LOG-CONVEXITY OF GENERALIZED KANTOROVICH FUNCTION

Masaru Tominaga

(Communicated by M. Praljak)

Abstract. We aim to derive some important properties about the generalized Kantorovich constant $K(h, p):=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p}$ for $h>0$ and $p \in \mathbb{R}$. In particular, we point out that $K(h, p)$ is a log-convex function for p. As applications, we show the monotonicity of $K(h, p)^{\frac{1}{p}}$.

1. Introduction

Let $\mathbb{B}(\mathscr{H})$ denote the algebra of all bounded linear operators on a complex Hilbert space $(\mathscr{H},\langle\cdot, \cdot\rangle)$ with the identity operator $I_{\mathscr{H}}$, and let $\mathbb{B}^{+}(\mathscr{H})$ be the set of all positive operators in $\mathbb{B}(\mathscr{H})$. Let $P[\mathbb{B}(\mathscr{H}), \mathbb{B}(\mathscr{K})]$ denote a set of all normalized positive linear maps $\Phi: \mathbb{B}(\mathscr{H}) \rightarrow \mathbb{B}(\mathscr{K})$ such that $A \in \mathbb{B}^{+}(\mathscr{H}) \rightarrow \Phi(A) \in \mathbb{B}^{+}(\mathscr{K})$ with $\Phi\left(I_{\mathscr{H}}\right)=I_{\mathscr{K}}$.

Greub and Rheinboldt [11] gave the following Kantorovich operator inequality: If a positive operator A fulfills the condition $0<m I_{\mathscr{H}} \leqslant A \leqslant M I_{\mathscr{H}}$ for some scalars $m \leqslant M$, then

$$
\begin{equation*}
\langle x, x\rangle \leqslant\langle A x, x\rangle\left\langle A^{-1} x, x\right\rangle \leqslant \frac{(M+m)^{2}}{4 M m}\langle x, x\rangle \tag{1.1}
\end{equation*}
$$

for all $x \in \mathscr{H}$. The constant $\frac{(M+m)^{2}}{4 M m}$ in (1.1) is called the Kantorovich constant. Kantorovich represented (1.1) as a sequence of positive real numbers in [13, p.142].

Mond and Pečarić [18] generalized (1.1) as follows: Let Φ be a normalized positive linear map in $P[\mathbb{B}(\mathscr{H}), \mathbb{B}(\mathscr{K})]$. If A is a positive operator on \mathscr{H} satisfying $0<m I_{\mathscr{H}} \leqslant A \leqslant M I_{\mathscr{H}}$ for some scalars $m \leqslant M$, then

$$
\begin{equation*}
\Phi\left(A^{-1}\right) \leqslant \frac{(M+m)^{2}}{4 M m} \Phi(A)^{-1} \tag{1.2}
\end{equation*}
$$

also see [10].
On the other hand, Furuta gave complementary inequalities to the Hölder-McCarthy inequality as an extension of the Kantorovich type one as follows [5], [6], [7], [9], [10]

[^0]and [2]: Let A be a positive operator on \mathscr{H} such that $0<m I_{\mathscr{H}} \leqslant A \leqslant M I_{\mathscr{H}}$ for some scalars $m<M$. Let $h=\frac{M}{m}$. If $p \notin[0,1]$, then
\[

$$
\begin{equation*}
\langle A x, x\rangle^{p} \leqslant\left\langle A^{p} x, x\right\rangle \leqslant K(h, p)\langle A x, x\rangle^{p} \tag{1.3}
\end{equation*}
$$

\]

for every unit vector $x \in \mathscr{H}$, where the generalized Kantorovich constant $K(h, p)$ is defined by

$$
\begin{equation*}
K(h, p):=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{p-1}{p} \frac{h^{p}-1}{h^{p}-h}\right)^{p} \quad \text { for all } p \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

with $K(h, 1)=1$. (See [5] in detail.) If $p \in[0,1]$, then the reverse inequality is valid in (1.3).

In addition, we cite the following ratio inequality ([10] and [17]), where the estimation is given by the generalized Kantorovich constant $K(h, p)$. This inequality is an extension of the result of C.-K.Li and R.Mathias [16] considered for the matrix case: Let Φ be a normalized positive linear map in $P[\mathbb{B}(\mathscr{H}), \mathbb{B}(\mathscr{K})]$. If A is a positive operator on \mathscr{H} satisfying $0<m I_{\mathscr{H}} \leqslant A \leqslant M I_{\mathscr{H}}$ for some scalars $m<M$, then for any $p \in \mathbb{R} \backslash\{0\}$

$$
\begin{equation*}
\gamma_{2} \Phi(A)^{p} \leqslant \Phi\left(A^{p}\right) \leqslant \gamma_{1} \Phi(A)^{p} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \gamma_{1}:= \begin{cases}K(h, p) & \text { if } p>1 \text { or } p<0 \\
1 & \text { if } 0<p \leqslant 1\end{cases} \\
& \gamma_{2}:= \begin{cases}K(h, p)^{-1} & \text { if } p>2 \text { or } p<-1 \\
1 & \text { if }-1 \leqslant p<0 \text { or } 1 \leqslant p \leqslant 2 \\
K(h, p) & \text { if } 0<p<1\end{cases}
\end{aligned}
$$

The ineqality (1.5) can be considered as an extension of inequalities (1.2) and (1.3) for power functions, and the generalized Kantorovich constant $K(h, p)$ plays an important role in estimations of these inequalities.

Here we remark that Nakamura [20] gave a simple proof of (1.1) by using a convexity of $f(t)=t^{-1}$. The inequality (1.3) is generalized to arbitrary general convex functions in [19]. The formulated method which is reduced to solving a single variable maximization or minimization problem by using the concavity of a real valued function is called the Mond-Pečarić method [10]. Using it we can derive several operator inequalities for the difference and ratio including inequalities (1.1)-(1.3) and (1.5), see [5] and [10].

In this paper, we show some meaningful properties of the generalized Kantorovich constant $K(h, p)$. One of them, the symmetric property $K(h, p)=K(h, 1-p)$ given by Furuta [5], [9] is noteworthly. In connection with this, we give some properties of the generalized Kantorovich function $K(h, p)$ for $p \in \mathbb{R}$. In particular, we prove a basic and important fact that $K(h, p)$ is log-convex on p, and so convex. For this, an inequality due to Takahasi et al. [23] and some properties of the Klein inequality play an essential role. One of applications, we show that $K(h, p)^{\frac{1}{p}}$ is strictly increasing for $p \in \mathbb{R}$ which is an extension of [14, Lemma 3.8].

2. Some properties of the Klein function and its applications

The following inequality is known as the Klein inequality [15] and [21]: For a positive real number $c>0$ with $c \neq 1$

$$
\begin{equation*}
\log c<c-1 \quad(\text { or } \quad c \log c>c-1) \tag{2.1}
\end{equation*}
$$

We define the Klein function: For a fixed $c>0$

$$
\begin{equation*}
\mathscr{K}_{c}(t):=c^{t} \log c-(c-1) \quad \text { for } t \geqslant 0 \tag{2.2}
\end{equation*}
$$

It has the following properties:

THEOREM 2.1. Let $c>0$. Then the Klein function $\mathscr{K}_{c}(t)$ for $t \geqslant 0$ has the following properties:
(1) $\mathscr{K}_{c}(t)$ is a strictly increasing function for $t \geqslant 0$ with

$$
\mathscr{K}_{c}(0)(=\log c-(c-1)) \leqslant 0 \leqslant \mathscr{K}_{c}(1)(=c \log c-(c-1)) .
$$

In the above inequalities, equalities hold only the case of $c=1$.
(2) The equation $\mathscr{K}_{c}(t)=0$ has a unique solution $t=t_{0}\left\{\begin{array}{l}\in\left(0, \frac{1}{2}\right) \text { if } 0<c<1 \\ \in\left(\frac{1}{2}, 1\right) \text { if } c>1 .\end{array}\right.$
(3) The inequality $\mathscr{K}_{c}(1)+\mathscr{K}_{c}(0)(=c \log c+\log c-2(c-1))>0$ holds for $c>1$. If $0<c<1$, then the reverse inequality holds. Consequently, the inequality $\left(\mathscr{K}_{c}(1)+\mathscr{K}_{c}(0)\right) \log c>0$ holds for $c>0$ with $c \neq 1$.

Proof. It is easy to see (1) from $\frac{d}{d t} \mathscr{K}_{c}(t)=c^{t}(\log c)^{2}>0$ and (2.1).
The property (2) is given by $\mathscr{K}_{1}\left(\frac{1}{2}\right)=0, \frac{d}{d c} \mathscr{K}_{c}\left(\frac{1}{2}\right)=c^{-\frac{1}{2}}\left(\log c^{\frac{1}{2}}-\left(c^{\frac{1}{2}}-1\right)\right)<0$ and (1).

Since $\mathscr{K}_{1}(1)+\mathscr{K}_{1}(0)=0$ and $\frac{d}{d c}\left(\mathscr{K}_{c}(1)+\mathscr{K}_{c}(0)\right)=\log c+\frac{1}{c}-1=\left(\frac{1}{c}-1\right)-$ $\log \frac{1}{c}>0$, we have (3).

Next we recall the generalized logarithmic function $\ln _{p}(c):=\frac{c^{p}-1}{p}$. S.-E. Takahasi et al [23] treat the following function related to the generalized logarithmic function for $M \geqslant m>0$

$$
\sigma_{p}(m, M)=\frac{p}{p-1} \frac{m M^{p}-M m^{p}}{M^{p}-m^{p}}\left(=\frac{\ln _{p-1}(h)}{\ln _{p}(h)} M\right) \quad \text { for any real number } p(\neq 0,1)
$$

where $h=\frac{M}{m}$. They proved that the function $p \mapsto \sigma_{p}(m, M)$ is strictly monotone decreasing. In the following lemma, we give a simplified proof.

Lemma 2.2. Let c be a positive real number with $c \neq 1$. Then the following properties hold:
(1) The following inequality holds for $p \notin(0,1)$

$$
\begin{equation*}
(c-1) \log c \leqslant \frac{c^{p}-1}{p} \cdot \frac{c^{1-p}-1}{1-p}\left(=\frac{\ln _{p}(h)}{\ln _{1-p}(h)} M\right) . \tag{2.3}
\end{equation*}
$$

If $p \in[0,1]$, then the reverse inequality of (2.3) holds. The equality is attained if and only if $p \rightarrow 0,1$.
(2) The function $f(p):=\frac{1-c^{-p}}{p} \cdot \frac{p-1}{1-c^{-(p-1)}}\left(=\frac{\ln _{-p}(h)}{\ln _{1-p}(h)}\right)$ is strictly monotone increasing for $p \in \mathbb{R}$.
(3) Let $c>1$. Then the function $g(p):=\frac{p}{1-c^{-p}}-\frac{p-1}{1-c^{-(p-1)}}\left(=\ln _{-p}(h)^{-1}-\right.$ $\left.\ln _{1-p}(h)^{-1}\right)$ is strictly monotone increasing for $p \in \mathbb{R}$.

If $0<c<1$, then $g(p)$ is strictly monotone decreasing for $p \in \mathbb{R}$.

Proof. (1) We easily see that $\frac{c^{p}-1}{p} \cdot \frac{c^{1-p}-1}{1-p}$ converges $(c-1) \log c$ for $p \rightarrow 0,1$. So we may prove that for $p \in \mathbb{R} \backslash\{0,1\}$, the function $f_{0}(x):=p(1-p)(x-1) \log x-$ $\left(x^{p}-1\right)\left(x^{1-p}-1\right)$ is positive for any positive real number $x(x \neq 1)$. Then we have

$$
\begin{aligned}
\frac{d}{d x} f_{0}(x) & =p(1-p)\left(\log x-x^{-1}+1\right)-\left\{p x^{p-1}\left(x^{1-p}-1\right)+(1-p)\left(x^{p}-1\right) x^{-p}\right\} \\
& =p(1-p)\left(\log x-x^{-1}+1\right)+p x^{p-1}+(1-p) x^{-p}-1
\end{aligned}
$$

and moreover

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} f_{0}(x) & =p(1-p)\left(x^{-1}+x^{-2}-x^{p-2}-x^{-p-1}\right) \\
& =p(1-p) x^{-\frac{3}{2}}\left(\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)-\left(x^{p-\frac{1}{2}}+x^{-p+\frac{1}{2}}\right)\right)>0
\end{aligned}
$$

because

$$
\left(x^{\frac{1}{2}}+x^{-\frac{1}{2}}\right)-\left(x^{p-\frac{1}{2}}+x^{-p+\frac{1}{2}}\right) \begin{cases}<0 & \text { if } p \notin[0,1] \\ >0 & \text { if } p \in(0,1)\end{cases}
$$

Moreover, it follows from $\lim _{x \rightarrow 1} f_{0}(x)=\lim _{x \rightarrow 1} \frac{d}{d x} f_{0}(x)=\lim _{x \rightarrow 1} \frac{d^{2}}{d^{2} x} f_{0}(x)=0$ that $f_{0}(x) \geqslant 0$. So the desired property (2.3) holds.
(2) Since $\lim _{p \rightarrow 0} f(p)=\frac{\log c}{c-1}$ and $\lim _{p \rightarrow 1} f(p)=\frac{c-1}{c \log c}$, the function $f(p)$ is continuous on \mathbb{R}. So we may show this property only for $p \in \mathbb{R} \backslash\{0,1\}$.

It follows from (1) that

$$
\begin{aligned}
\frac{d}{d p} \log f(p) & =\frac{1}{(p-1) p}+\frac{\left(1-c^{1-p}\right)-\left(c-c^{1-p}\right)}{\left(1-c^{-p}\right)\left(1-c^{1-p}\right)} c^{-p} \log c \\
& =\frac{1}{\left(c^{p}-1\right)\left(c^{1-p}-1\right)}\left(-\frac{\left(c^{p}-1\right)\left(c^{1-p}-1\right)}{p(1-p)}+(c-1) \log c\right)>0
\end{aligned}
$$

In the above last inequality, we remark that $\left(c^{p}-1\right)\left(c^{1-p}-1\right) \begin{cases}<0 & (p \notin[0,1]) \\ >0 & (p \in(0,1)) .\end{cases}$
Moreover, we have $\frac{d}{d p} f(p)=f(p) \cdot \frac{d}{d p} \log f(p)>0$ by $f(p)>0$, and so the property (2) holds.
(3) Define a function $G(t)$ by

$$
G(t):=\left\{\begin{array}{ll}
\frac{t \log t}{(t-1) \log c} & (t \neq 1) \\
(\log c)^{-1} & (t=1)
\end{array} \quad \text { for } \quad t>0\right.
$$

Then we have for $t \neq 1$

$$
\frac{d}{d t} G(t)=\frac{(t-1)-\log t}{(t-1)^{2} \log c}, \quad \text { and } \quad \frac{d^{2}}{d t^{2}} G(t)=\frac{1-t^{2}+2 t \log t}{t(t-1)^{3} \log c}
$$

Here we put $t=c^{p}(>0)$. Then it follows from $G\left(c^{p}\right)=\frac{p}{1-c^{-p}}$ that

$$
g(p)=G\left(c^{p}\right)-G\left(c^{p-1}\right) \quad \text { and } \quad \frac{d}{d p} g(p)=\frac{d}{d p} G\left(c^{p}\right)-\frac{d}{d p} G\left(c^{p-1}\right)
$$

Moreover we have $\frac{d t}{d p}=t \log c$ and so

$$
\begin{aligned}
\frac{d^{2}}{d p^{2}} G\left(c^{p}\right) & =\frac{d}{d t}\left(\frac{d}{d t} G(t) \cdot \frac{d t}{d p}\right) \cdot \frac{d t}{d p} \\
& =\frac{d^{2}}{d t^{2}} G(t) \cdot(t \log c)^{2}+\frac{d}{d t} G(t) \cdot t(\log c)^{2} \\
& =\frac{t \cdot(t \log t+\log t-2(t-1)) \log t}{(t-1)^{3} \cdot p}
\end{aligned}
$$

Hence we have $\frac{d^{2}}{d p^{2}} G\left(c^{p}\right)\left\{\begin{array}{l}>0(c>1) \\ <0(0<c<1)\end{array}\right.$ by $(t-1)^{3} \cdot p\left\{\begin{array}{ll}>0 & (c>1) \\ <0 & (0<c<1)\end{array}\right.$ and
Theorem 2.1 (3). If $c>1$ (resp. $0<c<1$), then $\frac{d}{d p} G\left(c^{p}\right)$ is an increasing function (resp. a decreasing function) for p. So the property (3) is given by

$$
\frac{d}{d p} g(p)\left\{\begin{array}{l}
>0(c>1) \\
<0(0<c<1)
\end{array}\right.
$$

3. Log-convexity of the generalized Kantorovich function

We recall several properties of the generalized Kantorovich function $K(h, p)$ as follows [3], [5], [8], [9] and [10]: Let $h>0$ be given. Then
(K-1) $K(h, p)=K\left(\frac{1}{h}, p\right)$ for all $p \in \mathbb{R}$.
(K-2) $K(h, p)=K(h, 1-p)$ (i.e., $K\left(h, \frac{1}{2}+p\right)=K\left(h, \frac{1}{2}-p\right)$) for all $p \in \mathbb{R}$, that is, $K(h, p)$ is symmetric with respect to $p=\frac{1}{2}$.
(K-3) $K(h, 0)=K(h, 1)=1$ and $K(1, p)=1$ for all $p \in \mathbb{R}$, where $K(h, 0)=\lim _{p \rightarrow 0} K(h, p)$, $K(h, 1)=\lim _{p \rightarrow 1} K(h, p)$ and $K(1, p)=\lim _{h \rightarrow 1} K(h, p)$.
(K-4) $K(h, p)$ is increasing for $p>\frac{1}{2}$ and decreasing for $p<\frac{1}{2}$, and

$$
\min _{p \in \mathbb{R}} K(h, p)=K\left(h, \frac{1}{2}\right)=\frac{2 h^{1 / 4}}{h^{1 / 2}+1} \in(0,1] .
$$

(K-5) $K\left(h^{r}, \frac{p}{r}\right)^{\frac{1}{p}}=K\left(h^{p}, \frac{r}{p}\right)^{-\frac{1}{r}}$ for $r p \neq 0$.
In particular, if $r=1$, then $K(h, p)^{\frac{1}{p}}=K\left(h^{p}, \frac{1}{p}\right)^{-1}$ for $p \neq 0$.
(K-6) $K(h, p)<h^{p-1}$ for all $h>1$ and $p>1$.

Here it follows from (K-2), (K-3) and (K-4) that $K(h, p)>0$ for any $p \in \mathbb{R}$ and

$$
K(h, p)\left\{\begin{array}{ll}
\geqslant 1 & \text { if } p \notin(0,1) \\
<1 & \text { if } p \in(0,1)
\end{array} \quad\right. \text { (e.g. [5], [9]). }
$$

Moreover, we mention the following properties [12]:
(K-7) Let $h>1$. If $p>1$ (resp. $0<p<1$), then $K\left(h^{t}, p\right)^{\frac{1}{t}}$ is increasing (resp. decreasing) for $t>0$ ([4]), and $1<K\left(h^{t}, p\right)^{\frac{1}{t}}<h^{p-1}$ for all $t>0$.
(K-8) $\lim _{t \rightarrow 0} K\left(h^{t}, p\right)^{\frac{1}{t}}=1 \quad$ for all $p \in \mathbb{R}$.
Here we provide a proof of (K-8) for the sake of convenience:
Proof of (K-8). We may assume that $h>1$ and $t \downarrow 0$ by (K-1). By L'Hospital's rule, we have

$$
\begin{equation*}
\lim _{t \downarrow 0} \frac{h^{t}-h^{t p}}{h^{t}-1}=\lim _{t \downarrow 0} \frac{h^{t} \log h-h^{t p} \log h^{p}}{h^{t} \log h}=1-p \quad \text { and } \quad \lim _{t \downarrow 0} \frac{h^{t p}-1}{h^{t}-1}=p \tag{3.1}
\end{equation*}
$$

and moreover

$$
\begin{equation*}
\lim _{t \downarrow 0} \frac{d}{d t} \frac{h^{t}-h^{t p}}{h^{t}-1}=\frac{p(1-p)}{2} \log h \quad \text { and } \quad \lim _{t \downarrow 0} \frac{d}{d t} \frac{h^{t p}-1}{h^{t}-1}=\frac{p(p-1)}{2} \log h . \tag{3.2}
\end{equation*}
$$

As a result, applying L'Hospital's rule by (3.1) and moreover using (3.2), we obtain

$$
\begin{aligned}
\lim _{t \downarrow 0} \log K\left(h^{t}, p\right)^{\frac{1}{t}} & =\lim _{t \downarrow 0} \log \left\{\frac{h^{t p}-h^{t}}{(p-1)\left(h^{t}-1\right)}\left(\frac{p-1}{p} \frac{h^{t p}-1}{h^{t p}-h^{t}}\right)^{p}\right\}^{\frac{1}{t}} \\
& =\lim _{t \downarrow 0} \log \left\{\left(\frac{1}{1-p} \frac{h^{t}-h^{t p}}{h^{t}-1}\right)^{\frac{1-p}{t}}\left(\frac{1}{p} \frac{h^{t p}-1}{h^{t}-1}\right)^{\frac{p}{t}}\right\} \\
& =\lim _{t \downarrow 0} \frac{1}{t}\left\{(1-p) \log \left(\frac{1}{1-p} \frac{h^{t}-h^{t p}}{h^{t}-1}\right)+p \log \left(\frac{1}{p} \frac{h^{t p}-1}{h^{t}-1}\right)\right\} \\
& =(1-p) \frac{\frac{p(1-p)}{2} \log h}{1-p}+p \frac{\frac{p(p-1)}{2} \log h}{p} \\
& =0
\end{aligned}
$$

In the above equality, we remark that $\frac{h^{t}-h^{t p}}{1-p}$ and $\frac{h^{t p}-1}{p}$ are positive. Hence we have the desired equality (K-8).

The following result represents the relation of the convex function and its secant line (cf. [10, Corollary 2.10]):
(K-9) Let $0<m<M$ with $h:=\frac{M}{m}>1$. For $p>1$, the convex function $t^{p}(t>0)$ has a secant line $\alpha_{p} t+\beta_{p}$ at $t=m, M$, where $\alpha_{p}:=\frac{M^{p}-m^{p}}{M-m}$ and $\beta_{p}:=\frac{M m^{p}-m M^{p}}{M-m}$. Then it follows that

$$
\max _{m \leqslant t \leqslant M} \frac{\alpha_{p} t+\beta_{p}}{t^{p}}=K(h, p)
$$

Here we treat the Specht ratio $S(h)=\frac{h^{\frac{1}{h-1}}}{e \log h^{\frac{1}{h-1}}}$ [22] which is the best constant of the reverse arithmetic-geometric mean inequality. It has the following property (e.g. [3], [8]) related to the generalized Kantorovich function $K(h, p)$:
(K-10) $\lim _{p \rightarrow 1} \frac{\partial}{\partial p} \log K(h, p)=\lim _{p \rightarrow 1} \frac{\frac{\partial}{\partial p} K(h, p)}{K(h, p)}=\lim _{p \rightarrow 1} \frac{\partial}{\partial p} K(h, p)=\log S(h)$.
We mention some important properties of the generalized Kantorovich function $K(h, p)$ as our main result:

THEOREM 3.1. Let $h>0$ and $p \in \mathbb{R}$. The generalized Kantorovich function $K(h, p)$ has the following properties:
(K-11) $\log K(h, p)$ is a convex function for $p \in \mathbb{R}$.
Consequently,
(K-12) $K(h, p)$ is a convex function for $p \in \mathbb{R}$.

Proof. (K-11) From the properties (K-1), (K-2), (K-3) and (K-4), we may show the properties (K-11) (and (K-12)) for the case of $h \geqslant 1$ and $p \geqslant \frac{1}{2}$. In particular, we only prove for the case $p>1$. The case $\frac{1}{2} \leqslant p<1$ is given by a similar method. Here we remark that $\lim _{p \rightarrow 1} \frac{\partial}{\partial p} \log K(h, p)$ exists by (K-10).

The generalized Kantorovich function is represented as follows:

$$
K(h, p)=\frac{(p-1)^{p-1}}{p^{p}} \frac{\left(h^{p}-1\right)^{p}}{\left(h^{p}-h\right)^{p-1}(h-1)}
$$

and so

$$
\begin{aligned}
\log K(h, p)= & \log \left(h^{p}-h\right)-\log (h-1)-\log (p-1) \\
& +p\left(\log \left(h^{p}-1\right)-\log \left(h^{p}-h\right)+\log (p-1)-\log p\right)
\end{aligned}
$$

Moreover, we have

$$
\begin{align*}
\frac{\partial}{\partial p} \log K(h, p) & =\left(\frac{(1-p) h^{p}}{h^{p}-h}+\frac{p h^{p}}{h^{p}-1}\right) \log h+\log \frac{(p-1)\left(h^{p}-1\right)}{p\left(h^{p}-h\right)} \tag{3.3}\\
& =\left(\frac{p}{1-h^{-p}}-\frac{p-1}{1-h^{-(p-1)}}\right) \log h+\log \frac{(p-1)\left(1-h^{-p}\right)}{p\left(1-h^{-(p-1)}\right)}
\end{align*}
$$

By (2) and (3) in Lemma 2.2, the function $\frac{\partial}{\partial p} \log K(h, p)$ is strictly monotone increasing, and so we hold the property (K-11).
(K-12) This property is satisfied by (K-11).
Kian et al. obtained the following result [14, Lemma 3.8] by using the property (K-12):

Lemma KMS. Let $h \geqslant 1$. Then the generalized Kantorovich function $K(h, p)$ has the following property:

$$
K(h,-p) \leqslant K(h,-1)^{p} \quad \text { for } p \in(0,1)
$$

If $p \notin(0,1)$, then the reverse inequality of above holds.
The above lemma is equivalent to the following result: For $p \leqslant 1$

$$
K(h,-p)^{-\frac{1}{p}} \geqslant K(h,-1)^{-1}
$$

If $p \geqslant 1$, then the reverse inequality of above holds.
From this view point, we improve it as follows:

Corollary 3.2. Let $h>0$. The generalized Kantorovich function $K(h, p)$ has the following monotone property:
(K-13) $K(h, p)^{\frac{1}{p}}$ is strictly increasing for $p \in \mathbb{R}$.

Proof. First of all, we have

$$
\begin{equation*}
\frac{\partial}{\partial p} \log K(h, p)^{\frac{1}{p}}=\frac{\partial}{\partial p} \frac{\log K(h, p)}{p}=\frac{p \frac{\partial}{\partial p} \log K(h, p)-\log K(h, p)}{p^{2}} \tag{3.4}
\end{equation*}
$$

Next, we consider the tangent line $\ell(p)$ of $\log K(h, p)$ at any $p=p_{0} \in \mathbb{R}$. It is represented as follows:

$$
\ell(p)=\left.\frac{\partial}{\partial p} \log K(h, p)\right|_{p=p_{0}}\left(p-p_{0}\right)+\log K\left(h, p_{0}\right)
$$

By (K-11), we have

$$
\begin{equation*}
\log K(h, p) \geqslant \ell(p)=\left.\frac{\partial}{\partial p} \log K(h, p)\right|_{p=p_{0}}\left(p-p_{0}\right)+\log K\left(h, p_{0}\right) \tag{3.5}
\end{equation*}
$$

If $p=0$, then the inequation (3.5) implies

$$
0 \geqslant-\left.p_{0} \frac{\partial}{\partial p} \log K(h, p)\right|_{p=p_{0}}+\log K\left(h, p_{0}\right)
$$

So the equation (3.4) is positive, and hence we have the property (K-13).
As another application, we have the following corollary:
Corollary 3.3. The generalized Kantorovich function $K(h, p)$ for $p \in \mathbb{R}$ has the following properties:
(K-14) For a fixed $h>0$, the following equation holds:

$$
\lim _{p \rightarrow \infty} \frac{\partial}{\partial p} \log K(h, p)=\lim _{p \rightarrow \infty} \frac{\frac{\partial}{\partial p} K(h, p)}{K(h, p)}=\log h
$$

Moreover, $\left|\frac{\partial}{\partial p} \log K(h, p)\right|<|\log h|$. Consequently, there is a unique solution $p=p_{0} \in \mathbb{R}$ such that $\left.\frac{\partial}{\partial p} K(h, p)\right|_{p=p_{0}}=\log h_{0}$ for any $h_{0} \in I_{h}$, where I_{h} is the open interval determined by $\frac{1}{h}$ and h.
(K-15) Let $h \geqslant 1$ and $h_{0}>0$. Then the equation $K(h, p)=h_{0}^{p-1}$ has the following solutions $p \in \mathbb{R}$:

$$
p:= \begin{cases}1, p_{0}(\in(-\infty, 1)) & \text { if } h^{-1}<h_{0}<S(h) \\ 1, p_{0}(\in(1, \infty)) & \text { if } S(h)<h_{0}<h \\ 1 & \text { otherwise } .\end{cases}
$$

Moreover, suppose that $h_{0} \in\left(h^{-1}, h\right) \backslash\{S(h)\}$. Let I_{0} be the closed interval determined by 1 and p_{0} with $K\left(h, p_{0}\right)=h_{0}^{p_{0}-1}$. Then the following inequality holds

$$
K(h, p)-h_{0}^{p-1} \begin{cases}\leqslant 0 & \text { if } p \in I_{0} \\ \geqslant 0 & \text { otherwise }\end{cases}
$$

Proof. (K-14) By (3.3) and $\lim _{p \rightarrow \infty} p h^{-p}=0$, we have

$$
\begin{aligned}
\lim _{p \rightarrow \infty} \frac{\partial}{\partial p} \log K(h, p) & =\lim _{p \rightarrow \infty}\left\{\left(\frac{p}{1-h^{-p}}-\frac{p-1}{1-h^{-(p-1)}}\right) \log h+\log \frac{(p-1)\left(1-h^{-p}\right)}{p\left(1-h^{-(p-1)}\right)}\right\} \\
& =\lim _{p \rightarrow \infty} \frac{(1-h) \cdot p h^{-p}-h^{-p}+1}{\left(1-h^{-p}\right)\left(1-h^{-(p-1)}\right)} \log h \\
& =\log h
\end{aligned}
$$

(K-15) We consider

$$
\begin{equation*}
\log K(h, p)=(p-1) \log h_{0} \tag{3.6}
\end{equation*}
$$

instead of $K(h, p)=h_{0}^{p-1}$. Then the equation (3.6) has a solution $p=1$.
We consider the tangent line $\ell(p)$ at $p=1$ with respect to the function $\log K(h, p)$ for p. Then we have $\ell(p)=(p-1) \log S(h)$ by (K-3) and (K-10).

Let $h^{-1}<h_{0}<h$. Then the equation (3.6) has only the following solution p where

$$
p:= \begin{cases}1, p_{0}(\in(-\infty, 1)) & \text { if } h^{-1}<h_{0}<S(h) \\ 1, p_{0}(\in(1, \infty)) & \text { if } S(h)<h_{0}<h \\ 1 & \text { if } h_{0}=S(h)\end{cases}
$$

by (K-2), (K-10), (K-11) and (K-14).
Next, let $h_{0} \leqslant h^{-1}$ or $h \leqslant h_{0}$. Then we see that the equation (3.6) has a solution $p=1$ only.

4. Concluding remarks

In Theorem 3.1, we see that $K(h, p)$ and $\log K(h, p)$ are convex functions for $p \in \mathbb{R}$. In this section, we give some remarks of the function $K(h, p)$ for $h>0$.

It is known that $K(h, 2)$ is convex for $h>1$ as in [1]. But, $\log K(h, 2)$ is not a convex function for $h>1$. As a matter of fact, since
$\log K\left(\frac{2+4}{2}, 2\right)=\log \frac{4}{3} \quad$ and $\quad \frac{\log K(2,2)+\log K(4,2)}{2}=\frac{\log \frac{9}{8}+\log \frac{25}{16}}{2}=\log \frac{15}{8 \sqrt{2}}$, we have $\log K\left(\frac{2+4}{2}, 2\right)>\frac{\log K(2,2)+\log K(4,2)}{2}$, i.e., $\log K(h, 2)$ is not a convex function.

In addition, that there exists $p=p_{0} \in \mathbb{R}$ such that $K\left(h, p_{0}\right)$ is not convex for $h>1$. Indeed, since
$K\left(\frac{3+7}{2}, \frac{3}{2}\right) \fallingdotseq 1.25726 \quad$ and $\quad \frac{K\left(3, \frac{3}{2}\right)+K\left(7, \frac{3}{2}\right)}{2} \fallingdotseq \frac{1.11626+1.38604}{2}=1.25115$, we have $K\left(\frac{3+7}{2}, \frac{3}{2}\right)>\frac{K\left(3, \frac{3}{2}\right)+K\left(7, \frac{3}{2}\right)}{2}$.

REFERENCES

[1] F. M. Dannan, Generalized Kantorovich constant, a new formulation and properties, Probl. Anal. Issues Anal., 9 (2020), 38-51.
[2] Ky Fan, Some matrix inequalities, Abh. Math. Sem. Univ. Hamburg, 29 (1966), 185-196.
[3] J. I. Fujii, M. Fujir, Y. Seo and M. Tominaga, On generalized Kantorovich inequalities, Banach and function spaces, 205-213, Yokohama Publ., Yokohama, 2004.
[4] J. I. FUjil, Y. SEO AND T. YAMAZAKI, Norm inequalities for matrix geometric means of positive definite matrices, Linear Multilinear Algebra, 64 (2016), 512-526.
[5] M. Fujir, J. MićIć, J.E. PečARIĆ and Y. Seo, Recent Developments of Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 4, Element, Zagreb, 2012.
[6] T. Furuta, Extensions of Hölder-McCarthy and Kantorovich inequalities and their applications, Proc. Japan Acad., Ser. A, 73 (1997), 38-41.
[7] T. Furuta, Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities, J. Inequal. Appl., 2 (1998), 137-148.
[8] T. Furuta, Specht ratio $S(1)$ can be expressed by Kantorovich constant $K(p): S(1)=\exp \left[K^{\prime}(1)\right]$ and its application, Math. Inequal. Appl., 6 (2003), 521-530.
[9] T. FURUTA, Basic property of the generalized Kantorovich constant $K(h, p)=\frac{h^{p}-h}{(p-1)(h-1)}$ $\left(\frac{(p-1)}{p} \frac{\left(h^{p}-1\right)}{\left(h^{p}-h\right)}\right)^{p}$ and its applications, Acta Aci. Math. (Szeged), 70 (2004), 319-337.
[10] T. Furuta, J. Mićıć, J. E. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[11] W. Greub and W. Rheinboldt, On a generalization of an inequality of L. V. Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407-415.
[12] F. Hiai, Y. SEO AND S. WADA, Ando-Hiai type inequalities for multivariate operator means, Linear Multilinear Algebra, 67 (2019), 2253-2281.
[13] L. V. Kantorovich, Functional analysis and applied mathematics (in Russian), Uspechi Mat. Nauk., 3 (1948), 89-185. Translated from the Russian by Curtis D. Benster, National Bureau of Standards, Report No. 1509, March 7, 1952.
[14] M. Kian, M. S. Moslehian and Y. Seo, Variants of Ando-Hiai type inequalities for deformed means and applications, Glasgow Math. J., 63 (2021), 622-639.
[15] O. Klein, Zur quantenmechanischen Begründung des zweiten Hauptsatzes der Wärmelehre, Z. Physik, 72 (1931), 767-775.
[16] C.-K. Li and R. Mathias, Matrix inequalities involving a positive linear map, Linear Multilinear Algebra, 41 (1996), 221-231.
[17] J. Mićıć, J. E. Pečarić, Y. Seo and M. Tominaga, Inequalities for positive linear maps on Hermitian matrices, Math. Inequal. Appl., 3 (2000), 559-591.
[18] B. MOND AND J. E. PEČARIĆ, Converses of Jensen's inequality for linear maps of operators, Analele Universit. din Timisoara Seria Math.-Inform. XXXI 2 (1993), 223-228.
[19] B. Mond and J. E. PeČARIć, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993), 405-420.
[20] M. Nakamura, A remark on a paper of Greub and Rheiboldt, Proc. Japan. Acad., 36 (1960), 198199.
[21] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York, 1969.
[22] W. Specht, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
[23] S.-E. Takahasi, M. Tsukada, K. Tanahashi and T. Ogiwara, An inverse type of Jensen's inequality, Math. Japon., 50 (1999), 85-91.

[^0]: Mathematics subject classification (2020): Primary 47A63; Secondary 26D07.
 Keywords and phrases: Generalized Kantorovich constant, Klein inequality, Kantorovich inequality and log-convex function.

