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ON QUASINORMALITY OF THE DILATION
OF TRUNCATED TOEPLITZ OPERATORS

EUNGIL KO AND J1 EUN LEE*

(Communicated by J. Pecari¢)

Abstract. An operator Sy, on L? is called the dilation of a truncated Toeplitz operator if for
two symbols ¢,y € L and an inner function u,

SZ)'I/f = qJPuf+ WQuf

holds for f € L? where P, denotes the orthogonal projection of L? onto .#;> and Q, = I —P,.
In this paper, we study characterizations for the dilation of truncated Toeplitz operators Sy " to
be quasinormal. As consequences of the results, we investigate the forms of the symbol functions
¢ and y when such operator becomes a quasinormal operator.

1. Introduction and preliminaries

Let £ (5¢) be the algebra of all bounded linear operators on a separable complex
Hilbert space . For an operator T € £(), T* denotes the adjoint of 7. An
operator T € £ () is said to be isometry if T*T =1, normal if T*T = TT*, and
quasinormal if T*T and T commute, respectively.

Let .77 be a subspace of a Hilbert space .2 and let P be the orthogonal projection
from J# onto 2. Then R is called a (weak) dilation of T to ¢ if T = PRP,
equivalently, T f = PRf for each f € 5 (see [1] or [7]). In this case, the operator T
is called the compression of R to ¢ . Since # = # @ -, it follows that R is a
dilation of T if and only if the matrix representation of R has the following form

(2)

In some books ([1] and [11, page 10]), an additional condition is imposed for which
T" = PR"P holds for every positive integer n. In this case, R is called a power dilation
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of T. The concept of a dilation is related to model theory which means the representa-
tion of some class as pieces of operators in a smaller, better-understood, class.

Let L? be the Lebesgue (Hilbert) space on the unit circle and let L be the Banach
space of all functions in L? essentially bounded on dID. The Hilbert Hardy space, de-
noted by H?, consists of all analytic functions f on ID having square-summable Taylor
coefficients at the origin. Then the Hilbert Hardy space H> = span{z’:n=0,1,2,3,---}
in L. Let P denote the orthogonal projection of L?> onto H?. Then Q = I — P is the
orthogonal projection of L? onto (H?)* :=IL>© H? = L>N(H*)*. Forany ¢ € L™,
let My denote the multiplication operator on L? such that Myf=of for f e L?. For
any @ € L™, the Toeplitz operator Ty : H*> — H? is defined by the formula

Tof =P(of), f€H? (1)

where P denotes the orthogonal projection of L> onto H”. It is known that Ty is
bounded if and only if ¢ € L*, and in this case, ||Ty|| = ||@||-.

In 2007, Sarason [12] initiated the study of truncated Toeplitz operators which are
the compression of Toeplitz operators. A function u € H? is called innerif [u| =1 a.e.
For a nonconstant inner function u, the model space #,? is given by #,? := H>*CuH? .
For any ¢ € L and an inner function u, the truncated Toeplitz operator Ay, : HE—

A2 is defined by the formula
Apf = Pu(of) for f € 2)

where P, denotes the orthogonal projection of L? onto %2. Several aspects of this
operator were studied in [2]-[6], [12], and [13]. For any ¢ € L™ and an inner function
u, let A% denote the operator on (.%,2)" := L* © #,? such that

A f = Qu(@f) for f € (H2)* (3)

where Q,, denotes the orthogonal projection of L? onto (.7 ?)*. Let Iy be the trun-
cated Hankel operator of #* to (,?)* such that

Tof = Qu(of) for f € A2, “)
Let l:'(;p be the operator of (.#,?)* to .#,> such that
T = Pu(of) for f € (H2)*. 5)
. . . —x o~
Itis obvious that A" = A’% and Af = A@'

In light of the function space, we can consider the following dilation of a truncated
Toeplitz operator Ay on HE® (A2 =L* (see Lemma 3.2 in [8] for more details).

DEFINITION 1. An operator Sg,, on L? is called the dilation of a truncated
Toeplitz operator if for two symbols ¢,y € L™ and an inner function u,

Sl:o,u/f = QP.f+yOuf
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holds for f € L?> where P, denotes the orthogonal projection of L? onto .#,> and
Qu =1—P,. In particular, if ¢ =y, then S;, , = M, is a multiplication operator on
L.

We remark that a bounded operator Sy ,, on L? satisfying Definition 1 has the
following block matrix representation:

So.y = (A?” rl) (©6)
’ Iy Ay

on H?&(#2)t =L* where Ay, T T, and AY are defined as before. For example,

ifu(z)=72", 0(z) =35 ., and y(z) =35 __bid", then B={1,z,22,---, 2"}
is a basis for ,%/Z% and

ay a-1 a2 - aptl
ay ay a_y - d_pg
n
[AG]2 =
Ap—2 Ap-3 Ap—4 " a—]
ap—1 dp—2 Ap-3 **+ 4o
s
Therefore the operator matrix of |~ ? /ﬂn with respect to % @ %~ is a dilation of
I3 Af
[ 4

A5 (see [81-[10]).

In 2016, the authors in [8] introduced the dilation of truncated Toeplitz operators
on L? using the concept of singular integral operators. Moreover, the authors in ([8]-
[10]) have studied normality and hyponormality of the dilation of a truncated Toeplitz
operator. In 2018, Gu and Kang [5] gave a complete characterization of self-adjoint,
isometric, coisometric and normal truncated singular integral operators. We concentrate
on the following questions;

When do the dilation of truncated Toeplitz operators Sy, , become quasinormal?

In this paper, we give necessary and sufficient conditions for the dilation of trun-
cated Toeplitz operators to be quasinormal. As applications for such operators, we
investigate the forms of the symbol functions ¢ and y when such operator becomes a
quasinormal operator.

2. Main results

In this section, we study the quasinormality of the dilation of truncated Toeplitz
operators S, , for @,y € L.

LEMMA 1. ([9]) Let ¢ € L™ and let u be a nonconstant inner function. Then the
following statements hold.
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(i) TG, =0 ifand only if ¢ € C.
(ii) 1:7(,, =0 ifand only if ¢ € C.
(iii) AL = 0 if and only if ¢ = 0.

LEMMA 2. ([8]) Let ¢,y € L™ and v =@ — . Then

Tyl — Ty Ty, Ty AL —A(‘,%) -

[(Sg.)" Syl = (Zﬁr" —T“AL TUTY —TUTY
vig—ledy Lyly—1ols
where [A,B] = AB — BA.

LEMMA 3. Let ¢,y € L™ and v =@ —y. Then Sy, , is quasinormal if and only
if the following identities hold.

(i) (Tl — Ty D) A + (TyAy — AYTE)Ty =0,

(ii) (l"uil"“a — F?,,F”V)l“?,, + (Fﬁ‘,,% — A@%)A?,, =0,

(iii) (Ajruv — F@A%)é\’{p + (FI{!/ILMV — l“’(‘plj\"?)li’:E =0, and

@iv) (A’(,l"“W — ALY, + (FI{!/FMW — F’:DF’%)A?,, =0.

Proof. Since Sg, ,, is quasinormal if and only if [(S, )", S ]S4, = 0, the proof
follows from Lemma 2. [

THEOREM 1. Let ¢,y € L and v = ¢ — . Assume that ¢(#?) C (2 or
w(HDE C (AP, Then S,y is quasinormal if and only if ¢ € C and y € C.
Furthermore, if Sy, \, is quasinormal, then the model space Ji{f is a reducing subspace
of Shy-

Proof. If @(#?) C (?), then ¢ € C by [9]. If S,y 1s quasinormal, then from
Lemma 3, we get that ﬁ!,F’L % =0.Forall fe K2,

0=TYILAlLf = (I Thf.

Thus FMV =0on %2 or ¢ =0. By Lemma 1, w € C or ¢ =0. Conversely, if
¢,y €C, then I'y, = 1:\':; =0and T'y, = 1:%, = 0. Hence S5, ,, is quasinormal.
Similarly, if w(%,2)* C (J2)*, then y € C by [9]. If 8% , is quasinormal, then

from Lemma 3, we get that Ty %A% = 0. Forall g € ()",
0 =TT Al g = YTy (I%)"s.

Thus T% =0 on (J%2)" or y =0. By Lemma 1, y € C or y =0. Conversely, if
¢,y €C, then I'y =T'g =0 and I'}, =T%, = 0. Hence S§, ,, is quasinormal.

On the other hand, If SZLW is quasinormal and 1"’(;, =0or F’{,, =0, then ¢ € C and
y €C. Thus I'y, = 1:?!, = 0. Hence the model space %> reduces So,y- S0, the model
space %, is a reducing subspace of Sow- U
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COROLLARY 1. Let o,y €L” and v=q@—y. If o(H#?) C (H?) or y(#,?)*- C
(,%/uz)i then Sg \, is quasinormal if and only if Ay and Ay, are normal and Sg, \, =
Ay BAY,.

Proof. By Theorem 1, Sg ,, is quasinormal if and only if ¢ € C and y € C.
By Lemma 1, Sg ,, is quasinormal if and only if I'y = 1:%, = 0. This is equivalent to
So.v =A% @AE, and Aj and AE, are normal since @,y € C. [

THEOREM 2. Let o,y €L” and v=¢@—Vy. Iff/l%, =0, then Sy \, is quasinormal
if and only zfA‘q)le(p :A"’Alfp\z and F¢A|(p\2 =0.
NProof. It A,;“L =0, then y = 0. From LeEma 3, 8o,y is quasinormal if and only
if [pIgA,—ApIGlp =0 and IAZAG + T I, = 0. For any f € K2,

[ (4
= P[0Qu{0Pu(0f)} — oP{®0u(0f)}]
= P|o*P.(0f) — 0P {OP.(0 )} — 0P{D0u(0f)}]
= P|ol*Pi(@f) — @P.(|9* f)]
= [AfppAe —ApAjplf.

Thus A‘”WAZ, = A“(J,Ai‘(p‘2 . Similarly, for any f € .#,?, we obtain that

0 = TyTuAl f — AGTeTy f

0 = TyALAY f+ToTuTs f

¢
= FIZD[PM{?PM(QD]C)} +PM{¢QM(¢f)H
= TolP{P(0/)}]
=Ty [Pu(|o*/)]
= FoAjgp /-
Hence FQDAI(PV = 0. Therefore Sg, ,, is quasinormal if and only if A\¢|2Aq) = A‘PAlfp\z
and F’fPA"‘¢|2 =0. O

COROLLARY 2. Let ¢ € L™ be an inner function and y € L. Iff/\%, =0, then
So,y is quasinormal if and only if ¢ € C.

Proof. By Theorem 2, S, ,, is quasinormal if and only if A"‘qole’fp = A’(‘/,A‘”q)|2 and

l"’(‘l,A’l‘(P‘2 =0. Since |@| =1, it follows that Sy, ,, is quasinormal if and only if I'; =0
ifand only if ¢ € C by Lemma 1. O

COROLLARY 3. Let ¢,y € L” and v = ¢ — y. Assume that ;\?,, =0. If Sp.y

u

is quasinormal, then Sg \, = (r,‘f 0). In particular, if @ is an inner function, then
’ ®

St = Al 0.
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Proof. 1f AE, =0, then v =0 and hence FN’{!, =0 by Lemma 1. Thus S5, =
A% 0 . . . . .
(F{f 0) . In particular, if ¢ is an inner function, then ¢ € C by Corollary 2. Then by
o
Lemma 1, F?P = 0. Hence S’(‘PW :A?P @0. O

We next give an equivalent statement for quasinormality of the dilation of trun-
cated Toeplitz operators under some conditions.

THEOREM 3. Let ¢,y € L™ and ¢ — Ay =c € C where |A| = 1. Then S, ,, is

quasinormal if and only if -
0 'L\
(g §) %o =0

where ® = (A — 1)|@]> +c@—cro.

Proof. Suppose that ¢ — Ay = ¢ € C where |A]| =1. Since Loy =T% =0

o—ry
and |A| =1 by [9], we get that
TUTY — |3 12T T — Tutk uTw _ TuTu
Fglg = ATy Iy =Ty Iy and Iy =Tl
By Lemma 3, S ,, is quasinormal if and only if the following identities hold;
N (I AL — AE %)F?P =0, (TyAL - A@F%)Aﬁ, =0, (A(‘,F“V —TpAy)AG =0, and
(A(‘,F“V —ToADY, =0, ie.,

0 ATy —ToAy)™\ (AT _ ®
AYTY —TpAY 0 Y Ay,

where v = ¢ — y. On the other hand, for any f € .#?, we get that

(AT — Ty Ak) f
= Qul(¢ —v)0u(Vf) — oP.((? — W) f)]
= Qu[(AW +c—v)Ou(Tf) — AW+ )P((Ay +c =) f)]
= Qu[((A =)y +¢)0u(V/) —/WPu(((I_— Dy +20)f)]
= Qu[((A = D) WOu(Vf) +cOu(¥f) = (A = 1) yPu(Vf) — ACYP, f]
Vf) = (1A = 1) Qu[wPu(Wf)] — A2Qu WP, f]
- A’ZQM[WPMJC]

= (A = 1)Qu[yOu(Wf)] +cOu(

= (l - 1)Qu[“l/|2ﬂ +CQu(Vf)

= Qul(A = 1)|y* +cy — Acylf.
Since @ = Ay + ¢, we have

(A= DIy +cF—Aey = (A — D] +cp— Aco.
Hence we obtain that
(ATl — TpA%) £ = Qu(A = 1)|w[* + ¥ — Aeylf
= Qu[(A—1)|@]*+cp— ATo]f =T4f
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where ® = (A — 1)|@|?> +c@ — Ac¢. Therefore we know from (8) that S,y s quasi-

normal if and only if
0 (Te)"\qu _
(7 "8 ) o0
where @ = (X — 1)|@|> +cp —cA¢. Since (T'4)* = 1:?3, we complete the proof. [

COROLLARY 4. Let @,y € L™ and ¢ — Ay =c € C where |A| = 1. Then the
following statements hold.

(1) SI:M/ is quasinormal.

(i) Sg  is normal.

(i) ®:= (A — 1)|g|* +cp—crp € C.

Proof. (i) = (ii): Set D— (ro FOE) where @ = (1 —1)|@[*+cp—cho. If 54,

U
[

is quasinormal, then we get from Theorem 3 that DS, ,, = 0. Hence D(ran(S{ ) =
{0}. Since 1> = ker(Sg )" +ran(S ), we want to show that Dker(Sg, ,,)* = 0. For
any s € ker(Sg, ,,) and any 7 € ran(S% ), we know that (Dr,7) =0, (Ds,t) = (s,Dt) =
0, and (Dt,s) = 0. Hence for any x,y € L?, write x = s+, and y = sy +t, for any
sx, 8y € ker(Sg )" and ty,t, € ran(S§, ). Then (Dx,y) = (Dsy,sy) = 0. So it suffices
to show that (Dsy,s,) =0. If x =y, then

<Dx,x> = <sz,sx>
((S,u) " Sp,ysxs8x) — (o, (Sey) " Sx,5x)

(Shp)"Spuysesss) = [ISp.ys:ll* > 0.

Hence D > 0. So by the positivity of D(see [14]), there exists a contraction S such that
I'p = O%SO% =0. Hence ® € C by Lemma 1 and D = 0. Thus, in this case, S?M, is
normal. The converse statement (ii) = (i) is trivial. The statement (ii) < (iii) follows
from [9]. O

_EXAMPLE 1. If (z) =2"—¢" for 6 €R, y(z) =2", and .. =1, then ¢ — Ay =
—e'% =c e C. Since

®=(A-1|o’+cp-cho
_ _ez‘e(zn_ef-ze) _‘_efze(zn _el(-))
_ _elezn _eﬂezn g(c’

we get from Corollary 4 that Sy, \, is not quasinormal.

COROLLARY 5. Let ¢ € L be such that 9. %} C %>, we L, and o — Ay € C
where |A| = 1. Then Sg, \, is quasinormal if and only if S\, is normal.
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Proof. Since ¢.J%,7 C 2, it follows from [9] that T =0 and so ¢ € C. If S ,,

is quasinormal, then
0 F“
(Fu 0 ) qu v =0

by Theorem 3 where ® = (A — 1)|@|?> + ¢@ — A ¢. Therefore,

0 TE) (ApTy\ _ ([ 0 TaAy

ry AR A, T4A% rg,ru '
Thus TAYL =0, T%A% =0, and T%T% = 0. Since TAYL =0 and ¢ € C, it follows
that for all f € 72,

0=THAY wf = Ou®P,(@f)] = Qu[@pf] = 9Ou(Pf) = pTaf.

Hence I'p =0 or ¢ =0. By Lemma 1 or [9], ® € C. By Corollary 4, Séﬂ!/ is normal.
The converse statement is obvious. [

COROLLARY 6. Let ¢ € L™ be such that 9. %> C #,?, w€L”, and ¢ — Ay € C
where’lM = 1. If 8§,y is quasinormal, then AG and Ay, are normal and Sy, =
Ap DAY,

Proof. By Corollary 5, S, ,, is normal. Hence the proof follows from [9, Theorem
5.5 O

Finally, we give another characterization of a quasinormal dilation of truncated
Toeplitz operators S, ,,

THEOREM 4. Let ¢,y € L. Then Sy, ,, is quasinormal if and only if the follow-
ing identities hold.

) (At Ag] = Ty~ T T,

(if) At T, - Arwz —A;;rgw T AY,
(iii) A‘ 2T rg,A‘“gol2 = Ay —TU AL and
(iv) [Af . A Ay] =Ture — r?pvrg;,.

Proof. Set v = ¢ — y. Assume that S, , is quasinormal. From Lemma 3-(i), we
get that for any f € %2,

0= (ﬁr“ ryry )A“f+(F“A” A”F“)F”f
= Pu[0Qu(QAGf) — wQu(VAGLS) + w{P.(QT o f) + Qu(@T g f) — Qu(YWT 4 f)}
—@P(oTyf)]
= P[00 {0P.(0f)} — wOQ.{VP.(0f)} + PwQ.(f)
VO {W0u(0f)} — oP{PQu(0f)}]
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Pu@Qu{@Pu(0f)} — w0 {0V [} +0wQu(of) — 9P {00u(0f)}]
PlolPPu(@f) — 0P APP.(0f)} — w0 {0V f} + owQu(0f) — 9P {00u(0f)}]
Plol*P(of) — 9P {0l £} — wO. {0V [} + PyQu(9f)]

= (Al — Al — Ty Ty + T, Tl

Hence we complete the proof for (i). From Lemma 3-(ii), we get that for any g €
(A2,
0 = (FgTg — Py T + (TyAY — AU A
= Pu[0Qu(PT8) — wO.(WTye)| + PulwQu(VAYg) — VP (@AYg)]
= Pu[¢Qu(¢Pqu) - WQM(WPMWg)} +PM[WQM(VQMWg) - VPu(aQqu)]
= Pu[@Qu(@Piywg) — WOu(WP,Wg) + wOu(9Quvg) — wOu(WQu(V3))
— P, (00uyg) + YP(POuWg)]
= Pu@Qu(@P.g) — wOu(lWI’8) + PW0u(vg) — P {PQu(vg)}]
= Plol*Pu(wg) — oP{BPu(ve)} — vOu(ly[’e) + P Qu(we) — pP{FQu(v2)}]
= PloPPP.(wg) — oP(Pwe) — vOu(ly[’e) + Py Qu(we)]
= (AT — ATy —TyA[p + TG, AY)g-
Hence (ii) is proved. From Lemma 3-(iii), we get that for any f € ,%/uz,

0 = [(A§TY — TgAL)AY + (T T — T T T f
= Qu[qu{VPu(q)f)} - (pPu{VPu((pf)} + WPu{WQu((pf)} - quu{aQu(q)f)H
= QuloVP.(0f) — WO {VP.(0f)} — 0P |0’} + W’ Qu(0f) — wO.{WOu.(0f)}]
= QuloWP.(0f) — vO.{Vof} — oP{I0I*} + [W*Qu(9f)]

= (T"_ A" — AuT _1“§'PA|“(P‘2 +A|“W|21“:’D)f.

oV v oy
From Lemma 3-(iv), we get that for any g € (#,2)",

0 = [(AUT, — TpA%) Ty, + (T T — ToT) Ay g
= Qu[vVOu{WP.(vg)} — PAVP.(v8)} + YP.(WQu(yg)) — 9P 90u(wg)}]
= QuloYPu(yg) — vOu{VP.(vg)} — P {Pye} + yPA{V0u(yg)}]
= QuloWP.(vg) — vO.{WP.(vg)} — oP{Owg} + [v[*0u(vg) — v0.{W0u(vg)}]
= QuleWP.(vg) — vQu{lvIg} — oP{Pve} + W[ Qu(ve)]

= (Dol —AYAL , —Tylh + AL LAY )g.

So we complete the proof. [

As some consequences of Theorem 4, we obtain the following corollaries.
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COROLLARY 7. Let @,y € L™ such that @y = c € C with ¢ #0. Then Sy, , is

. . . u U __ AU AU U Tu _Tu AU AU TU _ TU AU
quasinormal if and only lfAI(p\qu’ _A<PA|<p\2’ A|<p\2rw = FWAW\Z’ A\wzrfp = l"(pAW,

and AY . Al = AYAY , hold.

Proof. If py = c € C where ¢ # 0, then we get from Lemma 1 that F?W = I“A%;/ =
0. Hence the proof follows from Theorem 4. [

COROLLARY 8. Let @,y € L™ be such that |@|*> = |y|*> = k for some constant
k and @y € C. Then Sy, is quasinormal. Moreover; if k # 1, then S,y is not an
isometry.

Proof. Since oy € C, F:‘DW = I"A”@;/ =0 by Lemma 1 and so AjA, = AGAY,
A,‘:l:%, = I“N{",;\\,‘z, and A\Z/F’q‘o = F:‘,,A,‘:, and ;12215, = ;\%,AVZ hold. Hence Sz),l[/ is quasi-
normal from Corollary 7, but S?D,V/ is not an isometry. In fact, note that S?D,V/ is an

Al Al + Ty ASTY + %Ag‘,,)

R T S T = I, which
I (p—l-AWl"(p FVFW+AVAW

isometry if and only if (S ,,)*SG ., = (

means that
AlAly + Ty =1
A”alj@ + 1:’("?% =0, and
F”VF'{V +AMVAW =1I

Therefore for any f € %,

f

(Al Al +TET0) f = AP(0f) + T0u(0f)
W[ @{P(@f) + Qu(0f)}] = Pu[@(0f)] = Pu(|9* /).

Then for any f € %2, P,[(|¢]* —1)f] = (|¢|* — 1)f = 0 implies that |@| = 1, which
is a contradiction. So S, ,, is not an isometry. [

EXAMPLE 2. Let ¢(z) = 27" and y(z) = 242" where |A| = 1. Then |@|> =4 =
|w|? and Py = 47"'A7" = 44 € C. Hence S5 IS quasinormal, but it is not an
isometry.

COROLLARY 9. Let @,y € L™ be nonconstant inner functions. If Sg \, is quasi-
normal, then

Ty Ty = Ty Uo Dol gy = Doyl and A 515, =T5,AY . ®)

: ; U AU AU AU AU AU Au AU
Conversely, if equations (9) hold, then AleA(p = A(/,A‘q)|2 and AW\ZAW = A"’AIWIZ‘
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Proof. Since A"‘ 2= =1 and A| 2= = I, we have that the first and second equa-
tions hold from Theorem 4- (1) and (iv). We also get from Theorem 4-(ii) and (111) that

AZ)F’;W T q,A“ =0 and A” F” -1 VAq’ = 0. If we take the adjoint of A” F”

wvAw =0, then e q/Au/ A” F“ = 0. Hence we obtain that

Aol Gy~ vAu/ v A?Préu/_ruvAv %VAMW_A%F%W}:O'

u __ u u /M\J — M
Conversely, if equations (9) hold, then Al(p‘zA =A AI(P\Z and AIWIZA AWAW|2

So we complete the proof. [

As an application of Theorem 4, we want to find y for which S, becomes
quasinormal when ¢ € L™ and u are given.

COROLLARY 10. Let @,y € L~ and let u(z) = zB(z) where B(z) = {=% for

a € D. If ¢(z) = dB(z) for some nonzero constant d, then S, ,, is quasinormal if and
only if W(z) = ¢B(z) for some constant ¢ with |c| = |d|.

Proof. Assume that u(z) = zB(z) for a € D. If y(z) = ¢B(z) for some constant ¢
with |c| =|d|, then |@|> = |B|> = |d|* and |y|*> =|c|*>. Thus Al = |d|> = |c|? =Al .

Since W = cBdB = ¢d is constant, it follows from Lemma 1 that l"”m/ =0= FZJW'
Hence S, is quasinormal by Theorem 4.
Conversely, assume that Sy, ,, is quasinormal. We know that 1, B are orthogonal to
H? and dim.7*> = degree(u). SIIICC u(z )—zB( ), dlm(\/{l B})=2. Hence %> =
\/{1 B}. Since All , = = |d|?I, by Theorem 4-(i), ru W—ru I =0. Since 7,2 =
V{1,B}, it follows that T").B = Q,(d) = 0 and so

dB

0=yl B—T0 B = % 0, (dW) = dP.[y0.(W)).

Thus w0, (V) € ( "2)* and so (V, 0.(V)) = (1,y0,(W)) =0. Therefore ¥ € ¥} =

V{l B} So, ¥ +bB=a+5% (p for some constant a,b. From Theorem 4-(iii),
AT'WF" (B) = TpA(y2(B) = Ay Toy(B) —TgpAe (B). (10)

Since ¢ = dB, it follows that T’y (B) = I(B) = Qu(d) =0 and F?PA"‘ |2(B) =0. Thus

we get that (10) implies

0= A, yQu(dW) —TjpuPu(d)
Qu[vQ.(dW) — d* By

= -0y [dZB(a + bB)}

— —d2Qu(a§+b) = —ad’B.

Therefore @ = 0 and so ¥ = bB. Hence ¥ = ¢B where c =b. [
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