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LOGARITHMICALLY COMPLETE MONOTONICITY

OF A MATRIX–PARAMETRIZED ANALOGUE

OF THE MULTINOMIAL DISTRIBUTION

FRÉDÉRIC OUIMET ∗ AND FENG QI

(Communicated by M. Praljak)

Abstract. In the paper, the authors introduce a matrix-parametrized generalization of the multi-
nomial probability mass function that involves a ratio of several multivariate gamma functions.
They show the logarithmically complete monotonicity of this generalization and derive several
inequalities involving ratios of multivariate gamma functions.

1. Preliminaries

Recall from [9, Chapter XIII], [22, Chapter 1], and [23, Chapter IV], that an in-
finitely differentiable function f is said to be completely monotonic on an interval I
if it has derivatives of all orders on I and satisfies (−1)n f (n)(x) � 0 for all x ∈ I and
n ∈ N0 = {0,1,2, . . .} . Recall from [16, Definition 1] and [22, Definition 5.10] that an
infinitely differentiable and positive function f is said to be logarithmically completely
monotonic on an interval I if

(−1)n dn

dxn ln f (x) � 0

for all n ∈ N = {1,2, . . .} and x ∈ I . The property of being logarithmically completely
monotonic is stronger than being completely monotonic, see [3, Theorem 1.1], [16,
Theorem 1], and [18, p. 627, (1.4)]. When I = (0,∞) , Bernstein’s theorem (see, e.g.,
Theorem 12b in [23, p. 161]) states that a function f is completely monotonic on (0,∞)
if and only if

f (x) =
∫ ∞

0
e−xs dσ(s) (1)

and the integral converges for all x ∈ (0,∞) , where σ(s) is nondecreasing on (0,∞) .
The integral representation (1) equivalently says that a function f is completely mono-
tonic on (0,∞) if and only if it is the Laplace transform of σ(s) on (0,∞) . This is one
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of many reasons why researchers have been investigating (logarithmically) completely
monotonic functions.

The literature on this topic is far too extensive to cite here, but one specific kind of
(logarithmically) completely monotonic functions, functions involving ratios of gamma
functions, has attracted a lot of attention lately. Recent contributions for this type of
completely monotonic functions include [2, 4, 6, 13, 15, 17, 20, 21, 19, 24].

Let m,r ∈ N and let MMMMM be a matrix of order m . We use the notation MMMMM � 0 (or
MMMMM > 0, respectively) to indicate that the matrix MMMMM is positive semidefinite (or positive
definite, respectively). According to [5, Definition 6.2.1], the r -tuple of real symmetric
matrices, (MMMMM1,MMMMM2, . . . ,MMMMMr) , is said to have the (type I) (m×m)-matrix-variate Dirich-
let distribution with parameters (a1,a2, . . . ,ar+1) ∈ (0,∞)r+1 if its density function is
given by

Γm
(
∑r+1

i=1 ai
)

∏r+1
i=1 Γm(ai)

∣∣∣∣∣IIIIIm −
r

∑
i=1

MMMMMi

∣∣∣∣∣
ar+1−(m+1)/2

r

∏
i=1

|MMMMMi|ai−(m+1)/2,

when MMMMMi � 0 for all 1 � i � r and IIIIIm −∑r
i=1 MMMMMi � 0, and is equal to 0 otherwise,

where
Γm(z) =

∫
SSSSS∈Symm(R):SSSSS>0

|SSSSS|z−(m+1)/2 exp(−tr(SSSSS))dSSSSS

= πm(m−1)/4
m

∏
j=1

Γ
(

z− j−1
2

)
, ℜ(z) >

m−1
2

(2)

denotes the multivariate gamma function, see [12, Section 35.3] and [10], and

Γ(z) = lim
�→∞

�!�z

∏�
k=0(z+ k)

, z ∈ C\ {0,−1,−2, . . .}

is the classical gamma function.
Given the ties between the Dirichlet and multinomial distributions, a function that

naturally generalizes the multinomial probability mass function is the following matrix-
parametrized analogue

Pn,kkkkkr(MMMMM1, . . . ,MMMMMr) =
Γm
(
n+ m+1

2

)
∏r+1

i=1 Γm
(
ki + m+1

2

) ∣∣∣∣∣IIIIIm −
r

∑
i=1

MMMMMi

∣∣∣∣∣
n−‖kkkkkr‖1 r

∏
i=1

|MMMMMi|ki ,

where n ∈ N , kkkkkr = (k1,k2, . . . ,kr) ∈ Nr
0 ∩ (nSr) , kr+1 = n−‖kkkkkr‖1 , the matrices MMMMMi ,

as well as IIIIIm −∑r
i=1 MMMMMi , are assumed to be symmetric and positive definite, and

Sr =

{
xxxxxr = (x1,x2, . . . ,xr) ∈ [0,1]r : ‖xxxxxr‖1 =

r

∑
�=1

x� � 1

}

denotes the r -dimensional unit simplex.
In this paper, we will show that x �→ Pxn,xkkkkkr(MMMMM1, . . . ,MMMMMr) is a logarithmically com-

pletely monotonic function on (0,∞) . Hereafter, in Section 4, we will derive some
inequalities involving ratios of multivariate gamma functions.
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2. A lemma

To reach our goal, we need to prove the following technical lemma.

LEMMA 1. Let S ◦
r denote the interior of Sr , uuuuur = (u1,u2, . . . ,ur) ∈ S ◦

r , and
ur+1 = 1−‖uuuuur‖1 > 0 . Then, for β � 0 and y > 1 ,

Jβ ,uuuuur(y) =
1

yβ (y−1)
−

r+1

∑
i=1

1

yβ/ui(y1/ui −1)
> 0. (3)

First proof. For y > 1, β � 0, and u ∈ (0,∞) , let

Hy,β (u) =
1

yβ/u(y1/u−1)
. (4)

Then straightforward calculations yield

d2

du2 Hy,β (u) =
lny

u4(y1/u−1)3yβ/u

{[
β 2(y1/u−1

)2 +2β
(
y1/u−1

)
y1/u

+
(
y1/u +1

)
y1/u] lny−2u

(
y1/u−1

)[
β
(
y1/u−1

)
+ y1/u]}

=
lny

u3(y1/u−1)3yβ/u

{
[β 2(t−1)2 +2β (t−1)t +(t +1)t] lnt

−2(t−1)[β (t−1)+ t]
}

� lny

u3(y1/u−1)3yβ/u
hβ (t),

where t = y1/u > 1. Direct computations show us that

h′β (t) =
(t−1)[β 2(t−1)−2β t−3t]

t
+[2β 2(t−1)+ β (4t−2)+2t +1] lnt,

h′′β (t) =
(t−1)[β 2(3t +1)+2β t− t]

t2
+2(β +1)2 lnt,

h′′′β (t) =
2β 2(t2 + t +1)+2β t(2t+1)+ t(2t−1)

t3
> 0,

and
lim

t→1+
h′′β (t) = lim

t→1+
h′β (t) = lim

t→1+
hβ (t) = 0.

Accordingly, for any fixed y > 1 and β � 0, the second derivative H ′′
y,β (u) is positive on

(0,∞) . Hence, the function u �→ Hy,β (u) is strictly convex on (0,∞) and the function
u �→ Hy,β (u)+Hy,β (1−u) is strictly convex on (0,1) . From the limits

lim
u→0+

Hy,β (u) = 0 and lim
u→1−

Hy,β (u) =
1

yβ (y−1)
,
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we conclude that

Hy,β (u)+Hy,β (1−u) <
1

yβ (y−1)
,

which is equivalent to

1

yβ (y−1)
− 1

yβ/‖uuuuur‖1
(
y1/‖uuuuur‖1 −1

) − 1

yβ/(1−‖uuuuur‖1)
[
y1/(1−‖uuuuur‖1) −1

] > 0. (5)

The general case will follow by induction. Indeed, assume that, for some integer
r � 2, the inequality

1

zβ (z−1)
−

r

∑
i=1

1

zβ/vi(z1/vi −1)
> 0 (6)

is valid, where β � 0, z > 1, (v1,v2, . . . ,vr−1) ∈ S ◦
r−1 , and vr = 1−∑r−1

i=1 vi > 0. On
the other hand, we can rewrite the function Jβ ,uuuuur(y) defined in (3) as

Jβ ,uuuuur(y) =
[

1

yβ/‖uuuuur‖1(y1/‖uuuuur‖1 −1)
−

r

∑
i=1

1

yβ/ui(y1/ui −1)

]
+
[

1

yβ (y−1)
− 1

yβ/‖uuuuur‖1(y1/‖uuuuur‖1 −1)
− 1

yβ/(1−‖uuuuur‖1)[y1/(1−‖uuuuur‖1)−1]

]
.

By the inequality (5), the quantity in the second bracket is positive. By the induction
hypothesis (6) with z = y1/‖uuuuur‖1 and vi = ui

‖uuuuur‖1
, the quantity in the first bracket is

positive. This ends the first proof of Lemma 1. �

Second proof. A function ϕ(x) is said to be super-additive on an interval I if the
inequality ϕ(x+ y) � ϕ(x)+ ϕ(y) holds for all x,y ∈ I with x+ y ∈ I . A function ϕ :
[0,∞) → R is said to be star-shaped if ϕ(νt) � νϕ(t) for ν ∈ [0,1] and t � 0. See [8,
Chapter 16] and [11, Section 3.4]. Between convex functions, star-shaped functions,
and super-additive functions, there are the following relations:

1. if ϕ is convex on [0,∞) with ϕ(0) � 0, then ϕ is star-shaped;

2. if ϕ : [0,∞) → R is star-shaped, then ϕ is super-additive.

See [8, pp. 650–651, Section B.9]. Shortly speaking, if ϕ is convex on [0,∞) with
ϕ(0) � 0, then ϕ is super-additive.

For y > 1, β � 0, and u ∈ (−∞,∞) , define

ϕy,β (u) =

{
0, u = 0;

1
yβ/u(y1/u−1)

, u 
= 0.

From the facts that the function Hy,β (u) defined in (4) is strictly convex on (0,∞) , that
the limit

lim
u→0+

Hy,β (u) = 0
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is valid, and that ϕy,β (u) = Hy,β (u) for u > 0, we conclude that the function u �→
ϕy,β (u) is convex on [0,∞) with ϕy,β (0)= 0. This means that the function u∈ [0,∞) �→
ϕy,β (u) is star-shaped and super-additive. Accordingly, it follows that

r+1

∑
i=1

ϕy,β (ui) � ϕy,β

(
r+1

∑
i=1

ui

)
= ϕy,β (1),

that is,
r+1

∑
i=1

1

yβ/ui(y1/ui −1)
� 1

yβ (y−1)
.

The inequality (3) is thus proved. The second proof of Lemma 1 is complete. �

Third proof (due to Gérard Letac). Since ui > 0 for 1 � i � r+1 and ∑r+1
i=1 ui = 1,

it is sufficient to show that

1

yβ/ui(y1/ui −1)
<

ui

yβ (y−1)
, 1 � i � r+1.

By writing

si =
1
ui

and g(si) =
si

ysiβ (ysi −1)
,

it is sufficient to show that
g(s) < g(1), s > 1.

But this readily follows from

d
ds

lng(s) =
[

1
ln(ys)

− ys

ys −1
−β

]
lny =

(
1
x
− 1

1− e−x −β
)

lny < 0,

where we made the substitution x = ln(ys) > 0 for s,y > 1 and we used the inequality
e−x > 1− x for x ∈ (0,∞) . The third proof of Lemma 1 is complete. �

3. Logarithmically complete monotonicity

Now we are in a position to state and prove our main result.

THEOREM 1. Let m,n,r ∈N , αααααr = (α1,α2, . . . ,αr)∈ nS ◦
r , αr+1 = n−‖αααααr‖1 >

0 , and let MMMMMi for 0 � i � r be symmetric matrices of order m, satisfying MMMMMi � 0 and
MMMMMr+1 = IIIIIm−∑r

i=1 MMMMMi � 0 . Then the function

Q(x) =
Γm
(
xn+ m+1

2

)
∏r+1

i=1 Γm
(
xαi + m+1

2

) r+1

∏
i=1

|MMMMMi|xαi (7)

is logarithmically completely monotonic on (0,∞) .
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Proof. Without loss of generality, we can assume that MMMMMi > 0 for all 0 � i � r+1.
By taking the logarithm on both sides of the equation (7), we have

lnQ(x) = lnΓm

(
xn+

m+1
2

)
−

r+1

∑
i=1

lnΓm

(
xαi +

m+1
2

)
+ x

r+1

∑
i=1

αi ln |MMMMMi|.

Denote

ψm(z) =
d
dz

lnΓm(z) =
m

∑
j=1

ψ
(

z− j−1
2

)
.

Then a direct differentiation gives

[lnQ(x)]′ = nψm

(
xn+

m+1
2

)
−

r+1

∑
i=1

αiψm

(
xαi +

m+1
2

)
+

r+1

∑
i=1

αi ln |MMMMMi|

=
m

∑
j=1

{
nψ
(

xn+
m− j

2
+1

)
−

r+1

∑
i=1

αiψ
(

xαi +
m− j

2
+1

)}

+
r+1

∑
i=1

αi ln |MMMMMi|.

(8)

Using the special case � = 1 of the integral representation

ψ(�)(z) = (−1)�+1
∫ ∞

0

t� e−zt

1− e−t d t, ℜ(z) > 0, � ∈ N,

listed in [1, p. 260, 6.4.1], we obtain

[lnQ(x)]′′ =
m

∑
j=1

{
n2ψ ′

(
xn+

m− j
2

+1

)
−

r+1

∑
i=1

α2
i ψ ′
(

xαi +
m− j

2
+1

)}

=
m

∑
j=1

{
n2
∫ ∞

0

t
et −1

exp

[
−
(

xn+
m− j

2

)
t

]
d t

−
r+1

∑
i=1

α2
i

∫ ∞

0

t
et −1

exp

[
−
(

xαi +
m− j

2

)
t

]
dt

}

=
m

∑
j=1

{∫ ∞

0

se−xs

es/n−1
exp

(
−m− j

2n
s

)
ds

−
r+1

∑
i=1

∫ ∞

0

se−xs

es/αi −1
exp

(
−m− j

2αi
s

)
ds

}

=
m

∑
j=1

∫ ∞

0
J(m− j)/2,αααααr/n

(
es/n)se−xs ds,

where Jβ ,uuuuur(y) is defined in (3). Applying Lemma 1 yields

(−1)n+1 dn+1

dxn+1 lnQ(x) =
m

∑
j=1

∫ ∞

0
J(m− j)/2,αααααr/n

(
es/n)sn e−xs ds > 0 (9)
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for n ∈ N and x > 0.
To prove the logarithmically complete monotonicity of Q(x) on (0,∞) , it remains

to verify that the positivity in (9) is also valid for n = 0. From the positivity of (9) for
n = 1, it follows that the function x �→ [− lnQ(x)]′ is decreasing on (0,∞) . Therefore,
it is sufficient to show that limx→∞[− lnQ(x)]′ � 0.

For k ∈ N0 and a � 0, the first result in [14, Lemma 2.4] reads as

lim
x→∞

(
xk+1[ψ(k)(x+a)−ψ(k)(x)

])
= (−1)kk!a. (10)

Hence, the case k = 0 and a = 1
2 in (10) implies the asymptotic formula

ψ
(

z+
1
2

)
∼ ψ(z)+

1
2z

, z → ∞.

Therefore, we have

ψ
(

xn+
m− j

2
+1

)
∼ ψ

(
xn+

m− j +1
2

)
+

1

2n
(
x+ m− j+1

2n

)
∼ ψ

(
xn+

m− j
2

)
+

1

2n
(
x+ m− j

2n

) +
1

2n
(
x+ m− j+1

2n

)
as x → ∞ . By induction, we obtain

ψ
(

xn+
m− j

2
+1

)
∼ ψ(xn)+

1
2n

m− j+1

∑
�=0

1

x+ �
2n

, x → ∞. (11)

Similarly, we derive

ψ
(

xαi +
m− j

2
+1

)
∼ ψ(xαi)+

1
2αi

m− j+1

∑
�=0

1

x+ �
2αi

, x → ∞. (12)

Substituting (11) and (12) into (8) and simplifying lead to

[− lnQ(x)]′ ∼ m

[
r+1

∑
i=1

αiψ(xαi)−nψ(xn)

]
−

r+1

∑
i=1

αi ln |MMMMMi|

+
1
2

m

∑
j=1

m− j+1

∑
�=0

(
r+1

∑
i=1

1

x+ �
2αi

− 1

x+ �
2n

)
, x → ∞.

Using the asymptotic formula

ψ(z) ∼ lnz− 1
2z

, z → ∞,

derived from [1, p. 259, 6.3.18], we conclude that

[− lnQ(x)]′ ∼ m

[
r+1

∑
i=1

αi ln(xαi)−n ln(xn)

]
−

r+1

∑
i=1

αi ln |MMMMMi|

− mr
2x

+
1
2

m

∑
j=1

m− j+1

∑
�=0

(
r+1

∑
i=1

1

x+ �
2αi

− 1

x+ �
2n

)
, x → ∞.
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Consequently, we have

lim
x→∞

[− lnQ(x)]′ = mn

[
r+1

∑
i=1

αi

n
ln

αi

n
−

r+1

∑
i=1

αi

n
ln
(
|MMMMMi|1/m

)]

= −mn
r+1

∑
i=1

αi

n
ln

( |MMMMMi|1/m

αi/n

)

� −mn ln

(
r+1

∑
i=1

|MMMMMi|1/m

)

� −mn ln

(∣∣∣∣r+1

∑
i=1

MMMMMi

∣∣∣∣1/m
)

= −mn ln
(|IIIIIm|1/m)

= 0,

(13)

where we used Jensen’s inequality for the concave function lnx on (0,∞) , see [9,
Chapter I, p. 6], and Minkowski’s determinant inequality for the symmetric positive
semidefinite matrices MMMMMi of order m , see [7] or [9, Chapter VIII, p. 214, Theorem 2].
This ends the proof of Theorem 1. �

A trivial modification at the end of the last proof yields the following corollary.

COROLLARY 1. Let m,n,r ∈N , αααααr = (α1,α2, . . . ,αr)∈ nS ◦
r , αr+1 = n−‖αααααr‖1

> 0 , and let (p1, p2, . . . , pr) ∈ Sr with pr+1 = 1−∑r
i=1 pi . Then the function

Q̃(x) =
Γm
(
xn+ m+1

2

)
∏r+1

i=1 Γm
(
xαi + m+1

2

) r+1

∏
i=1

pxαi
i (14)

is logarithmically completely monotonic on (0,∞) .

Proof. In the proof of Theorem 1, replace |MMMMMi| everywhere by pi . On the third
line of (13), simply use Jensen’s inequality,

r+1

∑
i=1

p1/m
i �

(
r+1

∑
i=1

pi

)1/m

= 11/m = 1, (15)

to obtain the desired conclusion. �

4. Inequalities involving ratios of multivariate gamma functions

Considering the factor involving the gamma functions in (7) and making use of
the formula (2), we denote and write

R(x) =
Γm
(
xn+ m+1

2

)
∏r+1

i=1 Γm
(
xαi + m+1

2

) =
∏m

j=1 Γ
(
xn+ m− j

2 +1
)

π rm(m−1)/4 ∏r+1
i=1 ∏m

j=1 Γ
(
xαi +

m− j
2 +1

) .
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We are now ready to derive several inequalities for R(x) involving ratios of multivariate
gamma functions Γm .

THEOREM 2. Let � ∈ N and let (λ1, . . . ,λ�) ∈ (0,∞)� such that ∑�
k=1 λk = 1 .

1. For (x1, . . . ,x�) ∈ (0,∞)� , we have

R

(
�

∑
k=1

λkxk

)
�

�

∏
k=1

[R(xk)]λk , (16)

where the equality holds if and only if x1 = x2 = · · · = xk .

2. For (x1, . . . ,x�) ∈ (0,∞)� , we have

�

∏
k=1

R(xk) < R

(
�

∑
k=1

xk

)
. (17)

3. For � = 3 and (x1,x2,x3) ∈ (0,∞)3 , if x1 � x3 , then

R(x1 + x2)R(x3) � R(x1)R(x2 + x3), (18)

where the equality holds if and only if x1 = x3 .

Proof. The logarithmically complete monotonicity in Theorem 1 implies that the
function Q is logarithmically convex on (0,∞) . Consequently, we obtain

Q

(
�

∑
k=1

λkxk

)
= R

(
�

∑
k=1

λkxk

)
r+1

∏
i=1

|MMMMMi|αi ∑�
k=1 λkxk

�
�

∏
k=1

[Q(xk)]λk =
�

∏
k=1

[R(xk)]λk
�

∏
k=1

[
r+1

∏
i=1

|MMMMMi|xkαi

]λk

which can be simplified as (16). Due to the logarithmic convexity, it is trivial to see that
the equality in (16) holds if and only if x1 = x2 = · · · = xk .

Lemma 3 in [2] states that, if h : [0,∞)→ (0,1] is differentiable and the logarithmic

derivative h′(x)
h(x) = [lnh(x)]′ is strictly increasing on (0,∞) , then the strict inequality

h(x)h(y) < h(x+ y) is valid for x,y ∈ (0,∞) . By the way, we notice that this lemma is
a special case ϕ(x) = lnh(x) of the result concluded in the first paragraph in the second
proof of Lemma 1 in this paper. From this, we can inductively derive

�

∏
j=1

h(x j) < h

(
�

∑
j=1

x j

)
. (19)
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The logarithmically complete monotonicity in Theorem 1 implies that Q(x) is decreas-

ing on (0,∞) and that the logarithmic derivative Q′(x)
Q(x) = [lnQ(x)]′ is strictly increasing

on (0,∞) . Since

lim
x→0+

Q(x) =
Γm
(

m+1
2

)
∏r+1

i=1 Γm
(

m+1
2

) =
1[

Γm
(

m+1
2

)]r
and

Γm

(
m+1

2

)
= π (m−1)m/4

m

∏
j=1

Γ
(

1+
m− j

2

)

= π (m−1)m/4
m−1

∏
k=0

Γ
(

1+
k
2

)
� π (m−1)m/4 � 1

for m ∈ N , from the decreasing property of Q(x) on (0,∞) , we deduce that

0 < Q(0) � lim
x→0+

Q(x) � 1.

Consequently, by applying the inequality (19) to Q(x) , we have

�

∏
j=1

Q(x j) =
�

∏
j=1

[
R(x j)

r+1

∏
i=1

|MMMMMi|x jαi

]

=
�

∏
j=1

R(x j)
r+1

∏
i=1

|MMMMMi|αi ∑�
j=1 x j

< Q

(
�

∑
j=1

x j

)

= R

(
�

∑
j=1

x j

)
r+1

∏
i=1

|MMMMMi|αi ∑�
j=1 x j ,

which can be reformulated as the inequality (17).
As done in the proof of Theorem 3.5 in [20], the inequality (18) and the equality

case follow by using the logarithmically complete monotonicity of the function Q(x)
in Theorem 1 and by adapting the proof of Corollary 3 in [2]. The proof of Theorem 2
is complete. �
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