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SPACEABILITY ON SOME CLASSES OF BANACH SPACES

ALIREZA BAGHERI SALEC, STEFAN IVKOVIĆ

AND SEYYED MOHAMMAD TABATABAIE ∗

(Communicated by S. Varošanec)

Abstract. In this paper, we study spaceability of subsets of generalized Orlicz and Lebesgue
spaces associated to a Banach function space. Also, we give some sufficient conditions for
spaceability of subsets of a general Banach space which improves an important result on this
topic. As an application, it is shown that the set of all bounded linear operators which are not
positive semidefinite on a separable Hilbert space is spaceable.

1. Introduction

A subset of a topological vector space is called spaceable if its union with the
singleton {0} contains a closed infinite-dimensional linear subspace. This concept
was introduced in [11, 1] and so far has been considered by many researchers. As
a useful tool, L. Bernal-González and M.O. Cabrera in [5, Theorem 2.2] give some
sufficient conditions for spaceability of the complement of a cone in a Banach function
space. This result covers some important ones proved in [8, 9]. By this tool, in [21, 22]
it is shown that the set M p

q (Rn)\⋃q<r�p M p
r (Rn) is spaceable in the Morrey space

M p
q (Rn) , if 0 < q < p < ∞ . Also, technically it is also proved that wM p

q (Rn) \
M p

q (Rn) is spaceable in the weak Morrey space wM p
q (Rn) . In [14, Theorem 3.3]

D. Kitson and R. M. Timoney present another nice sufficient condition for a set to be
spaceable in a Fréchet space. This topic has been studied in the context of some special
sequence and function spaces in several papers (see [3, 4, 7, 8, 9, 12, 24] for example).

In this paper, we focus on generalized Orlicz and Lebesgue spaces XΦ and X p

associated to a Banach function space X , where Φ is a Young function and p � 1.
These structures were studied in [10, 13, 19, 23] and contains usual Orlicz and Lebesgue
spaces. Let X be a solid Banach function space on the measure space (Ω,A ,μ) and
A0 := {E ∈ A : 0 < μ(E) and χE ∈ X} . Inspired by [8, 9] and as an extension of [5,
Theorem 3.3] we prove that if inf{‖χE‖X : E ∈ A0} = 0 and sup{‖χE‖X : E ∈ A∞} <
∞ , where A∞ := {E ∈ A : χE ∈ X} , then for each p � 1, X p \⋃p<q Xq is spaceable
in X p . This result is concluded from the technical Lemma 1 which is a generalization
of [16, Theorem 14.22]. In the sequel, we provide a necessary condition for inclusion
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of two generalized Orlicz spaces (as a generalization of [20, Theorem 3, page 155]),
and then prove that if the Young function Φ2 is not stronger than the other one Φ1 ,
then XΦ2 \XΦ1 is spaceable in XΦ2 . Finally, we give an abstract improvement of [5,
Theorem 2.2]. To emphasize the capacity of the obtained result, we apply it to show
that if X is a solid Banach function space on Ω and inf{‖χE‖X : E ∈A0}= 0, then for
each 1 � p,q < r , the set {( f ,g) ∈ X p ×Xq : f g /∈ Xr} is spaceable in X p ×Xq . As
another application, we prove that the set of all bounded linear operators which are not
positive semidefinite on a separable Hilbert space is spaceable. Moreover, it is shown
that if K is a two sided ideal cone in B(H ) and there exists a sequence of mutually
disjoint subsets {Jn}n∈N of N satisfying the condition PJnKPJn �= PJnB(H )PJn for all
n ∈ N , then B(H )\K is spaceable in B(H ) , where H is a separable Hilbert space
with an orthonormal basis {e j} j∈N , and PJn is the orthogonal projection on the closed
linear span of {e j} j∈Jn .

2. Preliminaries

In sequel, (Ω,A ,μ) is always a σ -finite measure space, and M0(Ω) is set of all
A -measurable complex-valued functions on Ω .

A linear subspace X of M0(Ω) equipped with a given norm ‖ · ‖X is called a
Banach function space on Ω if (X ,‖ · ‖X) is a Banach space. It is called solid if for
each f ∈ X and g ∈ M0(Ω) we have g ∈ X and ‖g‖X � ‖ f‖X whenever |g|� | f | a.e.

A convex function Φ : [0,∞)→ [0,∞) is called a Young function if Φ(0)= lim
x→0

Φ(x)

= 0 and lim
x→∞

Φ(x) = ∞ .

Let X be a Banach function space on Ω . For each f ∈ M0(Ω) we put

‖ f‖Φ := inf

{
λ > 0 : Φ

( | f |
λ

)
∈ X ,

∥∥∥∥Φ
( | f |

λ

)∥∥∥∥
X

� 1

}
. (1)

Then, the set of all f ∈ M0(Ω) with ‖ f‖Φ < ∞ is denoted by XΦ .
As in [10, Theorem 4.11], (XΦ,‖ · ‖Φ) is a Banach function space on Ω (two

functions in XΦ which are equal almost everywhere are considered the same). For
each p � 1, the function Φ0 defined by Φ0(x) := xp for all x � 0 is a Young function.
Then, we denote X p := XΦ0 and ‖ · ‖p := ‖ · ‖Φ0 . In particular, if X := L1(μ) , then
XΦ = LΦ(μ) and X p = Lp(μ) , the classical Orlicz and Lebesgue spaces.

3. Main results

A subset S of a Banach space Y is called spaceable in Y if S∪{0} contains a
closed infinite-dimensional subspace of Y . In this section, first we study the space-
ability of special subsets of X p . As in [23], for each function f in M0(Ω) we denote
Ef := {x ∈ Ω : f (x) �= 0} , the set-theoretical support of f .

REMARK 1. Recall from [5] that a Banach function space (E ,‖ · ‖) on Ω is a
PCS-space if for each sequence ( fn) with fn → f in E , there is a subsequence ( fnk )
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of ( fn) such that fnk → f a.e. This property plays a key role in the subject space-
ability. For instance, see Theorem 1 below as a main result on this topic. A Banach
function space X on a σ -finite measure space (Ω,A ,μ) is a PCS-space if and only
if the embedding of X into M0(Ω) is continuous, where M0(Ω) is equipped with the
topology of convergence in measure on finite measure subsets. If X is a solid quasi-
Banach function space on a σ -finite measure space then the embedding X in M0(Ω)
is always continuous, see [17, Proposition 2.2 (i)] for the finite measure case.

Next, we recall a result which was proved in [5, Theorem 2.2]. In this paper (as in
[5]) a subset B of a vector space is called a cone if for each scalar c , cB ⊆ B .

THEOREM 1. Let (E ,‖·‖) be a Banach function space on Ω and B be a nonempty
subset of E such that:

1. E is a PCS-space;

2. there is a constant k > 0 such that ‖ f + g‖ � k‖ f‖ for all f ,g ∈ E with E f ∩
Eg = ∅ ;

3. B is a cone;

4. if f ,g ∈ E such that f +g ∈ B and Ef ∩Eg = ∅ then f ,g ∈ B;

5. there is a sequence { fn}∞
n=1 ⊆ E \B such that for each distinct m,n ∈ N , E fn ∩

Efm = ∅ .

Then, E \B is spaceable in E .

For the sequel, we need the next result which is a generalization of [16, Theorem
14.22]. The main idea for the proof comes from [16, Theorem 14.22] but details are
different. The item (a ) in this theorem is a more general version of the relation (α ) in
[5]. Denote

A0 := {E ∈ A : 0 < μ(E) and χE ∈ X}.

LEMMA 1. Let X be a solid Banach function space. Then the following properties
are equivalent:

(a) inf{‖χE‖X : E ∈ A0} = 0 .

(b) There exists a sequence {An}∞
n=1 in A0 such that An ∩Am = ∅ for all distinct

m,n ∈ N and

0 < ‖χAn‖X � 1
2n , (n ∈ N).

Proof. (b) ⇒ (a) : Let {An}∞
n=1 be a sequence in A which satisfies in (b ). Let

1 � p < q < ∞ . We claim that X p � Xq . By the assumptions, we can write

∞

∑
n=1

∥∥∥∥n‖χAn‖
−p
q

X · χAn

∥∥∥∥
X

=
∞

∑
n=1

n‖χAn‖
1− p

q
X �

∞

∑
n=1

n(2
p
q −1)n < ∞. (2)
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Set

f :=
∞

∑
n=1

n
1
p ‖χAn‖

−1
q

X · χAn and SN :=
N

∑
n=1

n
1
p ‖χAn‖

−1
q

X · χAn

for all N ∈ N . By the relation (2) the sequence {Sp
N}∞

N=1 is Cauchy in X and so it
converges to some g ∈ X in the norm topology, because X is complete. Now, by
Remark 1, there exists a subsequence of {Sp

N}∞
N=1 that converges to g a.e. Therefore

g =
∞

∑
n=1

n‖χAn‖
−p
q

X · χAn =

(
∞

∑
n=1

n
1
p ‖χAn‖

−1
q

X · χAn

)p

= f p a.e.

This implies that | f |p ∈ X , and so f ∈ X p . On the other hand, in contrast, let f ∈ Xq .
Then, since X is solid we have

‖ f‖q =‖| f |q‖X

=

∥∥∥∥∥
(

∞

∑
n=1

n
1
p ‖χAn‖

−1
q

X · χAn

)q∥∥∥∥∥
X

�
∥∥∥k q

p
∥∥χAk

∥∥−1
X · χAk

∥∥∥
X

= k
q
p

for all k ∈ N , and this implies that ‖ f‖q = ∞ , a contradiction. Hence, f ∈ X p \Xq .
Now, thanks to [23, Theorem 2.1] we have inf{‖χE‖X : E ∈ A0} = 0.

(a) ⇒ (b) : Let inf{‖χE‖X : E ∈ A0} = 0. For each A ∈ A put

K (A) := inf{‖χB‖X : B ∈ A0, B ⊆ A}.
Clearly, we have

1. if A1,A2 ∈ A and A1 ⊆ A2 , then K (A2) � K (A1) , and

2. for each C,B ∈ A with B ⊆C , if K (B),K (C \B) > 0, then K (C) > 0.

Note that (2) holds since for each E ∈A0 , if E ⊆C , then ‖χE‖X � min{K (B),K (C\
B)} .

For each A ∈ A we put

K ′(A) := sup{‖χB‖X : B ∈ A0, B ⊆ A}.
Similar to the proof of [16, Theorem 14.22] with different details, one can prove that

• if C ∈ A and K (C) = 0, then for each ε > 0 there exists A ∈ A0 such that
A ⊆C , 0 < ‖χA‖X < min{ε,K ′(C)} and K (C \A) = 0.

Indeed, let K (C) = 0. Then, there exists a set B ⊆ C such that 0 < ‖χB‖X <
min{ε,K ′(C)} . If K (C \B) = 0 we set A := B . If K (C \B) > 0, by (2) we have
K (B) = 0, and so there is a set D ∈ A0 such that D ⊆ B and 0 < ‖χD‖X < ‖χB‖X . In
this situation, because of (2) we have K (D) = 0 or K (B\D) = 0, and then by (1) it
would be enough to set A := B\D or A := D , respectively.
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Now, since inf{‖χE‖X : E ∈ A0} = 0, we have K (Ω) = 0. So, there exists A1 ∈
A0 such that 0 < ‖χA1‖X < min{ 1

2 ,K ′(Ω)} and K (Ω\A1) = 0. Setting C := Ω\A1

in the above fact, there exists A2 ∈ A0 such that A2 � Ω\A1 ,

0 < ‖χA2‖X < min
{ 1

22 ,K ′(Ω\A1)
}
,

and K (Ω\(A1∪A2)) = K ((Ω\A1)\A2) = 0. By continuing this method, the desired
sequence in (b) is obtained. �

Now, we can give one of the main results of this section.

THEOREM 2. Let X be a solid Banach function space and inf{‖χE‖X : E ∈A0}=
0 . Also, assume that sup{‖χE‖X : E ∈ A∞} < ∞ , where A∞ := {E ∈ A : χE ∈ X} .
Then, for each p � 1 , the set X p

r−strict := X p \⋃p<q Xq is spaceable in X p .

Proof. We shall show that the conditions of Theorem 1 hold with E := X p and
B =

⋃
p<q Xq . Note that since Ω ∈ A0 , for each q > p we have Xq ⊂ X p thanks to

[23, Theorem 2.4]. Clearly, B is a cone because each Xq is a linear space, and X p is a
PCS-space by Remark 1. Also, the condition (2) in Theorem 1 holds since X is solid.
For the condition (4), let f ,g ∈ X p with Ef ∩Eg = ∅ and f +g∈ B . Then, there exists
q > p such that f +g ∈ Xq . We have

| f |q, |g|q � | f |q + |g|q = | f +g|q ∈ X ,

and this implies that f ,g ∈ Xq ⊂ B . At the end, we show that the condition (5) in
Theorem 1 hold. The main idea for the proof of this part comes from [5, Theorem 3.3].
Since inf{‖χE‖X : E ∈ A0} = 0, by Lemma 1 there exists a sequence {An}∞

n=1 in A
with pairwise disjoint terms such that 0< ‖χAn‖X � 1

2n for all n∈N . As in [5, Theorem
3.3], for each n ∈ N , we choose a strictly increasing sequence {pn,k}∞

k=1 of natural
numbers such that k � pn,k for all n,k ∈ N and the elements of family {{pn,k}∞

k=1 : n ∈
N} are mutually disjoint. For each n,k,m ∈ N we put

αn,k :=
1(

k(log(1+ k))2‖χApn,k
‖X
) 1

p

and Sn,m :=
m

∑
k=1

αn,kχApn,k
.

Since ∑∞
k=1 ‖α p

n,kχApn,k
‖X = ∑∞

k=1
1

k log(1+k)2 < ∞ , the sequence {|Sn,m|p}∞
m=1 is Cauchy

and so convergent in X for all n ∈ N . Now, we have

lim
m→∞

|Sn,m|p =
∞

∑
k=1

α p
n,kχApn,k

in X because X is a PCS-space (see Remark 1). In particular, we have f p
n = ∑∞

k=1 α p
n,kχApn,k

∈ X , where

fn :=
∞

∑
k=1

αn,kχApn,k
(n ∈ N).
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In fact, we have { fn}∞
n=1 ⊆ X p with Efn ∩Efm = ∅ for all distinct m,n ∈ N . On

the other hand, for each q > p , if fn ∈ Xq , then

‖ fn‖Xq =
(‖| fn|q‖X

) 1
q

=

∥∥∥∥∥
∞

∑
k=1

αq
n,k χApn,k

∥∥∥∥∥
1
q

X

�
∥∥∥αq

n,k χApn,k

∥∥∥ 1
q

X

�
(

2( q
p−1) pn,k

k
q
p log(1+ k)

2q
p

) 1
q

�
(
2( q

p−1)k
) 1

q
.

So, since k∈N is arbitrary, we have ‖ fn‖Xq = ∞ , a contradiction. Therefore, { fn}∞
n=1 ⊆

X p
r−strict and the proof is complete. �

Next, an extension of the main part of [20, Theorem 3, page 155] is proved.
Motivated by the definition of a diffuse set for a measure (see [20, page 46]), we

initiate the following concept. For each E ⊆ Ω , denote AE := {A ⊆ E : A ∈ A } .

DEFINITION 1. A set E ∈ A is called diffuse for a Banach function space X if
χE ∈ X and for each Y ∈ AE and each α with 0 � α � ‖χY‖X there exists some
F ∈ AY such that ‖χF‖X = α .

The main idea for proof of the next result comes from [20, Theorem 3, page 155],
but the details are different because the situation is more general. Recall from [20,
Definition 1, page 15] that a Young function Φ2 is stronger than the other one Φ1 (and
we write Φ1 ≺ Φ2 ) if there are constants a > 0 and x0 � 0 such that for each x � x0 ,
Φ1(x) � Φ2(ax) .

THEOREM 3. Let Φ1,Φ2 be two strictly increasing continuous Young functions.
If there exists a diffuse set E ∈A∞ for X with μ(E) > 0 , then the inclusion XΦ2 ⊆ XΦ1

implies that Φ1 ≺ Φ2 .

Proof. Let the assumptions hold and XΦ2 ⊆ XΦ1 . In contrast, assume that Φ1 ⊀
Φ2 . Then, there exists an increasing sequence {an}∞

n=1 in (0,∞) such that limn→∞ an =
∞ and

Φ1(an) > n2nΦ2(n2an) (n ∈ N). (3)

Since ∑∞
n=1

Φ2(a1)‖χE‖X
2nΦ2(n2an)

< ‖χE‖X , there exists E0 ∈ AE such that

‖χE0‖X =
∞

∑
n=1

Φ2(a1)‖χE‖X

2nΦ2(n2an)
,
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because E is a diffuse set for X . Inductively, one can find a pairwise disjoint sequence
{En}∞

n=1 in AE0 such that

‖χEn‖X =
Φ2(a1)‖χE‖X

2nΦ2(n2an)
(n ∈ N). (4)

So, setting f := ∑∞
n=1 nanχEn we have

∞

∑
n=1

Φ2(n2an)‖χEn‖X =
∞

∑
n=1

Φ2(a1)‖χE‖X

2n

= Φ2(a1)‖χE‖X < ∞.

This implies that the sequence (
k

∑
n=1

Φ2(n2an)χEn

)
k

is Cauchy and so convergent in X . But, by Remark 1, the convergence point is Φ2( f ) =
∑∞

n=1 Φ2(n2an)χEn . So, f ∈ XΦ2 .
On the other hand, let α > 0 be arbitrary. In contrast, let Φ1(α f ) ∈ X . Fix a

number m ∈ N such that 1
n < α for all n � m . Then, thanks to the relations (3) and (4)

we have

‖Φ1(α f )‖X =

∥∥∥∥∥
∞

∑
n=1

Φ1(αnan)χEn

∥∥∥∥∥
X

�Φ1(αkak)‖χEk‖X

�Φ1(ak)‖χEk‖X

�kΦ2(a1)‖χE‖X .

for all k � m , and so ‖Φ1(α f )‖X = ∞ , a contradiction. This shows that f /∈ XΦ1 , and
the proof is complete. �

COROLLARY 1. Under the assumptions of Theorem 3, if Φ1 ⊀ Φ2 , then XΦ2 \
XΦ1 is spaceable in XΦ2 .

Proof. Let for each n∈N , Nn be a strictly increasing sequence of natural numbers
and {Nn}∞

n=1 be a partition of N . Then, similarly to the proof of Theorem 3 it would be
routine to construct a sequence ( fn) in XΦ2 \XΦ1 such that for each distinct m,n ∈ N ,
Efn ∩Efm = ∅ . Now, the statement follows easily from Theorem 1. �

4. Some new sufficient conditions with applications

In this section, first we give an abstract version of Theorem 1 and then present
some applications regarding Cartesian product of X p spaces and also the space of
bounded linear operators on a Hilbert space. For this we need to initiate the next con-
cept.
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DEFINITION 2. Let E be a topological vector space. We say that a relation ∼ on
E has property (D) if the following conditions hold:

1. If (xn) is a sequence in E such that xn ∼ xm for all distinct index m,n , then for
each disjoint finite subsets A,B of N we have

∑
n∈A

αnxn ∼ ∑
m∈B

βmxm,

where αn and βm ’s are arbitrary scalars.

2. If a sequence (xn) converges to x in E and for some y∈ E , xn ∼ y for all n∈N ,
then x ∼ y .

We recall that a sequence (xn) in a Banach space E is called a basic sequence if
for each x in span{x1,x2, . . .} , the closed linear span of {x1,x2, . . .} , there are unique
scalars α1,α2, . . . such that x = limn ∑n

k=1 αkxk in E . Note that, by [2, Proposition 1,
Chapter II], (xn) is a basic sequence if and only if there is a constant k > 0 such that

for each m,n with m � n and each scalars α1, . . . ,αm ,
∥∥∥∑n

j=1 α jx j

∥∥∥� k
∥∥∥∑m

j=1 α jx j

∥∥∥ .

THEOREM 4. Let (E ,‖ · ‖) be a Banach space, ∼ be a relation on E with prop-
erty (D) , and K be a nonempty subset of E . Assume that:

1. there is a constant k > 0 such that ‖x+ y‖� k‖x‖ for all x,y ∈ E with x ∼ y;

2. K is a cone;

3. if x,y ∈ E such that x+ y ∈ K and x ∼ y then x,y ∈ K ;

4. there is an infinite sequence {xn}∞
n=1 ⊆ E \K such that for each distinct m,n∈N ,

xm ∼ xn .

Then, E \K is spaceable in E .

Proof. The main idea of the proof comes from [5, Theorem 2.2]. Indeed, applying
condition (D) in Definition 2 and thanks to [2, Proposition 1, Chapter II] one can see
that the sequence (xn) in assumption (4) is a basic sequence, and this shows that (xn) is
linearly independent. Let 0 �= x ∈ span{x1,x2, . . .} . Then, from the definition of basic
sequences, there exist unique scalars α1,α2, . . . such that x = ∑∞

n=1 αnxn . Put N :=
min{n ∈ N : αn �= 0} . So, x = αNxN + y , where y := limm→∞ ∑m

n=N+1 αnxn . Again,
applying both conditions in Definition 2 we have xN ∼ y . In contrast, if x ∈ K , then by
the assumptions (3) and (2) we have xN ∈ K , a contradiction. Therefore, (E \K)∪{0}
contains the closed infinite-dimensional space span{x1,x2, . . .} , and this completes the
proof. �

REMARK 2. We mention that this theorem is a generalization of [5, Theorem 2.2]
(Theorem 1). Just note that for each Banach function space X , the relation ∼ defined
by

f ∼ g if and only if Ef ∩Eg = ∅

for all f ,g ∈ X , has the property (D) .
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Applying Theorem 4, we give the next result which could not be concluded from
[5, Theorem 2.2].

THEOREM 5. Let X be a solid Banach function space on Ω and assume that
inf{‖χE‖X : E ∈ A0} = 0 . Then, for each 1 � p,q < r , the set {( f ,g) ∈ X p ×Xq :
f g /∈ Xr} is spaceable in X p×Xq .

Proof. Let 1 � p,q < r . By Lemma 1, there is a sequence {An}∞
n=1 in A0 with

disjoint terms such that 0 < ‖χAn‖X � 1
2n for all n ∈ N . We define

j :=
∞

∑
n=1

‖χAn‖
−1
r

X · χAn .

Then, similarly the proof of Lemma 1, one can see that j ∈ X p ∩Xq . In contrast, if
j2 ∈ Xr , then we would have

‖ j2‖Xr = ‖| j2|r‖X

=

∥∥∥∥∥
(

∞

∑
n=1

‖χAn‖
−2
r

X · χAn

)r∥∥∥∥∥
X

�
∥∥∥∥∥χAk

∥∥−2
X · χAk

∥∥∥
X

� 2k

for all k ∈ N , a contradiction. This implies that setting

K := {( f ,g) ∈ X p×Xq : f g ∈ Xr},

we have ( j, j) ∈ (X p × Xq) \K . Put h := j2 . By the above relations, it would be
standard to find a sequence (Fn) such that for each distinct m,n ∈ N , Fn∩Fm = ∅ , and
hχFn /∈ Xr . This implies that ( jχFn , jχFn) ∈ (X p ×Xq)\K for all n ∈ N . Finally, note
that the relation ∼ defined by

( f1,g1) ∼ ( f2,g2)

if and only if
Ef1 ∩Ef2 = Eg1 ∩Eg2 = ∅

for all fi ∈ X p and gi ∈ Xq ( i = 1,2), satisfies the condition (D) . Applying Theorem
4, the proof is complete. �

Let H be a separable infinite dimensional Hilbert space and {e j} j∈N be an or-
thonormal basis for H . For each non-empty subset J ⊆ N we let PJ denote the or-
thogonal projection onto span{e j} j∈J . Also, we set PJ = 0 for J = ∅ . For each
T,S ∈ B(H ) , the space of all bounded linear operators on H , we say that T ∼ S if
there exist two disjoint subsets J1,J2 ⊆N such that PJ1TPJ2 = T and PJ2SPJ2 = S . With
these notations, we give the next lemma.
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LEMMA 2. The relation ∼ on B(H ) defined above has the property (D).

Proof. Suppose that {Tn}n∈N is a sequence in B(H ) such that for each distinct
m,n we have Tn ∼ Tm . Let A := {n1, . . . ,nk} and B := {m1, . . . ,ml} be two disjoint
finite subsets of N . Then, for each n ∈ A and m ∈ B , there exist some disjoint subsets
J(n,m),J

′
(n,m) ⊆ N such that

PJ(n,m)TnPJ(n,m) = Tn and PJ′(n,m)
TmPJ′(n,m)

= Tm. (5)

Without loss of the generality we assume that Tn �= 0 for all index n . By [6, Chapter 2,
Section 8, Theorem 4], we have

P⋂l
r=1 J(n,mr)

= PJ(n,m1)PJ(n,m2) . . .PJ(n,ml )
(6)

for all n ∈ A . Then, (5) implies that

P⋂l
r=1 J(n,mr )

TnP⋂l
r=1 J(n,mr)

= Tn (7)

for all n ∈ A . Indeed, by (6) we have

P⋂l
r=1 J(n,mr)

TnP⋂l
r=1 J(n,mr )

= PJ(n,ml )
PJ(n,ml−1) . . .PJ(n,m1)TnPJ(n,m1)PJ(n,m2) . . .PJ(n,ml )

= Tn

for all n ∈ A . Hence, since Tn �= 0, we have
⋂l

r=1 J(n,mr) �= ∅ . Put

E :=
k⋃

i=1

l⋂
r=1

J(ni,mr).

Then, by [6, Chapter 2, Section 8, Corollary 5], we have

PEP⋂l
r=1 J(ni ,mr)

= P⋂l
r=1 J(ni ,mr)

PE = P⋂l
r=1 J(ni ,mr)

for every i ∈ {1, . . . ,k} . Because of (7),

PETniPE = Tni

for all i∈{1, . . . ,k} . This implies that PE(∑k
i=1 αi Tni)PE = ∑k

i=1 αi Tni for all α1, . . . ,αk

∈C . Similarly, setting F :=
⋃l

r=1
⋂k

i=1 J′(ni,mr)
we have PF(∑l

r=1 βi Tmr)PF = ∑l
r=1 βi Tmr

for all β1, . . . ,βl ∈ C . Now, since J(ni,mr) ∩ J′(ni,mr)
= ∅ for each i ∈ {1, . . . ,k} and

r ∈ {1, . . . , l} , easily we have E ∩F = ∅ . Therefore, ∼ satisfies the condition (1) in
Definition 2. Next, suppose that S ∈ B(H ) and {Tn}n∈N is a sequence in B(H ) such
that Tn → T , in operator norm, for some T ∈ B(H ) , and Tn ∼ S for all n . We can
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assume that S �= 0 because the proof for the case S = 0 is trivial. Then, for each n∈ N ,
there are disjoint subsets Jn,J′n ⊆ N such that

PJnTnPJn = Tn and PJ′nSPJ′n = S. (8)

Again, by [6, Chapter 2, Section 8, Theorem 4] for each n ∈ N we have

P⋂n
m=1 J′mSP⋂n

m=1 J′m = PJ′n . . .PJ′1SPJ′1 . . .PJ′n = S. (9)

Now, the sequence {P∩n
m=1J

′
m
}n∈N is a non-increasing sequence of orthogonal projec-

tions, hence by [6, Chapter 2, Section 8, Theorem 6],

s− lim
n→∞

P∩n
m=1J

′
m

= P∩∞
m=1J

′
m
,

where s− lim means the limit in the strong operator topology. From (9) and thanks to
[6, Chapter 2, Section 5, Theorem 2] we have

S = s− lim
n→∞

(P∩n
m=1J

′
m
SP∩n

m=1J
′
m
)

= (s− lim
n→∞

P∩n
m=1J

′
m
)S(s− lim

n→∞
P∩n

m=1J
′
m
)

= P∩∞
m=1J

′
m
SP∩∞

m=1J
′
m
.

By (8) and [6, Chapter 2, Section 8, Corollary 5] we have

P⋃∞
m=1 JmTnP⋃∞

m=1 Jm = Tn

for all n ∈ N . Letting n → ∞ we get

P⋃∞
m=1 JmTP⋃∞

m=1 Jm = T,

and this completes the proof because (
⋃∞

m=1 Jm)∩ (
⋂∞

m=1 J′m) = ∅ . �

DEFINITION 3. Let K be a cone in B(H ) . We denote

K̃ :=
⋃
J⊆N

PJKPJ, (10)

where PJKPJ := {PJTPJ : T ∈ K} .

Note that if K is a cone, then K̃ is a cone as well. Moreover, PJK̃PJ ⊆ K̃ for all
J ⊆ N , and in particular, K ⊆ K̃ .

In the sequel, B0(H ) is the space of all compact operators on H .

THEOREM 6. Let K be a cone in B(H ) . If there exists a sequence of mutually
disjoint subsets {Jn}n∈N of N satisfying that PJnK̃PJn �= PJnB(H )PJn for all n ∈ N ,
then B(H )\ K̃ (and consequently B(H )\K ) is spaceable in B(H ) . The statement
holds if we consider B0(H ) instead of B(H ) .
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Proof. We show that the relation ∼ defined before Lemma 2 satisfies the condi-
tions in Theorem 4 regarding the cone K̃ . Suppose that T,S ∈ B(H ) with T ∼ S .
Then, there exist disjoint subsets J,J′ ⊆ N such that PJTPJ = T and PJ′SPJ′ = S .
By disjointness of J and J′ , from [6, Chapter 2, Section 8, Theorem 2] we have
PJSPJ = PJPJ′SPJ′PJ = 0. We get

‖T +S‖� ‖PJ‖‖T +S‖‖PJ‖
� ‖PJ(T +S)PJ‖
= ‖PJTPJ‖
= ‖T‖.

This shows that the relation ∼ satisfies the condition (1) of Theorem 4. Now, if in
addition T +S ∈ K̃ , we have

T = PJTPJ

= PJ(T +S)PJ ∈ K̃.

Similarly, S ∈ K̃ . So, the condition (2) in Theorem 4 holds with respect to the cone K̃ .
Finally, consider the sequence {Jn} of mutually disjoint subsets of N which was de-
scribed in the assumptions. So, for each n we can choose an operator Tn ∈PJnB(H )PJn \
PJnK̃PJn . Then, easily one can see that {Tn}n∈N ⊂ B(H ) \ K̃ and for each distinct
m,n ∈ N we have

Tn = PJnTnPJn ∼ PJmTmPJm = Tm,

and this completes the proof. �

COROLLARY 2. The set of all bounded linear operators on H which are not
positive-semidefinite, is spaceable in B(H ) .

Proof. Let K be the set of all scalar multiples of positive semidefinite operators
on H . Then K is a cone and PJKPJ ⊆ K for all J ⊆ N and so K̃ = K . By some
calculations one can see that the assumptions of Theorem 6 hold in this situation, and
therefore B(H ) \K is spaceable. This implies that B(H ) \B+(H ) is spaceable as
well, where B+(H ) is the set of all positive semidefinite operators on H . �

The following result is directly concluded from Theorem 6.

COROLLARY 3. If K is a two sided ideal cone in B(H ) and there exists a se-
quence of mutually disjoint subsets {Jn}n∈N of N satisfying the condition PJnKPJn �=
PJnB(H )PJn for all n ∈ N , then B(H )\K is spaceable in B(H ) .

EXAMPLE 1. B0(H ) is a two sided ideal cone in B(H ) which satisfies the re-
quirements of Corollary 3. So, the set of all non-compact operators is a spaceable subset
of B(H ) .
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REMARK 3. By the same argument, B0(H ) \ (B+(H )
⋂

B0(H )) is spaceable
in B0(H ) , where B+(H ) is the set of all positive semidefinite operators on H . One
can also replace B0(H ) by the real Banach space of all Hermitian operators on H .

REMARK 4. Let (B1(H ),‖ · ‖1) and (B2(H ),‖ · ‖2) denote the Banach space
of all trace-class operators equipped with the trace norm and the Banach space of
all Hilbert-Schmidt operators equipped with the Hilbert-Schmidt norm, respectively.
Since for every T ∈ B(H ) , S ∈ B1(H ) and G ∈ B2(H ) we have ‖ST‖1,‖TS‖1 �
‖T‖‖S‖1 and ‖TG‖2,‖GT‖2 � ‖T‖‖G‖2 , it is not hard to see that a similar argument
as in the proof of Lemma 2 and Theorem 6 can be applied to deduce that B1(H ) \
(B+(H )

⋂
B1(H )) and B2(H ) \ (B+(H )

⋂
B2(H )) are spaceable in B1(H ) and

B2(H ) , respectively. Also, B0(H )\B1(H ) and B0(H )\B2(H ) are both spaceable
in B0(H ) .
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