eg2 [X ] for X ∈ X .

REMARK 3. Assume that u : R → R is a strictly increasing continuous function
with u(0) = 0 and g is a probability distortion function. Let X = 〈x1, . . . ,xn; p1, . . . , pn〉
∈ X . Then, the function

R � t → Eg[u(t−X)] =
n

∑
k=1

[
g

(
n

∑
i=k

pi

)
−g

(
n

∑
i=k+1

pi

)]
u(t− xk)

is continuous and strictly increasing. Furthermore, it takes negative values for t <
min{xi : i ∈ {1, . . .n}} and positive values for t > max{xi : i ∈ {1, . . .n}} . Thus,
WTP(X) is uniquely determined by (3) . In a similar way one can show that WTA(X)
is uniquely determined by (2).
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REMARK 4. Let u : R → R be a strictly increasing continuous function such that
u(0) = 0 and let g be a probability distortion function. If X = 〈x1,x2; p,1− p〉 ∈ X (2)

then, applying (1), from (2) and (3) we deduce that

(1−g(p))u(WTA(X)− x2)+g(p)u(WTA(X)− x1) = 0 (9)

and
(1−g(1− p))u(x1−WTP(X))+g(1− p)u(x2−WTP(X)) = 0, (10)

respectively.

As we have already mentioned, a notion of a quasideviation mean, introduced
in [7], will play an important role in a characterization of the disparity between the
willingness to accept and the willingness to pay. To recall the notion, assume that I ⊆R

is an open interval. A function D : I2 → R is said to be a quasideviation, provided it
satisfies the following conditions:

• for every x,y ∈ I , D(x,y) has the same sign as x− y ;

• for every x ∈ I , the function I � t → D(x,t) is continuous;

• for every x,y ∈ I with x < y , the function

(x,y) � t → D(y,t)
D(x,t)

is strictly increasing.

Let

Δn := {λ ∈ [0,∞)n : λ = (λ1, . . . ,λn)∧
n

∑
i=1

λi > 0} for n ∈ N.

According to [8, Theorem 1], if D : I2 → R is a quasideviation, then for every n ∈ N ,
x = (x1, . . . ,xn) ∈ In and λ = (λ1, . . . ,λn) ∈ Δn , the equation

n

∑
i=1

λiD(xi,t) = 0 (11)

has a unique solution t0 . Moreover

min{xi : i ∈ {1, ..,n}} � t0 � max{xi : i ∈ {1, ..,n}},
whence equation (11) defines a mean. Following [7], we denote it by M̃D(x;λ ) .

A series of properties of quasideviation means have been characterized in [8]. The
following result, which is a particular case of [8, Theorem 7], will be useful in our
further considerations.

THEOREM 1. Assume that I ⊆ R is an open interval and D1,D2 : I2 → R are
quasideviations. Then the following statements are equivalent:
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(i) for every x1,x2 ∈ I and λ ∈ [0,1]

M̃D1((x1,x2);(λ ,1−λ )) � M̃D2((x1,x2);(λ ,1−λ )); (12)

(ii) there exists a function A : I → (0,∞) such that

D1(x,y) � A(y)D2(x,y) for x,y ∈ I. (13)

REMARK 5. Let I ⊆ R be an open interval and D : I2 → R be a quasideviation.
Then, from the definition of the quasideviation mean we derive that

M̃D((x1,x2);(λ ,1−λ )) = M̃D((x2,x1);(1−λ ,λ )) for x1,x2 ∈ I, λ ∈ [0,1],

M̃D((x,x);(λ ,1−λ )) = x for x ∈ I, λ ∈ [0,1],

M̃D((x1,x2);(1,0)) = x1 for x1,x2 ∈ I,

and
M̃D((x1,x2);(0,1)) = x2 for x1,x2 ∈ I.

Hence, inequality (12) is satisfied for every x1,x2 ∈ I and λ ∈ [0,1] if and only if it
is satisfied for every λ ∈ (0,1) and x1,x2 ∈ I with x1 < x2 . Therefore, the following
result is a direct consequence of Theorem 1.

COROLLARY 1. Assume that I ⊆ R is an open interval and D1,D2 : I2 → R are
quasideviations. The inequality (12) is valid for every λ ∈ (0,1) and x1,x2 ∈ I with
x1 < x2 if and only if there exists a function A : I → (0,∞) such that (13) holds.

3. Results

In the whole section we assume that u : R → R is a strictly increasing continuous
function such that u(0) = 0 and g is a continuous probability distortion function.

The following result shows the relationship between willingness to accept, will-
ingness to pay and quasideviation means.

LEMMA 1. Let D1,D2 : R
2 → R be defined by

D1(x,y) = u(x− y) for (x,y) ∈ R
2 (14)

and
D2(x,y) = −u(y− x) for (x,y) ∈ R

2. (15)

Then D1 and D2 are quasideviations and, for every p ∈ (0,1) and x1,x2 ∈ R with
x1 < x2 , we have

WTA(〈x1,x2, p,1− p〉) = M̃D2((x1,x2);(g(p),1−g(p))) (16)

and
WTP(〈x1,x2, p,1− p〉) = M̃D1((x1,x2);(1−g(1− p),g(1− p))). (17)
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Proof. Since u is continuous, strictly increasing and u(0) = 0, it is not difficult
to check that D1 and D2 are quasideviations. Furthermore, applying (9) and (10), we
obtain (17) and (16), respectively. �

REMARK 6. Let u be the identity on R . Then, making use of (4) and (7), from
(2) and (3) one can easily derive that

WTA(X) = Eg[X ] for X ∈ X

and
WTP(X) = Eg[X ] for X ∈ X ,

respectively. Furthermore, according to Lemma 1, a function D0 : R
2 → R , given by

D0(x,y) = x− y for (x,y) ∈ R
2, (18)

is a quasideviation and, for every p ∈ (0,1) and x1,x2 ∈ R with x1 < x2 , we get

Eg[〈x1,x2, p,1− p〉] = M̃D0((x1,x2);(1−g(1− p),g(1− p))) (19)

and
Eg[〈x1,x2, p,1− p〉] = M̃D0((x1,x2);(g(p),1−g(p))). (20)

In the next theorem we establish a characterization of the disparity between will-
ingness to accept and willingness to pay in the case where u is odd.

THEOREM 2. Assume that u is is odd. Then the following statements are pairwise
equivalent:

(i)
WTP(X) � WTA(X) for X ∈ X (2);

(ii)
WTP(X) � WTA(X) for X ∈ X ;

(iii)
g(p) � g(p) for p ∈ [0,1]. (21)

Proof. Since u is odd, in view of (14)–(15), we get D1 = D2 . Thus, if (i) is valid,
then taking x1,x2 ∈ R such that x1 < x2 and applying Lemma 1, for every p ∈ (0,1) ,
we obtain

m := M̃D1((x1,x2);(1−g(1− p),g(1− p)))� M̃D1((x1,x2);(g(p),1−g(p))) =: M.

Therefore, as u is strictly increasing, for every p ∈ (0,1) , we have

(1−g(1− p))u(x1−M)+g(1− p)u(x2−M)
� (1−g(1− p))u(x1−m)+g(1− p)u(x2−m)
= 0 = g(p)u(x1−M)+ (1−g(p))u(x2−M).
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Hence

(1−g(1− p)−g(p))(u(x2−M)−u(x1−M)) � 0 for p ∈ (0,1).

Since x1 < x2 , this implies that

1−g(1− p)−g(p)� 0 for p ∈ (0,1).

Thus, as g(0) = 0 and g(1) = 1, taking into account (6), we obtain (21). This proves
the implication (i) =⇒ (iii) .

If (21) holds then, as u is odd, taking into account (2)–(3) and (7), in view of
Remark 2, we get

Eg[u(WTP(X)−X)] = Eg[−u(X −WTP(X))] = −Eg[u(X −WTP(X))]

� −Eg[u(X −WTP(X))] = 0 = Eg[u(WTA(X)−X)] for X ∈ X .

Hence, applying Remark 3, we obtain (ii) and so the implication (iii) =⇒ (ii) is
proved. Clearly, we have also (ii) =⇒ (i) . �

Now, we are going to characterize a disparity between willingness to accept and
willingness to pay under the assumption that the probability distortion function g is
self-conjugated, this is it satisfies g = g .

REMARK 7. Note that any self-conjugated probability distortion function is of the
form

g(p) =
{

g0(p) for p ∈ [0,1/2],
1−g0(1− p) for p ∈ (1/2,1],

where g0 : [0,1/2]→ [0,1/2] is a continuous non-decreasing function such that g0(0) =
0 and g0(1/2) = 1/2. The natural examples of self-conjugated probability weighting
functions are the Goldstein-Einhorn functions of the form

g(p) =
pr

pr +(1− p)r for p ∈ [0,1]

where r ∈ (0,∞) .

THEOREM 3. Assume that g is self-conjugated. Then the following statements
are pairwise equivalent:

(i)
WTP(X) � WTA(X) for X ∈ X (2);

(ii)
WTP(X) � WTA(X) for X ∈ X ;

(iii)
u(x)+u(−x) � 0 for x ∈ R. (22)
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Proof. Let D1,D2 : R
2 →R be given by (14) and (15), respectively. Fix λ ∈ (0,1)

and x1,x2 ∈ R with x1 < x2 . Since g is continuous with g(0) = 0 and g(1) = 1, there
exists pλ ∈ (0,1) such that g(pλ ) = λ . Moreover, as g is self-conjugated, we have
g(1− pλ) = 1−λ . Thus, if (i) holds, then applying (16)–(17), we obtain

M̃D1((x1,x2);(λ ,1−λ )) = WTP(〈x1,x2, pλ ,1− pλ 〉)

� WTA(〈x1,x2, pλ ,1− pλ 〉) = M̃D2((x1,x2);(λ ,1−λ )).

Therefore, according to Corollary 1, there exists a function A : R → (0,∞) such that

D1(x,y) � A(y)D2(x,y) for (x,y) ∈ R
2.

Setting in this inequality y = 0, in view of (14)–(15), we get

u(x) � −A(0)u(−x) for x ∈ R. (23)

Replacing in (23) x by −x and adding obtained in this way inequality side by side to
(23), we obtain

(u(x)+u(−x))(1+A(0)) � 0 for x ∈ R.

Since A(0) > 0, this gives (22). Thus, the implication (i) =⇒ (iii) is proved.
If (22) is satisfied then, as g is self-conjugated, applying Remark 1, in view of

(2)–(3), we get

Eg[u(WTP(X)−X)] � Eg[−u(−(WTP(X)−X))]

= −Eg[u(X −WTP(X)] = 0 = Eg[u(WTA(X)−X)] for X ∈ X .

Hence, taking into account Remark 3, we obtain (ii) . In this way we have proved that
(iii) =⇒ (ii) . The implication (ii) =⇒ (i) is obvious. �

The following result is a generalization of [3, Theorem 3.7].

THEOREM 4. Assume that (21) holds. Then the following statements are pairwise
equivalent:

(i)
WTP(X) � Eg[X ] for X ∈ X (2); (24)

(ii)
Eg[X ] � WTA(X) for X ∈ X (2); (25)

(iii)
WTP(X) � Eg[X ] � Eg[X ] � WTA(X) for X ∈ X ; (26)

(iv) there exists c ∈ (0,∞) such that

u(x) � cx for x ∈ R. (27)
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Proof. First we show that (i) =⇒ (iv) . To this end assume that (24) is valid and fix
λ ∈ (0,1) and x1,x2 ∈ R such that x1 < x2 . Then, taking pλ ∈ (0,1) with g(1− pλ) =
1−λ and applying Lemma 1, in view of (19) and (24), we get

M̃D1((x1,x2);(λ ,1−λ )) = WTP(〈x1,x2, pλ ,1− pλ 〉)
� Eg[〈x1,x2, p,1− p〉] = M̃D0((x1,x2);(λ ,1−λ ))

where D0 : R
2 → R is given by (18). Thus, according to Corollary 1, there exists a

function A : R → (0,∞) such that

D1(x,y) � A(y)D0(x,y) for (x,y) ∈ R
2.

Setting in this inequality y = 0, in view of (14) and (18), we get (27) with c := A(0)> 0.
The implication (ii) =⇒ (iv) can be proved in a similar way. Namely, assume that

(25) holds and fix λ ∈ (0,1) and x1,x2 ∈ R with x1 < x2 . Then, taking pλ ∈ (0,1)
such that g(pλ ) = λ and applying Lemma 1, in view of (20) and (25), we get

M̃D0((x1,x2);(λ ,1−λ )) = Eg[〈x1,x2, p,1− p〉]

� WTA(〈x1,x2, pλ ,1− pλ 〉) = M̃D2((x1,x2);(λ ,1−λ )).

Therefore, applying Corollary 1, we conclude that

D0(x,y) � A(y)D2(x,y) for (x,y) ∈ R
2

with some function A : R → (0,∞) . Setting in this inequality y = 0 and replacing x by
−x , in view of (15) and (18), we get (27) with c := 1/A(0) > 0.

Now, assume that (27) holds with some c ∈ (0,∞) . Then, taking into account
Remark 1, in view of (2) and (3), for every X ∈ X , we get

0 = Eg[u(WTA(X)−X)] � Eg[c(WTA(X)−X)] = c(WTA(X)−Eg[X ])

and

0 = Eg[u(X −WTP(X))] � Eg[c(X −WTP(X))] = c(Eg[X ]−WTP(X)),

respectively. Furthermore, applying Remark 2, from (21) we deduce that

Eg[X ] � Eg[X ] for X ∈ X .

Thus, (26) is valid and so, the implication (iv) =⇒ (iii) is proved.
The implications (iii) ⇒ (i) and (iii) ⇒ (ii) are obvious. �

COROLLARY 2. Assume that g is self-conjugated. Then the following statements
are pairwise equivalent:

(i)
WTP(X) � Eg[X ] for X ∈ X (2);
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(ii)
Eg[X ] � WTA(X) for X ∈ X (2);

(iii)
WTP(X) � Eg[X ] � WTA(X) for X ∈ X ;

(iv) (27) holds with some c ∈ (0,∞) .

Taking into account (8), from Theorem 4 we derive the following result.

COROLLARY 3. Assume that g satisfies (21) and there exists c ∈ (0,∞) such that
(27) is valid. Then, for every X = 〈x1, . . . ,xn; p1, . . . , pn〉 ∈ X , we have

WTA(X)−WTP(X) � Eg[X ]−Eg[X ] =
n−1

∑
k=1

[
g

(
n

∑
i=k+1

pi

)
−g

(
n

∑
i=k+1

pi

)]
(xk+1−xk).
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[7] ZS. PÁLES,Characterization of quasideviation means, Acta. Math. Sci. Hungar., 40, (1982), 243–260.
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