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LOG–CONVEXITY OF GENERALIZED KANTOROVICH FUNCTION

MASARU TOMINAGA

(Communicated by M. Praljak)

Abstract. We aim to derive some important properties about the generalized Kantorovich con-

stant K(h, p) := hp−h
(p−1)(h−1)

(
p−1
p

hp−1
hp−h

)p
for h > 0 and p ∈ R . In particular, we point out that

K(h, p) is a log-convex function for p . As applications, we show the monotonicity of K(h, p)
1
p .

1. Introduction

Let B(H ) denote the algebra of all bounded linear operators on a complex Hilbert
space (H ,〈·, ·〉) with the identity operator IH , and let B

+(H ) be the set of all pos-
itive operators in B(H ) . Let P[B(H ),B(K )] denote a set of all normalized posi-
tive linear maps Φ : B(H ) → B(K ) such that A ∈ B

+(H ) → Φ(A) ∈ B
+(K ) with

Φ(IH ) = IK .
Greub and Rheinboldt [11] gave the following Kantorovich operator inequality:

If a positive operator A fulfills the condition 0 < mIH � A � MIH for some scalars
m � M , then

〈x,x〉 � 〈Ax,x〉〈A−1x,x
〉

� (M +m)2

4Mm
〈x,x〉 (1.1)

for all x ∈ H . The constant (M+m)2
4Mm in (1.1) is called the Kantorovich constant. Kan-

torovich represented (1.1) as a sequence of positive real numbers in [13, p.142].
Mond and Pečarić [18] generalized (1.1) as follows: Let Φ be a normalized pos-

itive linear map in P[B(H ),B(K )] . If A is a positive operator on H satisfying
0 < mIH � A � MIH for some scalars m � M , then

Φ(A−1) � (M +m)2

4Mm
Φ(A)−1, (1.2)

also see [10].
On the other hand, Furuta gave complementary inequalities to the Hölder-McCarthy

inequality as an extension of the Kantorovich type one as follows [5], [6], [7], [9], [10]
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and [2]: Let A be a positive operator on H such that 0 < mIH � A � MIH for some
scalars m < M . Let h = M

m . If p /∈ [0,1] , then

〈Ax,x〉p � 〈Apx,x〉 � K(h, p)〈Ax,x〉p (1.3)

for every unit vector x ∈ H , where the generalized Kantorovich constant K(h, p) is
defined by

K(h, p) :=
hp−h

(p−1)(h−1)

(
p−1

p
hp−1
hp−h

)p

for all p ∈ R (1.4)

with K(h,1) = 1. (See [5] in detail.) If p ∈ [0,1] , then the reverse inequality is valid in
(1.3).

In addition, we cite the following ratio inequality ([10] and [17]), where the esti-
mation is given by the generalized Kantorovich constant K(h, p) . This inequality is an
extension of the result of C.-K.Li and R.Mathias [16] considered for the matrix case:
Let Φ be a normalized positive linear map in P[B(H ),B(K )] . If A is a positive op-
erator on H satisfying 0 < mIH � A � MIH for some scalars m < M , then for any
p ∈ R\{0}

γ2Φ(A)p � Φ(Ap) � γ1Φ(A)p (1.5)

where

γ1 :=

{
K(h, p) if p > 1 or p < 0,

1 if 0 < p � 1.

γ2 :=

⎧⎪⎨
⎪⎩

K(h, p)−1 if p > 2 or p < −1,

1 if −1 � p < 0 or 1 � p � 2,

K(h, p) if 0 < p < 1,

The ineqality (1.5) can be considered as an extension of inequalities (1.2) and
(1.3) for power functions, and the generalized Kantorovich constant K(h, p) plays an
important role in estimations of these inequalities.

Here we remark that Nakamura [20] gave a simple proof of (1.1) by using a con-
vexity of f (t) = t−1 . The inequality (1.3) is generalized to arbitrary general convex
functions in [19]. The formulated method which is reduced to solving a single variable
maximization or minimization problem by using the concavity of a real valued func-
tion is called the Mond-Pečarić method [10]. Using it we can derive several operator
inequalities for the difference and ratio including inequalities (1.1)–(1.3) and (1.5), see
[5] and [10].

In this paper, we show some meaningful properties of the generalized Kantorovich
constant K(h, p) . One of them, the symmetric property K(h, p) = K(h,1− p) given
by Furuta [5], [9] is noteworthly. In connection with this, we give some properties
of the generalized Kantorovich function K(h, p) for p ∈ R . In particular, we prove a
basic and important fact that K(h, p) is log-convex on p , and so convex. For this, an
inequality due to Takahasi et al. [23] and some properties of the Klein inequality play

an essential role. One of applications, we show that K(h, p)
1
p is strictly increasing for

p ∈ R which is an extension of [14, Lemma 3.8].
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2. Some properties of the Klein function and its applications

The following inequality is known as the Klein inequality [15] and [21]: For a
positive real number c > 0 with c �= 1

logc < c−1 (or c logc > c−1). (2.1)

We define the Klein function: For a fixed c > 0

Kc(t) := ct logc− (c−1) for t � 0. (2.2)

It has the following properties:

THEOREM 2.1. Let c > 0 . Then the Klein function Kc(t) for t � 0 has the fol-
lowing properties :

(1) Kc(t) is a strictly increasing function for t � 0 with

Kc(0)(= logc− (c−1)) � 0 � Kc(1) (= c logc− (c−1)).

In the above inequalities, equalities hold only the case of c = 1 .

(2) The equation Kc(t) = 0 has a unique solution t = t0

{∈ (0, 1
2 ) if 0 < c < 1

∈ ( 1
2 ,1) if c > 1.

(3) The inequality Kc(1) + Kc(0)(= c logc + logc− 2(c− 1)) > 0 holds for
c > 1 . If 0 < c < 1 , then the reverse inequality holds. Consequently, the inequality
(Kc(1)+Kc(0)) logc > 0 holds for c > 0 with c �= 1 .

Proof. It is easy to see (1) from d
dt Kc(t) = ct(logc)2 > 0 and (2.1).

The property (2) is given by K1( 1
2) = 0, d

dcKc( 1
2 ) = c−

1
2

(
logc

1
2 − (c

1
2 −1)

)
< 0

and (1).
Since K1(1)+K1(0) = 0 and d

dc (Kc(1)+Kc(0)) = logc+ 1
c − 1 = ( 1

c − 1)−
log 1

c > 0, we have (3). �

Next we recall the generalized logarithmic function lnp(c) := cp−1
p . S.-E. Takahasi

et al [23] treat the following function related to the generalized logarithmic function for
M � m > 0

σp(m,M) =
p

p−1
mMp −Mmp

Mp −mp

(
=

lnp−1(h)
lnp(h)

M

)
for any real number p(�= 0,1)

where h = M
m . They proved that the function p �→ σp(m,M) is strictly monotone de-

creasing. In the following lemma, we give a simplified proof.

LEMMA 2.2. Let c be a positive real number with c �= 1 . Then the following
properties hold :
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(1) The following inequality holds for p /∈ (0,1)

(c−1) logc � cp−1
p

· c1−p−1
1− p

(
=

lnp(h)
ln1−p(h)

M

)
. (2.3)

If p ∈ [0,1] , then the reverse inequality of (2.3) holds. The equality is attained if
and only if p → 0,1 .

(2) The function f (p) :=
1− c−p

p
· p−1

1− c−(p−1)

(
=

ln−p(h)
ln1−p(h)

)
is strictly mono-

tone increasing for p ∈ R .

(3) Let c > 1 . Then the function g(p) :=
p

1− c−p −
p−1

1− c−(p−1)

(
= ln−p(h)−1−

ln1−p(h)−1
)

is strictly monotone increasing for p ∈ R .

If 0 < c < 1 , then g(p) is strictly monotone decreasing for p ∈ R .

Proof. (1) We easily see that cp−1
p · c1−p−1

1−p converges (c− 1) logc for p → 0,1.
So we may prove that for p ∈ R\{0,1} , the function f0(x) := p(1− p)(x− 1) logx−
(xp−1)(x1−p−1) is positive for any positive real number x (x �= 1). Then we have

d
dx

f0(x) = p(1− p)(logx− x−1 +1)−{pxp−1(x1−p−1)+ (1− p)(xp−1)x−p}
= p(1− p)(logx− x−1 +1)+ pxp−1+(1− p)x−p−1,

and moreover

d2

dx2 f0(x) = p(1− p)(x−1 + x−2− xp−2− x−p−1)

= p(1− p)x−
3
2

(
(x

1
2 + x−

1
2 )− (xp− 1

2 + x−p+ 1
2 )

)
> 0,

because

(x
1
2 + x−

1
2 )− (xp− 1

2 + x−p+ 1
2 )

{
< 0 if p �∈ [0,1]
> 0 if p ∈ (0,1).

Moreover, it follows from limx→1 f0(x) = limx→1
d
dx f0(x) = limx→1

d2

d2x
f0(x) = 0 that

f0(x) � 0. So the desired property (2.3) holds.
(2) Since limp→0 f (p) = logc

c−1 and limp→1 f (p) = c−1
c logc , the function f (p) is con-

tinuous on R . So we may show this property only for p ∈ R\{0,1} .
It follows from (1) that

d
dp

log f (p) =
1

(p−1)p
+

(1− c1−p)− (c− c1−p)
(1− c−p)(1− c1−p)

c−p logc

=
1

(cp−1)(c1−p−1)

(
− (cp−1)(c1−p−1)

p(1− p)
+ (c−1) logc

)
> 0.
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In the above last inequality, we remark that (cp − 1)(c1−p − 1)

{
< 0 (p �∈ [0,1])
> 0 (p ∈ (0,1)).

Moreover, we have d
dp f (p) = f (p) · d

dp log f (p) > 0 by f (p) > 0, and so the property
(2) holds.

(3) Define a function G(t) by

G(t) :=

{
t logt

(t−1) logc (t �= 1)
(logc)−1 (t = 1)

for t > 0.

Then we have for t �= 1

d
dt

G(t) =
(t −1)− logt
(t−1)2 logc

, and
d2

dt2
G(t) =

1− t2 +2t log t
t(t−1)3 logc

.

Here we put t = cp(> 0) . Then it follows from G(cp) = p
1−c−p that

g(p) = G(cp)−G(cp−1) and
d
dp

g(p) =
d
dp

G(cp)− d
dp

G(cp−1).

Moreover we have dt
dp = t logc and so

d2

dp2 G(cp) =
d
dt

(
d
dt

G(t) · dt
dp

)
· dt
dp

=
d2

dt2
G(t) · (t logc)2 +

d
dt

G(t) · t(logc)2

=
t · (t log t + logt−2(t−1)) logt

(t−1)3 · p .

Hence we have d2

dp2 G(cp)
{

> 0 (c > 1)
< 0 (0 < c < 1) by (t − 1)3 · p

{
> 0 (c > 1)
< 0 (0 < c < 1)

and

Theorem 2.1 (3). If c > 1 (resp. 0 < c < 1), then d
dpG(cp) is an increasing function

(resp. a decreasing function) for p . So the property (3) is given by

d
dp

g(p)
{

> 0 (c > 1)
< 0 (0 < c < 1). �

3. Log-convexity of the generalized Kantorovich function

We recall several properties of the generalized Kantorovich function K(h, p) as
follows [3], [5], [8], [9] and [10]: Let h > 0 be given. Then

(K-1) K(h, p) = K( 1
h , p) for all p ∈ R .

(K-2) K(h, p) = K(h,1− p) (i.e., K(h, 1
2 + p) = K(h, 1

2 − p)) for all p ∈ R , that is,
K(h, p) is symmetric with respect to p = 1

2 .
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(K-3) K(h,0)= K(h,1)= 1 and K(1, p)= 1 for all p∈R , where K(h,0)= lim
p→0

K(h, p) ,

K(h,1) = lim
p→1

K(h, p) and K(1, p) = lim
h→1

K(h, p) .

(K-4) K(h, p) is increasing for p > 1
2 and decreasing for p < 1

2 , and

min
p∈R

K(h, p) = K

(
h,

1
2

)
=

2h1/4

h1/2 +1
∈ (0,1].

(K-5) K
(
hr,

p
r

) 1
p

= K

(
hp,

r
p

)− 1
r

for rp �= 0.

In particular, if r = 1, then K (h, p)
1
p = K

(
hp,

1
p

)−1

for p �= 0.

(K-6) K(h, p) < hp−1 for all h > 1 and p > 1.

Here it follows from (K-2), (K-3) and (K-4) that K(h, p) > 0 for any p ∈ R and

K(h, p)

{
� 1 if p �∈ (0,1)
< 1 if p ∈ (0,1)

(e.g. [5], [9]).

Moreover, we mention the following properties [12]:

(K-7) Let h > 1. If p > 1 (resp. 0 < p < 1), then K(ht , p)
1
t is increasing (resp.

decreasing) for t > 0 ([4]), and 1 < K(ht , p)
1
t < hp−1 for all t > 0.

(K-8) lim
t→0

K(ht , p)
1
t = 1 for all p ∈ R .

Here we provide a proof of (K-8) for the sake of convenience:

Proof of (K-8) . We may assume that h > 1 and t ↓ 0 by (K-1). By L’Hospital’s
rule, we have

lim
t↓0

ht −htp

ht −1
= lim

t↓0
ht logh−htp loghp

ht logh
= 1− p and lim

t↓0
htp−1
ht −1

= p (3.1)

and moreover

lim
t↓0

d
dt

ht −htp

ht −1
=

p(1− p)
2

logh and lim
t↓0

d
dt

ht p −1
ht −1

=
p(p−1)

2
logh. (3.2)
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As a result, applying L’Hospital’s rule by (3.1) and moreover using (3.2), we obtain

lim
t↓0

logK(ht , p)
1
t = lim

t↓0
log

{
htp−ht

(p−1)(ht −1)

(
p−1

p
htp−1
htp−ht

)p} 1
t

= lim
t↓0

log

⎧⎨
⎩

(
1

1− p
ht −htp

ht −1

) 1−p
t

(
1
p

htp−1
ht −1

) p
t

⎫⎬
⎭

= lim
t↓0

1
t

{
(1− p) log

(
1

1− p
ht −htp

ht −1

)
+ p log

(
1
p

htp−1
ht −1

)}

= (1− p)
p(1−p)

2 logh

1− p
+ p

p(p−1)
2 logh

p

= 0.

In the above equality, we remark that ht−ht p

1−p and ht p−1
p are positive. Hence we have the

desired equality (K-8). �

The following result represents the relation of the convex function and its secant
line (cf. [10, Corollary 2.10]):

(K-9) Let 0 < m < M with h := M
m > 1. For p > 1, the convex function t p (t > 0) has

a secant line αpt + βp at t = m,M , where αp := Mp−mp

M−m and βp := Mmp−mMp

M−m .
Then it follows that

max
m�t�M

αpt + βp

t p = K(h, p).

Here we treat the Specht ratio S(h) = h
1

h−1

e logh
1

h−1
[22] which is the best constant of

the reverse arithmetic-geometric mean inequality. It has the following property (e.g.
[3], [8]) related to the generalized Kantorovich function K(h, p) :

(K-10) lim
p→1

∂
∂ p

logK(h, p) = lim
p→1

∂
∂ pK(h, p)

K(h, p)
= lim

p→1

∂
∂ p

K(h, p) = logS(h) .

We mention some important properties of the generalized Kantorovich function
K(h, p) as our main result:

THEOREM 3.1. Let h > 0 and p ∈ R . The generalized Kantorovich function
K(h, p) has the following properties :

(K-11) logK(h, p) is a convex function for p ∈ R .

Consequently,

(K-12) K(h, p) is a convex function for p ∈ R .
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Proof. (K-11) From the properties (K-1), (K-2), (K-3) and (K-4), we may show
the properties (K-11) (and (K-12)) for the case of h � 1 and p � 1

2 . In particular, we
only prove for the case p > 1. The case 1

2 � p < 1 is given by a similar method. Here
we remark that limp→1

∂
∂ p logK(h, p) exists by (K-10).

The generalized Kantorovich function is represented as follows:

K(h, p) =
(p−1)p−1

pp

(hp−1)p

(hp−h)p−1(h−1)
,

and so

logK(h, p) = log(hp−h)− log(h−1)− log(p−1)
+ p(log(hp−1)− log(hp−h)+ log(p−1)− log p) .

Moreover, we have

∂
∂ p

logK(h, p) =
(

(1− p)hp

hp−h
+

php

hp−1

)
logh+ log

(p−1)(hp−1)
p(hp−h)

(3.3)

=
(

p
1−h−p −

p−1

1−h−(p−1)

)
logh+ log

(p−1)(1−h−p)
p(1−h−(p−1))

.

By (2) and (3) in Lemma 2.2, the function ∂
∂ p logK(h, p) is strictly monotone

increasing, and so we hold the property (K-11).
(K-12) This property is satisfied by (K-11). �

Kian et al. obtained the following result [14, Lemma 3.8] by using the property
(K-12):

LEMMA KMS. Let h � 1 . Then the generalized Kantorovich function K(h, p)
has the following property :

K(h,−p) � K(h,−1)p for p ∈ (0,1).

If p �∈ (0,1) , then the reverse inequality of above holds.

The above lemma is equivalent to the following result: For p � 1

K(h,−p)−
1
p � K(h,−1)−1.

If p � 1, then the reverse inequality of above holds.
From this view point, we improve it as follows:

COROLLARY 3.2. Let h > 0 . The generalized Kantorovich function K(h, p) has
the following monotone property :

(K-13) K(h, p)
1
p is strictly increasing for p ∈ R .
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Proof. First of all, we have

∂
∂ p

logK(h, p)
1
p =

∂
∂ p

logK(h, p)
p

=
p ∂

∂ p logK(h, p)− logK(h, p)

p2 . (3.4)

Next, we consider the tangent line �(p) of logK(h, p) at any p = p0 ∈ R . It is
represented as follows:

�(p) =
∂

∂ p
logK(h, p)

∣∣∣∣
p=p0

(p− p0)+ logK(h, p0).

By (K-11), we have

logK(h, p) � �(p) =
∂

∂ p
logK(h, p)

∣∣∣∣
p=p0

(p− p0)+ logK(h, p0). (3.5)

If p = 0, then the inequation (3.5) implies

0 � −p0
∂

∂ p
logK(h, p)

∣∣∣∣
p=p0

+ logK(h, p0).

So the equation (3.4) is positive, and hence we have the property (K-13). �
As another application, we have the following corollary:

COROLLARY 3.3. The generalized Kantorovich function K(h, p) for p ∈ R has
the following properties :

(K-14) For a fixed h > 0 , the following equation holds :

lim
p→∞

∂
∂ p

logK(h, p) = lim
p→∞

∂
∂ pK(h, p)

K(h, p)
= logh.

Moreover,
∣∣∣ ∂

∂ p logK(h, p)
∣∣∣ < |logh| . Consequently, there is a unique solution

p = p0 ∈ R such that ∂
∂ pK(h, p)

∣∣∣
p=p0

= logh0 for any h0 ∈ Ih , where Ih is the

open interval determined by 1
h and h.

(K-15) Let h � 1 and h0 > 0 . Then the equation K(h, p) = hp−1
0 has the following

solutions p ∈ R :

p :=

⎧⎨
⎩

1, p0(∈ (−∞,1)) if h−1 < h0 < S(h)
1, p0(∈ (1,∞)) if S(h) < h0 < h
1 otherwise.

Moreover, suppose that h0 ∈ (h−1,h)\{S(h)} . Let I0 be the closed interval de-
termined by 1 and p0 with K(h, p0) = hp0−1

0 . Then the following inequality
holds

K(h, p)−hp−1
0

{
� 0 if p ∈ I0
� 0 otherwise.
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Proof. (K-14) By (3.3) and limp→∞ ph−p = 0, we have

lim
p→∞

∂
∂ p

logK(h, p) = lim
p→∞

{(
p

1−h−p −
p−1

1−h−(p−1)

)
logh+ log

(p−1)(1−h−p)
p(1−h−(p−1))

}

= lim
p→∞

(1−h) · ph−p−h−p +1

(1−h−p)(1−h−(p−1))
logh

= logh.

(K-15) We consider

logK(h, p) = (p−1) logh0 (3.6)

instead of K(h, p) = hp−1
0 . Then the equation (3.6) has a solution p = 1.

We consider the tangent line �(p) at p = 1 with respect to the function logK(h, p)
for p . Then we have �(p) = (p−1) logS(h) by (K-3) and (K-10).

Let h−1 < h0 < h . Then the equation (3.6) has only the following solution p
where

p :=

⎧⎨
⎩

1, p0(∈ (−∞,1)) if h−1 < h0 < S(h)
1, p0(∈ (1,∞)) if S(h) < h0 < h
1 if h0 = S(h)

by (K-2), (K-10), (K-11) and (K-14).
Next, let h0 � h−1 or h � h0 . Then we see that the equation (3.6) has a solution

p = 1 only. �

4. Concluding remarks

In Theorem 3.1, we see that K(h, p) and logK(h, p) are convex functions for
p ∈ R . In this section, we give some remarks of the function K(h, p) for h > 0.

It is known that K(h,2) is convex for h > 1 as in [1]. But, logK(h,2) is not a
convex function for h > 1. As a matter of fact, since

logK
(2+4

2
,2

)
= log

4
3

and
logK(2,2)+ logK(4,2)

2
=

log 9
8 + log 25

16

2
= log

15

8
√

2
,

we have logK( 2+4
2 ,2) > logK(2,2)+logK(4,2)

2 , i.e., logK(h,2) is not a convex function.
In addition, that there exists p = p0 ∈ R such that K(h, p0) is not convex for

h > 1. Indeed, since

K
(3+7

2
,
3
2

)
� 1.25726 and

K(3, 3
2)+K(7, 3

2 )
2

� 1.11626+1.38604
2

= 1.25115,

we have K( 3+7
2 , 3

2) >
K(3, 3

2 )+K(7, 3
2 )

2 .
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