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ON QUASINORMALITY OF THE DILATION

OF TRUNCATED TOEPLITZ OPERATORS

EUNGIL KO AND JI EUN LEE ∗

(Communicated by J. Pečarić)

Abstract. An operator Su
ϕ,ψ on L2 is called the dilation of a truncated Toeplitz operator if for

two symbols ϕ ,ψ ∈ L∞ and an inner function u ,

Su
ϕ,ψ f = ϕPu f +ψQu f

holds for f ∈ L2 where Pu denotes the orthogonal projection of L2 onto K 2
u and Qu = I−Pu.

In this paper, we study characterizations for the dilation of truncated Toeplitz operators Sϕ,ψ
u to

be quasinormal. As consequences of the results, we investigate the forms of the symbol functions
ϕ and ψ when such operator becomes a quasinormal operator.

1. Introduction and preliminaries

Let L (H ) be the algebra of all bounded linear operators on a separable complex
Hilbert space H . For an operator T ∈ L (H ) , T ∗ denotes the adjoint of T . An
operator T ∈ L (H ) is said to be isometry if T ∗T = I , normal if T ∗T = TT ∗ , and
quasinormal if T ∗T and T commute, respectively.

Let H be a subspace of a Hilbert space K and let P be the orthogonal projection
from K onto H . Then R is called a (weak) dilation of T to K if T = PRP ,
equivalently, T f = PR f for each f ∈ H (see [1] or [7]). In this case, the operator T
is called the compression of R to H . Since K = H ⊕H ⊥ , it follows that R is a
dilation of T if and only if the matrix representation of R has the following form(

T X
Y Z

)
.

In some books ([1] and [11, page 10]), an additional condition is imposed for which
Tn = PRnP holds for every positive integer n. In this case, R is called a power dilation
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of T . The concept of a dilation is related to model theory which means the representa-
tion of some class as pieces of operators in a smaller, better-understood, class.

Let L2 be the Lebesgue (Hilbert) space on the unit circle and let L∞ be the Banach
space of all functions in L2 essentially bounded on ∂D . The Hilbert Hardy space, de-
noted by H2 , consists of all analytic functions f on D having square-summable Taylor
coefficients at the origin. Then the Hilbert Hardy space H2 = span{zn : n = 0,1,2,3, · · ·}
in L2 . Let P denote the orthogonal projection of L2 onto H2 . Then Q = I−P is the
orthogonal projection of L2 onto (H2)⊥ := L2 �H2 = L2 ∩ (H2)⊥. For any ϕ ∈ L∞ ,
let Mϕ denote the multiplication operator on L2 such that Mϕ f = ϕ f for f ∈ L2. For
any ϕ ∈ L∞ , the Toeplitz operator Tϕ : H2 → H2 is defined by the formula

Tϕ f = P(ϕ f ), f ∈ H2 (1)

where P denotes the orthogonal projection of L2 onto H2 . It is known that Tϕ is
bounded if and only if ϕ ∈ L∞ , and in this case, ‖Tϕ‖ = ‖ϕ‖∞ .

In 2007, Sarason [12] initiated the study of truncated Toeplitz operators which are
the compression of Toeplitz operators. A function u ∈H2 is called inner if |u| = 1 a.e.
For a nonconstant inner function u , the model space K 2

u is given by K 2
u := H2�uH2 .

For any ϕ ∈ L∞ and an inner function u , the truncated Toeplitz operator Au
ϕ : K 2

u →
K 2

u is defined by the formula

Au
ϕ f = Pu(ϕ f ) for f ∈ K 2

u (2)

where Pu denotes the orthogonal projection of L2 onto K 2
u . Several aspects of this

operator were studied in [2]–[6], [12], and [13]. For any ϕ ∈ L∞ and an inner function
u , let Ãu

ϕ denote the operator on (K 2
u )⊥ := L2 �K 2

u such that

Ãu
ϕ f = Qu(ϕ f ) for f ∈ (K 2

u )⊥ (3)

where Qu denotes the orthogonal projection of L2 onto (K 2
u )⊥ . Let Γu

ϕ be the trun-

cated Hankel operator of K 2
u to (K 2

u )⊥ such that

Γu
ϕ f = Qu(ϕ f ) for f ∈ K 2

u . (4)

Let Γ̃u
ϕ be the operator of (K 2

u )⊥ to K 2
u such that

Γ̃u
ϕ f = Pu(ϕ f ) for f ∈ (K 2

u )⊥. (5)

It is obvious that Au
ϕ
∗ = Au

ϕ and Ãu
ϕ
∗
= Ãu

ϕ .
In light of the function space, we can consider the following dilation of a truncated

Toeplitz operator Au
ϕ on K 2

u ⊕ (K 2
u )⊥ = L2 (see Lemma 3.2 in [8] for more details).

DEFINITION 1. An operator Su
ϕ,ψ on L2 is called the dilation of a truncated

Toeplitz operator if for two symbols ϕ ,ψ ∈ L∞ and an inner function u ,

Su
ϕ,ψ f = ϕPu f + ψQu f



ON QUASINORMALITY OF THE DILATION OF TRUNCATED TOEPLITZ OPERATORS 681

holds for f ∈ L2 where Pu denotes the orthogonal projection of L2 onto K 2
u and

Qu = I −Pu. In particular, if ϕ = ψ , then Su
ϕ,ϕ = Mϕ is a multiplication operator on

L2 .

We remark that a bounded operator Su
ϕ,ψ on L2 satisfying Definition 1 has the

following block matrix representation:

Su
ϕ,ψ =

(
Au

ϕ Γ̃u
ψ

Γu
ϕ Ãu

ψ

)
(6)

on K 2
u ⊕(K 2

u )⊥ = L2 where Au
ϕ , Γ̃u

ψ ,Γu
ϕ , and Ãu

ψ are defined as before. For example,

if u(z) = zn , ϕ(z) = ∑∞
k=−∞ akzk, and ψ(z) = ∑∞

k=−∞ bkzk, then B = {1,z,z2, · · · ,zn−1}
is a basis for K 2

zn and

[Azn
ϕ ]B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 · · · a−n+1

a1 a0 a−1
. . . a−n+2

· · · · · · . . .
. . .

...

an−2 an−3 an−4
. . . a−1

an−1 an−2 an−3 · · · a0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore the operator matrix of

(
Azn

ϕ Γ̃zn
ψ

Γzn
ϕ Ãzn

ψ

)
with respect to B⊕B⊥ is a dilation of

[Azn
ϕ ]B (see [8]–[10]).

In 2016, the authors in [8] introduced the dilation of truncated Toeplitz operators
on L2 using the concept of singular integral operators. Moreover, the authors in ([8]–
[10]) have studied normality and hyponormality of the dilation of a truncated Toeplitz
operator. In 2018, Gu and Kang [5] gave a complete characterization of self-adjoint,
isometric, coisometric and normal truncated singular integral operators. We concentrate
on the following questions;

When do the dilation of truncated Toeplitz operators Su
ϕ,ψ become quasinormal?

In this paper, we give necessary and sufficient conditions for the dilation of trun-
cated Toeplitz operators to be quasinormal. As applications for such operators, we
investigate the forms of the symbol functions ϕ and ψ when such operator becomes a
quasinormal operator.

2. Main results

In this section, we study the quasinormality of the dilation of truncated Toeplitz
operators Su

ϕ,ψ for ϕ ,ψ ∈ L∞ .

LEMMA 1. ([9]) Let ϕ ∈ L∞ and let u be a nonconstant inner function. Then the
following statements hold.
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(i) Γu
ϕ = 0 if and only if ϕ ∈ C .

(ii) Γ̃u
ϕ = 0 if and only if ϕ ∈ C .

(iii) Ãu
ϕ = 0 if and only if ϕ = 0.

LEMMA 2. ([8]) Let ϕ ,ψ ∈ L∞ and ν = ϕ −ψ . Then

[(Su
ϕ,ψ)∗,Su

ϕ,ψ ] =

(
Γ̃u

ϕΓu
ϕ − Γ̃u

ψΓu
ψ Γ̃u

ψ Ãu
ν −Au

νΓ̃u
ϕ

Ãu
νΓu

ψ −Γu
ϕAu

ν Γu
ψΓ̃u

ψ −Γu
ϕΓ̃u

ϕ

)
(7)

where [A,B] = AB−BA.

LEMMA 3. Let ϕ ,ψ ∈ L∞ and ν = ϕ −ψ . Then Su
ϕ,ψ is quasinormal if and only

if the following identities hold.
(i) (Γ̃u

ϕ Γu
ϕ − Γ̃u

ψΓu
ψ )Au

ϕ +(Γ̃u
ψ Ãu

ν −Au
νΓ̃u

ϕ)Γu
ϕ = 0 ,

(ii) (Γ̃u
ϕ Γu

ϕ − Γ̃u
ψΓu

ψ )Γ̃u
ψ +(Γ̃u

ψ Ãu
ν −Au

νΓ̃u
ϕ )Ãu

ψ = 0 ,

(iii) (Ãu
ν Γu

ψ −Γu
ϕAu

ν)Au
ϕ +(Γu

ψΓ̃u
ψ −Γu

ϕΓ̃u
ϕ)Γu

ϕ = 0 , and

(iv) (Ãu
νΓu

ψ −Γu
ϕAu

ν)Γ̃u
ψ +(Γu

ψΓ̃u
ψ −Γu

ϕΓ̃u
ϕ)Ãu

ψ = 0 .

Proof. Since Su
ϕ,ψ is quasinormal if and only if [(Su

ϕ,ψ )∗,Su
ϕ,ψ ]Su

ϕ,ψ = 0, the proof
follows from Lemma 2. �

THEOREM 1. Let ϕ ,ψ ∈ L∞ and ν = ϕ −ψ . Assume that ϕ(K 2
u ) ⊂ (K 2

u ) or
ψ(K 2

u )⊥ ⊂ (K 2
u )⊥ . Then Su

ϕ,ψ is quasinormal if and only if ϕ ∈ C and ψ ∈ C .
Furthermore, if Su

ϕ,ψ is quasinormal, then the model space K 2
u is a reducing subspace

of Su
ϕ,ψ .

Proof. If ϕ(K 2
u ) ⊂ (K 2

u ) , then ϕ ∈ C by [9]. If Su
ϕ,ψ is quasinormal, then from

Lemma 3, we get that Γ̃u
ψΓu

ψAu
ϕ = 0. For all f ∈ K 2

u ,

0 = Γ̃u
ψΓu

ψAu
ϕ f = ϕ(Γu

ψ)∗Γu
ψ f .

Thus Γu
ψ = 0 on K 2

u or ϕ = 0. By Lemma 1, ψ ∈ C or ϕ = 0. Conversely, if

ϕ ,ψ ∈ C, then Γu
ϕ = Γ̃u

ϕ = 0 and Γu
ψ = Γ̃u

ψ = 0. Hence Su
ϕ,ψ is quasinormal.

Similarly, if ψ(K 2
u )⊥ ⊂ (K 2

u )⊥ , then ψ ∈C by [9]. If Su
ϕ,ψ is quasinormal, then

from Lemma 3, we get that Γu
ϕΓ̃u

ϕ Ãu
ψ = 0. For all g ∈ (K 2

u )⊥ ,

0 = Γu
ϕΓ̃u

ϕ Ãu
ψg = ψΓu

ϕ(Γu
ϕ)∗g.

Thus Γu
ϕ = 0 on (K 2

u )⊥ or ψ = 0. By Lemma 1, ψ ∈ C or ψ = 0. Conversely, if

ϕ ,ψ ∈ C, then Γu
ϕ = Γ̃u

ϕ = 0 and Γu
ψ = Γ̃u

ψ = 0. Hence Su
ϕ,ψ is quasinormal.

On the other hand, If Su
ϕ,ψ is quasinormal and Γu

ϕ = 0 or Γ̃u
ψ = 0, then ϕ ∈ C and

ψ ∈ C . Thus Γu
ϕ = Γ̃u

ψ = 0. Hence the model space K 2
u reduces Su

ϕ,ψ . So, the model
space K 2

u is a reducing subspace of Su
ϕ,ψ . �
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COROLLARY 1. Let ϕ ,ψ ∈L∞ and ν = ϕ−ψ . If ϕ(K 2
u )⊂ (K 2

u ) or ψ(K 2
u )⊥ ⊂

(K 2
u )⊥ , then Su

ϕ,ψ is quasinormal if and only if Au
ϕ and Ãu

ψ are normal and Su
ϕ,ψ =

Au
ϕ ⊕ Ãu

ψ .

Proof. By Theorem 1, Su
ϕ,ψ is quasinormal if and only if ϕ ∈ C and ψ ∈ C .

By Lemma 1, Su
ϕ,ψ is quasinormal if and only if Γu

ϕ = Γ̃u
ψ = 0. This is equivalent to

Su
ϕ,ψ = Au

ϕ ⊕ Ãu
ψ and Au

ϕ and Ãu
ψ are normal since ϕ ,ψ ∈ C . �

THEOREM 2. Let ϕ ,ψ ∈L∞ and ν = ϕ−ψ . If Ãu
ψ = 0 , then Su

ϕ,ψ is quasinormal
if and only if Au

|ϕ|2A
u
ϕ = Au

ϕAu
|ϕ|2 and Γu

ϕAu
|ϕ|2 = 0 .

Proof. If Ãu
ψ = 0, then ψ = 0. From Lemma 3, Su

ϕ,ψ is quasinormal if and only

if Γ̃u
ϕΓu

ϕAu
ϕ−Au

ϕΓ̃u
ϕΓu

ϕ = 0 and Γu
ϕAu

ϕAu
ϕ + Γu

ϕΓ̃u
ϕΓu

ϕ = 0. For any f ∈ K 2
u ,

0 = Γ̃u
ϕ Γu

ϕAu
ϕ f −Au

ϕΓ̃u
ϕ Γu

ϕ f

= Pu[ϕQu{ϕPu(ϕ f )}−ϕPu{ϕQu(ϕ f )}]
= Pu[|ϕ |2Pu(ϕ f )−ϕPu{ϕPu(ϕ f )}−ϕPu{ϕQu(ϕ f )}]
= Pu[|ϕ |2Pu(ϕ f )−ϕPu(|ϕ |2 f )]
= [Au

|ϕ|2A
u
ϕ −Au

ϕAu
|ϕ|2 ] f .

Thus Au
|ϕ|2A

u
ϕ = Au

ϕAu
|ϕ|2 . Similarly, for any f ∈ K 2

u , we obtain that

0 = Γu
ϕAu

ϕAu
ϕ f + Γu

ϕΓ̃u
ϕΓu

ϕ f

= Γu
ϕ [Pu{ϕPu(ϕ f )}+Pu{ϕQu(ϕ f )}]

= Γu
ϕ [Pu{ϕ(ϕ f )}]

= Γu
ϕ [Pu(|ϕ |2 f )]

= Γu
ϕAu

|ϕ|2 f .

Hence Γu
ϕAu

|ϕ|2 = 0. Therefore Su
ϕ,ψ is quasinormal if and only if Au

|ϕ|2A
u
ϕ = Au

ϕAu
|ϕ|2

and Γu
ϕAu

|ϕ|2 = 0. �

COROLLARY 2. Let ϕ ∈ L∞ be an inner function and ψ ∈ L∞ . If Ãu
ψ = 0 , then

Su
ϕ,ψ is quasinormal if and only if ϕ ∈ C.

Proof. By Theorem 2, Su
ϕ,ψ is quasinormal if and only if Au

|ϕ|2A
u
ϕ = Au

ϕAu
|ϕ|2 and

Γu
ϕAu

|ϕ|2 = 0. Since |ϕ | = 1, it follows that Su
ϕ,ψ is quasinormal if and only if Γu

ϕ = 0

if and only if ϕ ∈ C by Lemma 1. �

COROLLARY 3. Let ϕ ,ψ ∈ L∞ and ν = ϕ −ψ . Assume that Ãu
ψ = 0 . If Su

ϕ,ψ

is quasinormal, then Su
ϕ,ψ =

(
Au

ϕ 0
Γu

ϕ 0

)
. In particular, if ϕ is an inner function, then

Su
ϕ,ψ = Au

ϕ ⊕0.
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Proof. If Ãu
ψ = 0, then ψ = 0 and hence Γ̃u

ψ = 0 by Lemma 1. Thus Su
ϕ,ψ =(

Au
ϕ 0

Γu
ϕ 0

)
. In particular, if ϕ is an inner function, then ϕ ∈ C by Corollary 2. Then by

Lemma 1, Γu
ϕ = 0. Hence Su

ϕ,ψ = Au
ϕ ⊕0. �

We next give an equivalent statement for quasinormality of the dilation of trun-
cated Toeplitz operators under some conditions.

THEOREM 3. Let ϕ ,ψ ∈ L∞ and ϕ −λ ψ = c ∈ C where |λ | = 1 . Then Su
ϕ,ψ is

quasinormal if and only if (
0 Γ̃u

Φ
Γu

Φ 0

)
Su

ϕ,ψ = 0

where Φ = (λ −1)|ϕ |2 + cϕ − cλ ϕ .

Proof. Suppose that ϕ −λ ψ = c∈ C where |λ |= 1. Since Γu
ϕ−λ ψ = Γ̃u

ϕ−λ ψ = 0
and |λ | = 1 by [9], we get that

Γ̃u
ϕ Γu

ϕ = |λ |2Γ̃u
ψ Γu

ψ = Γ̃u
ψΓu

ψ and Γu
ψ Γ̃u

ψ = Γu
ϕΓ̃u

ϕ .

By Lemma 3, Su
ϕ,ψ is quasinormal if and only if the following identities hold;

(Γ̃u
ψ Ãu

ν − Au
ν Γ̃u

ϕ)Γu
ϕ = 0, (Γ̃u

ψ Ãu
ν − Au

ν Γ̃u
ϕ)Ãu

ψ = 0, (Ãu
νΓu

ψ −Γu
ϕAu

ν)Au
ϕ = 0, and

(Ãu
νΓu

ψ −Γu
ϕAu

ν)Γ̃u
ψ = 0, i.e.,(

0 (Ãu
νΓu

ψ −Γu
ϕAu

ν)∗

Ãu
νΓu

ψ −Γu
ϕAu

ν 0

)(
Au

ϕ Γ̃u
ψ

Γu
ϕ Ãu

ψ

)
= 0 (8)

where ν = ϕ −ψ . On the other hand, for any f ∈ K 2
u , we get that

(Ãu
ν Γu

ψ −Γu
ϕAu

ν) f
= Qu[(ϕ −ψ)Qu(ψ f )−ϕPu((ϕ −ψ) f )]
= Qu[(λ ψ + c−ψ)Qu(ψ f )− (λ ψ + c)Pu((λ ψ + c−ψ) f )]
= Qu[((λ −1)ψ + c)Qu(ψ f )−λ ψPu(((λ −1)ψ + c) f )]
= Qu[((λ −1)ψQu(ψ f )+ cQu(ψ f )−λ (λ −1)ψPu(ψ f )−λcψPu f ]
= (λ −1)Qu[ψQu(ψ f )]+ cQu(ψ f )− (|λ |2−λ )Qu[ψPu(ψ f )]−λcQu[ψPu f ]
= (λ −1)Qu[|ψ |2 f ]+ cQu(ψ f )−λcQu[ψPu f ]
= Qu[(λ −1)|ψ |2 + cψ −λcψ ] f .

Since ϕ = λ ψ + c , we have

(λ −1)|ψ |2 + cψ −λcψ = (λ −1)|ϕ |2 + cϕ −λcϕ .

Hence we obtain that

(Ãu
νΓu

ψ −Γu
ϕAu

ν ) f = Qu[(λ −1)|ψ |2 + cψ −λcψ ] f

= Qu[(λ −1)|ϕ |2 + cϕ −λcϕ ] f = Γu
Φ f
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where Φ = (λ −1)|ϕ |2 + cϕ −λcϕ . Therefore we know from (8) that Su
ϕ,ψ is quasi-

normal if and only if (
0 (Γu

Φ)∗
Γu

Φ 0

)
Su

ϕ,ψ = 0

where Φ = (λ −1)|ϕ |2 + cϕ − cλ ϕ . Since (Γu
Φ)∗ = Γ̃u

Φ , we complete the proof. �

COROLLARY 4. Let ϕ ,ψ ∈ L∞ and ϕ −λ ψ = c ∈ C where |λ | = 1 . Then the
following statements hold.

(i) Su
ϕ,ψ is quasinormal.

(ii) Su
ϕ,ψ is normal.

(iii) Φ := (λ −1)|ϕ |2 + cϕ − cλ ϕ ∈ C .

Proof. (i) ⇒ (ii): Set D =
(

0 Γ̃u
Φ

Γu
Φ 0

)
where Φ = (λ −1)|ϕ |2+cϕ−cλ ϕ . If Su

ϕ,ψ

is quasinormal, then we get from Theorem 3 that DSu
ϕ,ψ = 0. Hence D(ran(Su

ϕ,ψ)) =
{0} . Since L2 = ker(Su

ϕ,ψ)∗ + ran(Su
ϕ,ψ) , we want to show that Dker(Su

ϕ,ψ)∗ = 0. For

any s ∈ ker(Su
ϕ,ψ) and any t ∈ ran(Su

ϕ,ψ) , we know that 〈Dt,t〉= 0, 〈Ds,t〉= 〈s,Dt〉 =
0, and 〈Dt,s〉 = 0. Hence for any x,y ∈ L2 , write x = sx + tx and y = sy + ty for any
sx,sy ∈ ker(Su

ϕ,ψ)∗ and tx,ty ∈ ran(Su
ϕ,ψ) . Then 〈Dx,y〉 = 〈Dsx,sy〉 = 0. So it suffices

to show that 〈Dsx,sy〉 = 0. If x = y , then

〈Dx,x〉 = 〈Dsx,sx〉
= 〈(Su

ϕ,ψ)∗Su
ϕ,ψsx,sx〉− 〈Su

ϕ,ψ(Su
ϕ,ψ)∗sx,sx〉

= 〈(Su
ϕ,ψ)∗Su

ϕ,ψsx,sx〉 = ‖Su
ϕ,ψsx‖2 � 0.

Hence D � 0. So by the positivity of D(see [14]), there exists a contraction S such that
Γu

Φ = 0
1
2 S0

1
2 = 0. Hence Φ ∈ C by Lemma 1 and D = 0. Thus, in this case, Su

ϕ,ψ is
normal. The converse statement (ii) ⇒ (i) is trivial. The statement (ii) ⇔ (iii) follows
from [9]. �

EXAMPLE 1. If ϕ(z) = zn−eiθ for θ ∈R , ψ(z) = zn , and λ = 1 , then ϕ−λ ψ =
−eiθ = c ∈ C . Since

Φ = (λ −1)|ϕ |2 + cϕ − cλ ϕ
= −eiθ (zn− e−iθ )+ e−iθ (zn − eiθ )
= −eiθ zn − e−iθ zn �∈ C,

we get from Corollary 4 that Su
ϕ,ψ is not quasinormal.

COROLLARY 5. Let ϕ ∈ L∞ be such that ϕK 2
u ⊂K 2

u , ψ ∈ L∞ , and ϕ−λ ψ ∈C

where |λ | = 1 . Then Su
ϕ,ψ is quasinormal if and only if Su

ϕ,ψ is normal.
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Proof. Since ϕK 2
u ⊂ K 2

u , it follows from [9] that Γu
ϕ = 0 and so ϕ ∈ C . If Su

ϕ,ψ
is quasinormal, then (

0 Γ̃u
Φ

Γu
Φ 0

)
Su

ϕ,ψ = 0

by Theorem 3 where Φ = (λ −1)|ϕ |2 + cϕ − cλ ϕ . Therefore,

0 =
(

0 Γ̃u
Φ

Γu
Φ 0

)(
Au

ϕ Γ̃u
ψ

0 Ãu
ψ

)
=

(
0 Γ̃u

ΦÃu
ψ

Γu
ΦAu

ϕ Γu
ΦΓ̃u

ψ

)
.

Thus Γ̃u
ΦÃu

ψ = 0, Γu
ΦAu

ϕ = 0, and Γu
ΦΓ̃u

ψ = 0. Since Γ̃u
ΦÃu

ψ = 0 and ϕ ∈ C , it follows
that for all f ∈ K 2

u ,

0 = Γ̃u
ΦÃu

ψ f = Qu[ΦPu(ϕ f )] = Qu[Φϕ f ] = ϕQu(Φ f ) = ϕΓΦ f .

Hence ΓΦ = 0 or ϕ = 0. By Lemma 1 or [9], Φ ∈ C . By Corollary 4, Su
ϕ,ψ is normal.

The converse statement is obvious. �

COROLLARY 6. Let ϕ ∈ L∞ be such that ϕK 2
u ⊂K 2

u , ψ ∈ L∞ , and ϕ−λ ψ ∈C

where |λ | = 1 . If Su
ϕ,ψ is quasinormal, then Au

ϕ and Ãu
ψ are normal and Su

ϕ,ψ =
Au

ϕ ⊕ Ãu
ψ .

Proof. By Corollary 5, Su
ϕ,ψ is normal. Hence the proof follows from [9, Theorem

5.5]. �
Finally, we give another characterization of a quasinormal dilation of truncated

Toeplitz operators Su
ϕ,ψ .

THEOREM 4. Let ϕ ,ψ ∈ L∞ . Then Su
ϕ,ψ is quasinormal if and only if the follow-

ing identities hold.
(i) [Au

|ϕ|2 ,A
u
ϕ ] = Γ̃u

ψΓu
ϕψ − Γ̃u

ϕψΓu
ϕ ,

(ii) Au
|ϕ|2 Γ̃u

ψ − Γ̃u
ψ Ãu

|ψ|2 = Au
ϕΓ̃u

ϕψ − Γ̃u
ϕψ Ãu

ψ ,

(iii) Ãu
|ψ|2Γu

ϕ −Γu
ϕAu

|ϕ|2 = Ãu
ψ Γu

ϕψ −Γu
ϕψAu

ϕ , and

(iv) [Ãu
|ψ|2 , Ã

u
ψ ] = Γu

ϕΓ̃u
ϕψ −Γu

ϕψΓ̃u
ψ .

Proof. Set ν = ϕ −ψ . Assume that Su
ϕ,ψ is quasinormal. From Lemma 3-(i), we

get that for any f ∈ K 2
u ,

0 = (Γ̃u
ϕ Γu

ϕ − Γ̃u
ψΓu

ψ )Au
ϕ f +(Γ̃u

ψ Ãu
ν −Au

νΓ̃u
ϕ)Γu

ϕ f

= Pu[ϕQu(ϕAu
ϕ f )−ψQu(ψAu

ϕ f )+ ψ{Pu(ϕΓu
ϕ f )+Qu(ϕΓu

ϕ f )−Qu(ψΓu
ϕ f )}

−ϕPu(ϕΓu
ϕ f )]

= Pu[ϕQu{ϕPu(ϕ f )}−ψQu{ψPu(ϕ f )}+ ϕψQu(ϕ f )
−ψQu{ψQu(ϕ f )}−ϕPu{ϕQu(ϕ f )}]
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= Pu[ϕQu{ϕPu(ϕ f )}−ψQu{ϕψ f}+ ϕψQu(ϕ f )−ϕPu{ϕQu(ϕ f )}]
= Pu[|ϕ |2Pu(ϕ f )−ϕPu{ϕPu(ϕ f )}−ψQu{ϕψ f}+ ϕψQu(ϕ f )−ϕPu{ϕQu(ϕ f )}]
= Pu[|ϕ |2Pu(ϕ f )−ϕPu{|ϕ |2 f}−ψQu{ϕψ f}+ ϕψQu(ϕ f )]

= [Au
|ϕ|2A

u
ϕ −Au

ϕAu
|ϕ|2 − Γ̃u

ψΓu
ϕψ + Γ̃u

ϕψΓu
ϕ ] f .

Hence we complete the proof for (i). From Lemma 3-(ii), we get that for any g ∈
(K 2

u )⊥ ,

0 = (Γ̃u
ϕ Γu

ϕ − Γ̃u
ψΓu

ψ )Γ̃u
ψg+(Γ̃u

ψ Ãu
ν −Au

νΓ̃u
ϕ)Ãu

ψg

= Pu[ϕQu(ϕΓ̃u
ψg)−ψQu(ψΓ̃u

ψg)]+Pu[ψQu(νÃu
ψg)−νPu(ϕÃu

ψg)]
= Pu[ϕQu(ϕPuψg)−ψQu(ψPuψg)]+Pu[ψQu(νQuψg)−νPu(ϕQuψg)]
= Pu[ϕQu(ϕPuψg)−ψQu(ψPuψg)+ ψQu(ϕQuψg)−ψQu(ψQu(ψg))

−ϕPu(ϕQuψg)+ ψPu(ϕQuψg)]
= Pu[ϕQu(ϕPuψg)−ψQu(|ψ |2g)+ ϕψQu(ψg)−ϕPu{ϕQu(ψg)}]
= Pu[|ϕ |2Pu(ψg)−ϕPu{ϕPu(ψg)}−ψQu(|ψ |2g)+ ϕψQu(ψg)−ϕPu{ϕQu(ψg)}]
= Pu[|ϕ |2Pu(ψg)−ϕPu(ϕψg)−ψQu(|ψ |2g)+ ϕψQu(ψg)]

= (Au
|ϕ|2 Γ̃u

ψ −Au
ϕΓ̃u

ϕψ − Γ̃u
ψ Ãu

|ψ|2 + Γ̃u
ϕψ Ãu

ψ)g.

Hence (ii) is proved. From Lemma 3-(iii), we get that for any f ∈ K 2
u ,

0 = [(Ãu
νΓu

ψ −Γu
ϕAu

ν)Au
ϕ +(Γu

ψΓ̃u
ψ −Γu

ϕΓ̃u
ϕ)Γu

ϕ ] f

= Qu[νQu{ψPu(ϕ f )}−ϕPu{νPu(ϕ f )}+ ψPu{ψQu(ϕ f )}−ϕPu{ϕQu(ϕ f )}]
= Qu[ϕψPu(ϕ f )−ψQu{ψPu(ϕ f )}−ϕPu{|ϕ |2}+ |ψ |2Qu(ϕ f )−ψQu{ψQu(ϕ f )}]
= Qu[ϕψPu(ϕ f )−ψQu{ψϕ f}−ϕPu{|ϕ |2}+ |ψ |2Qu(ϕ f )]

= (Γu
ϕψAu

ϕ − Ãu
ψΓu

ϕψ −Γu
ϕAu

|ϕ|2 + Ãu
|ψ|2Γu

ϕ) f .

From Lemma 3-(iv), we get that for any g ∈ (K 2
u )⊥ ,

0 = [(Ãu
νΓu

ψ −Γu
ϕAu

ν)Γ̃u
ψ +(Γu

ψΓ̃u
ψ −Γu

ϕΓ̃u
ϕ)Ãu

ψ ]g

= Qu[νQu{ψPu(ψg)}−ϕPu{νPu(ψg)}+ ψPu(ψQu(ψg))−ϕPu{ϕQu(ψg)}]
= Qu[ϕψPu(ψg)−ψQu{ψPu(ψg)}−ϕPu{ϕψg}+ ψPu{ψQu(ψg)}]
= Qu[ϕψPu(ψg)−ψQu{ψPu(ψg)}−ϕPu{ϕψg}+ |ψ |2Qu(ψg)−ψQu{ψQu(ψg)}]
= Qu[ϕψPu(ψg)−ψQu{|ψ |2g}−ϕPu{ϕψg}+ |ψ |2Qu(ψg)]

= (Γu
ϕψΓ̃u

ψ − Ãu
ψ Ãu

|ψ|2 −Γu
ϕΓ̃u

ϕψ + Ãu
|ψ|2Ã

u
ψ)g.

So we complete the proof. �

As some consequences of Theorem 4, we obtain the following corollaries.
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COROLLARY 7. Let ϕ ,ψ ∈ L∞ such that ϕψ = c ∈ C with c �= 0 . Then Su
ϕ,ψ is

quasinormal if and only if Au
|ϕ|2A

u
ϕ = Au

ϕAu
|ϕ|2 , Au

|ϕ|2 Γ̃u
ψ = Γ̃u

ψ Ãu
|ψ|2 , Ãu

|ψ|2Γu
ϕ = Γu

ϕAu
|ϕ|2 ,

and Ãu
|ψ|2 Ã

u
ψ = Ãu

ψ Ãu
|ψ|2 hold.

Proof. If ϕψ = c∈C where c �= 0, then we get from Lemma 1 that Γu
ϕψ = Γ̃u

ϕψ =
0. Hence the proof follows from Theorem 4. �

COROLLARY 8. Let ϕ ,ψ ∈ L∞ be such that |ϕ |2 = |ψ |2 = k for some constant
k and ϕψ ∈ C . Then Su

ϕ,ψ is quasinormal. Moreover, if k �= 1 , then Su
ϕ,ψ is not an

isometry.

Proof. Since ϕψ ∈ C , Γu
ϕψ = Γ̃u

ϕψ = 0 by Lemma 1 and so Au
kA

u
ϕ = Au

ϕAu
k ,

Au
kΓ̃u

ψ = Γ̃u
ψ Ãu

k , and Ãu
kΓu

ϕ = Γu
ϕAu

k , and Ãu
kÃ

u
ψ = Ãu

ψ Ãu
k hold. Hence Su

ϕ,ψ is quasi-
normal from Corollary 7, but Su

ϕ,ψ is not an isometry. In fact, note that Su
ϕ,ψ is an

isometry if and only if (Su
ϕ,ψ)∗Su

ϕ,ψ =

(
Au

ϕAu
ϕ + Γ̃u

ϕΓu
ϕ Au

ϕΓ̃u
ψ + Γ̃u

ϕ Ãu
ψ

Γu
ψAu

ϕ + Ãu
ψΓu

ϕ Γu
ψ Γ̃u

ψ + Ãu
ψ Ãu

ψ

)
= I, which

means that ⎧⎪⎨⎪⎩
Au

ϕAu
ϕ + Γ̃u

ϕΓu
ϕ = I

Au
ϕΓ̃u

ψ + Γ̃u
ϕ Ãu

ψ = 0, and

Γu
ψ Γ̃u

ψ + Ãu
ψ Ãu

ψ = I.

Therefore for any f ∈ K 2
u ,

f = (Au
ϕAu

ϕ + Γ̃u
ϕΓu

ϕ) f = Au
ϕPu(ϕ f )+ Γ̃u

ϕQu(ϕ f )

= Pu[ϕ{Pu(ϕ f )+Qu(ϕ f )}] = Pu[ϕ(ϕ f )] = Pu(|ϕ |2 f ).

Then for any f ∈ K 2
u , Pu[(|ϕ |2 −1) f ] = (|ϕ |2 −1) f = 0 implies that |ϕ | = 1, which

is a contradiction. So Su
ϕ,ψ is not an isometry. �

EXAMPLE 2. Let ϕ(z) = 2zn and ψ(z) = 2λ zn where |λ | = 1 . Then |ϕ |2 = 4 =
|ψ |2 and ϕψ = 4znλ zn = 4λ ∈ C . Hence Su

2zn,2λ zn is quasinormal, but it is not an
isometry.

COROLLARY 9. Let ϕ ,ψ ∈ L∞ be nonconstant inner functions. If Su
ϕ,ψ is quasi-

normal, then

Γ̃u
ψ Γu

ϕψ = Γ̃u
ϕψΓu

ϕ ,Γu
ϕΓ̃u

ϕψ = Γu
ϕψ Γ̃u

ψ , and Au
ϕ−ϕΓ̃u

ϕψ = Γ̃u
ϕψ Ãu

ψ−ψ . (9)

Conversely, if equations (9) hold, then Au
|ϕ|2A

u
ϕ = Au

ϕAu
|ϕ|2 and Ãu

|ψ|2 Ã
u
ψ = Ãu

ψ Ãu
|ψ|2 .
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Proof. Since Au
|ϕ|2 = I and Ãu

|ψ|2 = I , we have that the first and second equa-

tions hold from Theorem 4-(i) and (iv). We also get from Theorem 4-(ii) and (iii) that
Au

ϕΓ̃u
ϕψ − Γ̃u

ϕψ Ãu
ψ = 0 and Ãu

ψΓu
ϕψ −Γu

ϕψAu
ϕ = 0. If we take the adjoint of Ãu

ψΓu
ϕψ −

Γu
ϕψAu

ϕ = 0, then Γ̃u
ϕψ Ãu

ψ −Au
ϕΓ̃u

ϕψ = 0. Hence we obtain that

Au
ϕ−ϕΓ̃u

ϕψ − Γ̃u
ϕψ Ãu

ψ−ψ = [Au
ϕΓ̃u

ϕψ − Γ̃u
ϕψ Ãu

ψ ]+ [Γ̃u
ϕψ Ãu

ψ −Au
ϕΓ̃u

ϕψ ] = 0.

Conversely, if equations (9) hold, then Au
|ϕ|2A

u
ϕ = Au

ϕAu
|ϕ|2 and Ãu

|ψ|2 Ã
u
ψ = Ãu

ψ Ãu
|ψ|2 .

So we complete the proof. �
As an application of Theorem 4, we want to find ψ for which Su

ϕ,ψ becomes
quasinormal when ϕ ∈ L∞ and u are given.

COROLLARY 10. Let ϕ ,ψ ∈ L∞ and let u(z) = zB(z) where B(z) = z−α
1−αz for

α ∈ D . If ϕ(z) = dB(z) for some nonzero constant d , then Su
ϕ,ψ is quasinormal if and

only if ψ(z) = cB(z) for some constant c with |c| = |d| .

Proof. Assume that u(z) = zB(z) for α ∈ D . If ψ(z) = cB(z) for some constant c
with |c|= |d| , then |ϕ |2 = |B|2 = |d|2 and |ψ |2 = |c|2 . Thus Au

|ϕ|2 = |d|2 = |c|2 = Ãu
|ψ|2 .

Since ϕψ = cBdB = cd is constant, it follows from Lemma 1 that Γ̃u
ϕψ = 0 = Γu

ϕψ .
Hence Su

ϕ,ψ is quasinormal by Theorem 4.
Conversely, assume that Su

ϕ,ψ is quasinormal. We know that 1,B are orthogonal to
uH2 and dimK 2

u = degree(u) . Since u(z) = zB(z) , dim(∨{1,B}) = 2. Hence K 2
u =

∨{1,B} . Since Au
|ϕ|2 = |d|2I , by Theorem 4-(i), Γ̃u

ψ Γu
dBψ − Γ̃u

dBψΓu
dB

= 0. Since K 2
u =

∨{1,B} , it follows that Γu
dB

B = Qu(d) = 0 and so

0 = Γ̃u
ψ Γu

dBψB− Γ̃u
dBψΓu

dBB = Γ̃u
ψQu(dψ) = dPu[ψQu(ψ)].

Thus ψQu(ψ)∈ (K 2
u )⊥ and so 〈ψ ,Qu(ψ)〉= 〈1,ψQu(ψ)〉= 0. Therefore ψ ∈K 2

u =
∨{1,B} . So, ψ = a+bB = a+ b

d ϕ for some constant a,b . From Theorem 4-(iii),

Ãu
|ψ|2Γu

ϕ(B)−Γu
ϕAu

|ϕ|2(B) = Ãu
ψΓu

ϕψ (B)−Γu
ϕψAu

ϕ(B). (10)

Since ϕ = dB, it follows that Γu
ϕ(B) = Γu

dB
(B) = Qu(d) = 0 and Γu

ϕAu
|ϕ|2(B) = 0. Thus

we get that (10) implies

0 = Ãu
ψQu(dψ)−Γu

dBψPu(d)

= Qu[ψQu(dψ)−d2Bψ]
= −Qu[d2B(a+bB)]
= −d2Qu(aB+b) = −ad2B.

Therefore a = 0 and so ψ = bB . Hence ψ = cB where c = b. �
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