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GRADIENT ESTIMATES FOR THE p–LAPLACIAN

PARABOLIC EQUATIONS WITH A LOW–ORDER TERM
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(Communicated by I. Perić)

Abstract. This paper mainly deals with regularity estimates in Orlicz spaces for the following
divergence parabolic equations of p -Laplacian type with a low-order term

ut −div
(|Du|p−2Du

)
+ |u|p−2 u = div

(
|f|p−2 f

)
in ΩT := Ω× (0,T )

under some proper assumptions on f(x,t) . Remarkably, the equations we have discussed here
contain the low-order term |u|p−2 u .

1. Introduction

The present paper is devoted to the study of regularity estimates in Orlicz spaces
for the following divergence parabolic equations of p -Laplacian type with a low-order
term

ut −div
(|Du|p−2Du

)
+ |u|p−2 u = div

(
|f|p−2 f

)
in ΩT := Ω× (0,T), (1)

where n � 2, p � 2, Ω is an open bounded domain in R
n , ∂pΩT = ∂Ω× [0,T ]∪Ω×

{t = 0} is the parabolic boundary of ΩT and f = ( f 1, . . . , f n) is a given vector field
with f ∈ Lp

loc (ΩT ) . Moreover, we say that u∈ Lp
loc(0,T ;W 1,p

loc (Ω))∩L∞
loc(0,T ;L2

loc(Ω))
is the local weak solution of (1) if for each ϕ ∈C∞

0 (ΩT ) , we have∫
ΩT

−uϕt + |Du|p−2Du ·Dϕ + |u|p−2 uϕ dxdt = −
∫

ΩT

|f|p−2 f ·Dϕ dxdt.

Since the Calderón-Zygmund theory (Lp -type regularity) was proved for the sim-
plest elliptic Poisson equation, the related theory has been widely investigated by us-
ing various methods for the linear elliptic/parabolic equations with different contin-
uous/discontinuous coefficients and smooth/nonsmooth domains. And then its non-
linear versions have been extensively studied especially for the elliptic problems of
p -Laplacian type

div
(
(ADu ·Du)

p−2
2 ADu

)
= div

(
|f|p−2 f

)
in Ω
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and the more general case. We remark that in the elliptic case we often use the maximal
function approach to get the Lp -type regularity estimates.

Due to the scaling deficit caused by the parabolic nonlinearity, many common
approaches used in the elliptic case can no longer be used in the parabolic case of p -
Laplacian type

ut −div
(|Du|p−2Du

)
= div

(
|f|p−2 f

)
in ΩT . (2)

It is worth mentioning that the classical maximal function approach will also be not
applicable to the parabolic problems of the p -Laplacian type (2). In order to overcome
the difficulty in the scaling-invariant problem, Acerbi and Mingione [1] found a new
covering/iteration approach (see [24] for its origin) involving the large-M -inequality
principle. Remarkably enough, the above method is a harmonic analysis-free technique
since it does not need to use the Calderón-Zygmund decomposition and maximal func-
tions. As a matter of fact, this approach has been widely used in Lp -type regularity
theory for various kinds of nonlinear elliptic and parabolic equations. We can also refer
to [6, 7, 8, 9, 11, 16, 19, 20, 22, 25] for Lp -type regularity estimates for weak solu-
tions of (2) and the general case with different coefficient and domain assumptions.
Furthermore, some authors [3, 4, 27] extended the Calderón-Zygmund theory for the
quasilinear parabolic equations of p -Laplacian type to the setting of variable exponents
p(x,t)-Laplacian case. Meanwhile, we can refer to the book [15] for Hölder estimates
of weak solutions of the quasilinear parabolic equations of p -Laplacian type. In addi-
tion, several articles [5, 10, 13, 14, 17, 18, 26] have been devoted to the study of the
boundedness and Hölder estimates for weak solutions and their gradients of (2) and the
more general case.

For convenience of the readers, we first recall some definitions and lemmas (see
[2, 23]) about the general Orlicz spaces.

DEFINITION 1. A convex function φ : [0,+∞) −→ [0,+∞) is said to be a Young
function if

lim
t→0+

φ(t)
t

= lim
t→+∞

t
φ(t)

= 0 and φ(0) = 0.

Accordingly, the Orlicz class Kφ (Ω) is the set of all measurable functions g : Ω → R

satisfying ∫
Ω

φ(|g|) dx < ∞

and the Orlicz space Lφ (Ω) is the linear hull of Kφ (Ω) . Moreover, a Young function
φ is said to satisfy the global Δ2 condition, denoted by φ ∈ Δ2 , if

φ(2t) � Kφ(t) for every t > 0 and some constant K > 0.

Meanwhile, a Young function φ satisfies the global ∇2 condition, denoted by φ ∈ ∇2 ,
if

φ(t) � φ(θ t)
2θ

for every t > 0 and some constant θ > 1.
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Let us remark here that Kφ (Ω) = Lφ (Ω) and C∞
0 (Ω) is dense in Lφ (Ω) for φ ∈

�2∩∇2 . Actually, there are two typical examples

φ1(t) = t p ∈ Δ2 ∩∇2

and
φ2(t) = t p ln(1+ t) ∈ Δ2∩∇2 for p > 1.

Moreover, we would like to point out that φ ∈Δ2∩∇2 if and only if there exist constants
A2 � A1 > 0 and α1 � α2 > 1 such that

A1

( s
t

)α2 � φ(s)
φ(t)

� A2

(s
t

)α1
for any 0 < t � s. (3)

Our main goal here is to obtain regularity estimates in Orlicz spaces for weak so-
lutions of (1). We would like to remark that regularity theory for the classical parabolic
p -Laplacian equation was usually studied for p > 2n

n+2 . Actually, the lower bound 2n
n+2 ,

which is slightly smaller than 2, on the exponent p is standard and unavoidable (see
[5]). In this work we mainly consider the case p � 2. Due to the existence of the lower
term and the nonlinearity/inhomogeneity of the equation itself, we shall use a class of
parabolic cylinders {Qzi(λ 2−pρ p

i ,ρi)} (see (7)) whose lengths of the time depend on
the solution u and its gradient Du . In the case p < 2 which is called the singular case,
the modulus of ellipticity tends to infinity when |Du| → 0. In this case it is same to the
lower term |u|p−2 when |u| → 0. In this situation estimates become harder to get.

Now let us state the main result of this work.

THEOREM 1. Assume that φ ∈ Δ2 ∩∇2 . If u is the local weak solution of (1) in
ΩT ⊃ Q2 , where the parabolic cylinder Qr := Br × (−rp,rp) , then we have

|u|p, |Du|p ∈ Lφ
loc (ΩT )

with the estimate∫
Q1

φ (|u|p)+ φ (|Du|p) dxdt

� C
∫

Q2

φ (|f|p)dxdt +Cφ

[(∫
Q2

|u|p + |Du|p + |f|p +1dxdt

) p
2
]

. (4)

2. Proof of the main result

This section is devoted to the proof of the main result stated in Theorem 1. We
first give the following elementary measure theory.

LEMMA 1. (see [12]) Let φ be a Young function with φ ∈ �2 ∩ ∇2 and g ∈
Lφ (ΩT ) . Then we have∫

ΩT

φ(|g|) dxdt =
∫ ∞

0
|{z ∈ ΩT : |g| > λ}| d [φ(λ )]
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and ∫ ∞

0

1
λ

{∫
{z∈ΩT :|g|>b1λ}

|g|dxdt

}
d [φ(b2λ )] � C(b1,b2,φ)

∫
ΩT

φ(|g|) dxdt

for any b1,b2 > 0 .

Next, we will give the iteration-covering procedure which was first introduced by
[1, 24]. Instead, it takes advantage of a stopping time argument and Vitali’s covering
lemma. To begin with, we define

λ 2
0 :=

∫
Q2

|u|p + |Du|p dxdt +
1
δ

∫
Q2

|f|p dxdt +1 for some δ ∈ (0,1), (5)

J [u, f,Q] :=
∫

Q
|u|p + |Du|p dxdt +

1
δ

∫
Q
|f|p dxdt (6)

for any domain Q ⊂ R
n+1 and the level set

E(u,λ ) :=
{
z = (x,t) ∈ Q1 : |u|p + |Du|p > λ p}.

And then we will decompose the level set E(u,λ ) into a family of small disjoint cylin-
ders since |u|p + |Du|p is bounded in Q1 \E(u,λ ) for a fixed λ > 0. Meanwhile, we
shall obtain the corresponding estimates of these small cylinders.

LEMMA 2. If u is the weak solution of (1) in ΩT ⊃ Q2 , for λ � λ∗ =: 10n+pλ0

there exists a family of disjoint cylinders{
Q0

i

}
i�1 :=

{
Qzi(λ

2−pρ p
i ,ρi)

}
i�1 (7)

with zi = (xi, ti) ∈ E(u,λ ) and ρi = ρ(xi,ti) ∈
(
0, 1

10

]
, where

Qzi(θ ,ρ) := Bρ(xi)× (ti −θ ,ti + θ ) ,

such that
J
[
u, f,Q0

i

]
= λ p, (8)

J
[
u, f,Q(xi,ti)(θ ,ρ)

]
< λ p for any Q(xi,ti)(θ ,ρ) ⊇ Q0

i , (9)

E(u,λ ) ⊂
⋃
i�1

5Q0
i ∪negligible set, (10)

and

∞

∑
i=1

∣∣Q0
i

∣∣ � 3
λ p

∫
{

z∈Q2: |u|p+|Du|p> λ p
3

} |u|p + |Du|p dxdt

+
3

δλ p

∫
{

z∈Q2: |f|p> δ λ p
3

} |f|p dxdt. (11)
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Proof. Fix any z = (x,t) ∈ Q1 and 1
10 � ρ � 1. Then it follows from (5) and (6)

that

J
[
u, f,Qz

(
λ 2−pρ p,ρ

)]
=

∫
Qz

(
λ 2−pρ p,ρ

) |u|p + |Du|p dxdt +
1
δ

∫
Qz

(
λ 2−pρ p,ρ

) |f|p dxdt

� |Q2|
|Qz

(
λ 2−pρ p,ρ

)|
[∫

Q2

|u|p + |Du|p dxdt +
1
δ

∫
Q2

|f|p dxdt

]

� 20n+pλ 2
0 λ p−2

�
(
10n+pλ0

)2 λ p−2

� λ p (12)

for λ � λ∗ =: 10n+pλ0 , which implies that

sup
z=(x,t)∈Q1

sup
ρ∈[ 1

10 ,1]
J
[
u, f,Qz

(
λ 2−pρ p,ρ

)]
� λ p. (13)

Applying Lebesgue’s differentiation theorem, for a.e. z = (x,t)∈ E(u,λ ) we know that

lim
ρ→0

J
[
u, f,Qz

(
λ 2−pρ p,ρ

)]
> λ p,

which implies that there exists some ρ̃ > 0 such that

J
[
u, f,Qz

(
λ 2−pρ̃ p, ρ̃

)]
> λ p.

Furthermore, from (13) one can select a radius ρz ∈
(
0, 1

10

]
such that

ρz := max

{
ρ ∈

(
0,

1
10

]
: J

[
u, f,Qz

(
λ 2−pρ p,ρ

)]
= λ p

}
,

J
[
u, f,Qz

(
λ 2−pρ p

z ,ρz
)]

= λ p

and

J
[
u, f,Qz

(
λ 2−pρ p,ρ

)]
< λ p for any ρ > ρz.

Therefore, we use Vitali’s covering lemma to find a family of disjoint cylinders{
Q0

i

}
i�1 :=

{
Qzi(λ

2−pρ p
i ,ρi)

}
i�1

satisfying (8) and (10). Actually, the first equality of (8) implies that

J
[
u, f,Q0

i

]
= λ p =

∫
Q0

i

|u|p + |Du|p dxdt +
1
δ

∫
Q0

i

|f|p dxdt.



696 F. YAO

Subsequently, by splitting the two integrals above as follows we have

λ p|Q0
i | �

∫
{
z∈Q0

i : |u|p+|Du|p> λ p
3

} |u|p + |Du|p dxdt +
λ p

3
|Q0

i |

+
1
δ

∫
{

z∈Q0
i : |f|p> δ λ p

3

} |f|p dxdt +
λ p

3
|Q0

i |,

which implies that (11) is true for λ � λ∗ due to the fact that the cylinders {Q0
i } are

disjoint. So we complete the proof. �
Here we are going to derive comparison results between the weak solutions u of

(1) and h of the good homogeneous reference equation.

LEMMA 3. For any ε > 0 , there exists a small positive constant δ = δ (ε,n, p)
such that if u is the weak solution of (1) with Q2 ⊂ ΩT ,∫

Q2

|u|p + |Du|p dxdt < 1 and
∫

Q2

|f|p dxdt < δ , (14)

then we have ∫
Q2

|u−h|p + |Du−Dh|p dxdt < ε (15)

and

sup
Q1

|h|p + |Dh|p � Np
1 for some N1 > 1, (16)

where h is the weak solution of

ht −div
(|Dh|p−2Dh

)
+ |h|p−2 h = 0 in Q2 (17)

with h = u on ∂pQ2 .

Proof. If u and h are the weak solutions of (1) and (17) respectively, then by
selecting the test function ϕ = u− h which is possible modulo Steklov averages we
can show the resulting expressions as

I1 + I2 + I3 = I4,

where

I1 =
d
dt

{∫
Q2

|u−h|2
2

dxdt

}
=

∫
B2

|u(x,2p)−h(x,2p)|2
2

dx � 0,

I2 =
∫

Q2

(|Du|p−2Du−|Dh|p−2Dh
) ·D(u−h) dxdt,

I3 =
∫

Q2

(|u|p−2u−|h|p−2h
) · (u−h) dxdt,

I4 = −
∫

Q2

|f|p−2 f ·D(u−h)dxdt.



GRADIENT ESTIMATES 697

From the estimates of I1 - I4 , we see that∫
Q2

|Dh|p + |h|p dxdt

� C
∫

Q2

|Du|p + |u|p + |u|p−1|h|+ |h|p−1|u|

+|Du|p−1|Dh|+ |Dh|p−1|Du|+ |f|p−1 |Dh|+ |f|p−1 |Du|dxdt,

which implies that∫
Q2

|Dh|p + |h|p dxdt � C
∫

Q2

|u|p + |Du|p + |f|p dxdt � C (18)

by Young’s inequality with ε > 0 and (14).
Estimates of I2 –I3 . From the elementary inequality(|ξ |p−2ξ −|η |p−2η

) · (ξ −η) � C(p)|ξ −η |p

for p � 2 and every ξ ,η ∈ R
n , we have

I2 � C
∫

Q2

|D(u−h)|p dxdt.

Similarly, we have

I3 � C
∫

Q2

|u−h|p dxdt.

Estimate of I4 . Now we apply Young’s inequality to conclude that

I4 � τ
∫

Q2

|D(u−h)|p dxdt +C(τ)
∫

Q2

|f|p dxdt.

Finally, we combine all the estimates of Ii (1 � i � 4) and choose τ > 0 small enough
to see that ∫

Q2

|D(u−h)|p + |u−h|p dxdt � C
∫

Q2

|f|p dxdt � Cδ � ε,

where we have used (14) and selected δ small enough satisfying the last inequality.
Furthermore, we use the above inequality (18) and Theorem 2.1 in [26] to obtain that

sup
Q1

|h|p � C. (19)

Moreover, in view of (19), from the local boundedness of |Dh| (see §5 and §6 in Chapter
8 of [15]) we conclude that

sup
Q1

|Dh|p � C.
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Therefore, we finish the proof of this lemma. �
Now we shall finish the proof of the main result: Theorem 1. Here we use an ap-

proximation argument (see [1, 12]) to show that the proof of Theorem 1 can be reduced
to proving an a priori estimate (4) with the assumption that |u|p + |Du|p ∈ Lφ

loc(ΩT ) .

Proof. Fix any i ∈ N . In view of Lemma 2, for some λ � λ∗ we can construct the
disjoint family of parabolic cylinders {Q0

i }i∈N satisfying∫
Qj

i

|u|p + |Du|p dxdt � λ p and
∫

Qj
i

|f|p dxdt � δλ p, (20)

where Qj
i = Qzi(λ 2−p (5 jρi)p ,5 jρi) for j = 1,2. Now we rescale by defining

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uλ (x,t) =
u
(
x,λ 2−pt

)
λ

,

fλ (x,t) =
f
(
x,λ 2−pt

)
λ

.

(21)

Then uλ is still a local weak solution of

(uλ )t −div
(|Duλ |p−2Duλ

)
+ |uλ |p−2 uλ = div

(
|fλ |p−2 fλ

)
in ΩT .

Furthermore, (20) implies that∫
Qzi ((10ρi)p,10ρi)

|uλ |p + |Duλ |pdxdt � 1

and ∫
Qzi ((10ρi)p,10ρi)

|fλ |pdxdt � δ .

Then according to Lemma 3, we find that

sup
Qzi ((5ρi)p,5ρi)

|Dh|p + |h|p � Np
1

and ∫
Qzi ((10ρi)p,10ρi)

|uλ −h|p + |D(uλ −h)|pdxdt � ε,

where h is the weak solution of{
ht −div

(|Dh|p−2Dh
)
+ |h|p−2 h = 0 in Qzi ((10ρi)p,10ρi) ,

h = uλ on ∂pQzi ((10ρi)p,10ρi) .

Now we define h by

h(x, t) = hλ
(
x,λ 2−pt

)
z = (x,t) ∈ Qzi ((10ρi)p,10ρi) .
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Then by changing variables, we find that

sup
Q1

i

|Dhλ |p + |hλ |p � Np
1 (22)

and ∫
Q2

i

|u/λ −hλ |p + |D(u/λ −hλ )|pdxdt � ε. (23)

For λ � λ∗ , we deduce from (23) and Lemma2 that∣∣{z ∈ Q1
i : |u|p + |Du|p > 2pNp

1 λ p}∣∣
=

∣∣{z ∈ Q1
i : |u/λ |p + |Du/λ |p > 2pNp

1

}∣∣
�

∣∣{z ∈ Q1
i : |u/λ −hλ |p + |D(u/λ −hλ )|p > Np

1

}∣∣
+

∣∣{z ∈ Q1
i : |Dhλ |p + |hλ |p > Np

1

}∣∣
=

∣∣{z ∈ Q1
i : |u/λ −hλ |p + |D(u/λ −hλ )|p > Np

1

}∣∣
� 1

Np
1

∫
Q1

i

|u/λ −hλ |p + |D(u/λ −hλ )|pdxdt

� Cε
∣∣Q0

i

∣∣ , (24)

where we have used the elementary inequality

(a+b)p � 2p−1 (ap +bp) for any a,b > 0.

Furthermore, by using (10)–(11) and the above inequality (24), for μ := λ p � λ p
∗ we

have∣∣{z ∈ Q1 : |u|p + |Du|p > 2pNp
1 μ

}∣∣
�

∞

∑
i=1

∣∣{z ∈ Q1
i : |u|p + |Du|p > 2pNp

1 μ
}∣∣

� Cε
μ

{∫
{z∈Q2: |u|p+|Du|p> μ

3 }
|u|p + |Du|p dxdt +

1
δ

∫
{

z∈Q2: |f|p> δ μ
3

} |f|p dxdt

}
. (25)

Since φ is a convex function with φ ∈ Δ2 ∩ ∇2 , we use Lemma 1, (3) and (25) to
compute∫

Q1

φ (|u|p)+ φ (|Du|p) dxdt

� C
∫

Q1

φ (|u|p + |Du|p) dxdt

� C
∫ ∞

0

∣∣{z ∈ Q1 : |u|p + |Du|p > 2pNp
1 μ}∣∣ d [φ (2pN1μ)]

= C

{∫ λ p∗

0
+

∫ ∞

λ p
∗

}∣∣{z ∈ Q1 : |u|p + |Du|p > 2pNp
1 μ}∣∣ d [φ (2pN1μ)]
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� Cφ (λ p
∗ )+Cε

∫ ∞

0

1
μ

{∫
{z∈Q2: |u|p+|Du|p> μ

3 }
|u|p + |Du|p dxdt

}
d [φ (2pN1μ)]

+Cε
∫ ∞

0

1
μ

{∫
{

z∈Q2: |f|p> δ μ
3

} |f|p dxdt

}
d [φ (2pN1μ)] ,

which implies that∫
Q1

φ (|u|p)+ φ (|Du|p) dxdt

� Cφ

[(∫
Q2

|u|p + |Du|p + |f|p +1dxdt

) p
2
]

+C
∫

Q2

φ (|f|p) dxdt +Cε
∫

Q2

φ (|u|p)+ φ (|Du|p) dxdt.

Finally, by using a covering and iteration argument (see Lemma 2.1, Chapter 3 in [21])
and choosing ε > 0 small enough we obtain∫

Q1

φ (|u|p)+ φ (|Du|p) dxdt

� Cφ

[(∫
Q2

|u|p + |Du|p + |f|p +1dxdt

) p
2
]

+C
∫

Q2

φ (|f|p) dxdt,

which completes the proof. �
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[6] V. BÖGELEIN, F. DUZAAR & G. MINGIONE, Degenerate problems with irregular obstacles, J. Reine
Angew. Math., 650 (2011), 107–160.

[7] T. BUI & X. DUONG, Global Lorentz estimates for nonlinear parabolic equations on nonsmooth
domains, Calc. Var. Partial Differential Equations, 56 (2) (2017), Art. 47, 24 pp.
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