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(Communicated by I. Perić)

Abstract. In this paper we investigate fractional integral operators with rough kernel on certain
closed subspaces of Morrey spaces. We prove that the operator maps vanishing Morrey spaces
into themselves. In addition, we discuss the behavior of this operator on the closure in Morrey
spaces of essentially bounded functions, compactly supported functions, and essentially bounded
and compactly supported functions.

1. Introduction

Let 1 � p < ∞ and 0 � λ < n . The Morrey space Lp,λ (Rn) is defined to be the
set of all f ∈ Lp

loc(R
n) for which

sup
x∈Rn,r>0

1

rλ

∫
B(x,r)

| f (y)|p dy

is finite. This space is a Banach space equipped with the norm

‖ f‖Lp,λ := sup
x∈Rn,r>0

(
1

rλ

∫
B(x,r)

| f (y)|p dy

)1/p

.

Morrey spaces were introduced by C. B. Morrey in the study of elliptic partial differ-
ential equation (see [18]). Recently, there are many results around the boundedness of
integral operators on Morrey spaces. These results are related to the Hardy-Littlewood
maximal operator, fractional integral operators, and fractional maximal operators. For
instance, Liu et al. [16] studied fractional integrals on Morrey-type spaces over Gauss
measure spaces. In addition, Liu et al. [17] study fractional Laplace equations via char-
acterizing the Morrey spaces as well as their preduals by quadratic functions related
to the Taylor remainder of the kernel of the Riesz potential. In addition, some related
boundedness of the fractional integrals on Riesz-Morrey spaces can be found in [14]
and these spaces were introduced in [15, 21, 25].

In this paper, we investigate fractional integral operators with rough kernel. Let us
recall some definitions and notation. Let 0 < α < n and Ω : Rn → R with the property
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Ω(kx) = Ω(x) for every k > 0 and x ∈ Rn . The fractional integral operator with rough
kernel TΩ,α is defined by

TΩ,α f (x) :=
∫

Rn

Ω(x− y)
|x− y|n−α f (y) dy

for every suitable function f . It is known in [20, 12] that the operator is bounded
from Lp,λ to Lq,μ whenever 0 � λ � μ < n , 1 < p < n−λ

α , n−μ
q = n−λ

p −α , and

Ω ∈ Ls(Sn−1) , s � p′ . Here, Sn−1 = {x ∈ Rn : |x| = 1} and s′ := s
s−1 . We will refine

this boundedness result by investigating the operator acting on certain closed subspaces
of Morrey spaces. First, let us recall the definiton of vanishing Morrey spaces following
the notation in [1, 4].

DEFINITION 1. Let x∈Rn , r > 0, 1 � p < ∞ , and 0 � λ � n . For every function
f ∈ L1

loc(R
n) , let us set

Mp,λ ( f ;x,r) :=
(

1

rλ

∫
B(x,r)

| f (y)|p dy

)1/p

.

We define the vanishing Morrey spaces V0Lp,λ , V∞Lp,λ , and V (∗)Lp,λ by

V0L
p,λ :=

{
f ∈ Lp,λ : lim

r→0
sup
x∈Rn

Mp,λ ( f ;x,r) = 0

}
,

V∞Lp,λ :=
{

f ∈ Lp,λ : lim
r→∞

sup
x∈Rn

Mp,λ ( f ;x,r) = 0

}
,

and

V (∗)Lp,λ :=
{

f ∈ Lp,λ : lim
N→∞

sup
x∈Rn

∫
B(x,1)

| f (y)|pχRn\B(0,N)(y) dy = 0

}
.

In addition to vanishing Morrey spaces, we discuss the following closed subspaces
of Morrey spaces.

DEFINITION 2. [5, 19, 24] Let 1 � p < ∞ and 0 � λ � n .

1. The space Lp,λ is defined to be the closure with respect to Morrey norm of the
set of essentially bounded functions in Lp,λ .

2. We denote by
∗

Lp,λ the closure with respect to Morrey norm of the set of com-
pactly supported functions in Lp,λ .

3. L̃p,λ := Lp,λ ∩
∗

Lp,λ .

These subspaces were investigated in the research related to the predual of Morrey
spaces (see [13, 19, 26]) and also complex interpolation of Morrey spaces (see [7, 8, 9,
10, 11, 23, 24]).

Our main result is that the operator TΩ,α maps each subspace in Definitions 1
and 2 into the same type of subspaces of Morrey spaces. More precisely, we have the
following theorems as our main results.
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THEOREM 1. Let 0 � λ � μ < n, 1 < p < n−λ
α , and n−μ

q = n−λ
p −α . Assume

that Ω ∈ Ls(Sn−1) , s � p′ . Then

(i) TΩ,α(V0Lp,λ ) ⊆V0Lq,μ ;

(ii) TΩ,α(V∞Lp,λ ) ⊆V∞Lq,μ ;

(iii) TΩ,α(V (∗)Lp,λ ) ⊆V (∗)Lq,μ .

REMARK 1.

1. We note that for the case of μ = λq
p , Theorem 1 point (i) is already obtained in

[6, Corollary 5].

2. Related results on the (classical) fractional integral operators on vanishing Mor-
rey spaces can be found in [1]. An extension of this results into generalized Mor-
rey spaces can be seen in [2]. In addition, the preservation of certain vanishing
properties of commutators of fractional operators is investigated in [3]. Although
the idea of the proof of Theorem 1 is adapted from [1, 3], our proof includes the
estimates related to the non-constant rough kernel Ω .

Our result about the operator TΩ,α on closed subspaces of Morrey spaces in Defi-
nition 2 is given in the following theorem.

THEOREM 2. Let 0 � λ � μ < n, 1 < p < n−λ
α , and n−μ

q = n−λ
p −α . Assume

that Ω ∈ Ls(Sn−1) , s � p′ . Then

(i) TΩ,α(Lp,λ ) ⊆ Lq,μ .

(ii) TΩ,α(
∗

Lp,λ ) ⊆
∗

Lq,μ .

(iii) TΩ,α(L̃p,λ ) ⊆ L̃q,μ .

REMARK 2. Note that Theorem 2 point (iii) is an immediate result from Theorem
2 point (i) and (ii).

We also remark that there are recent research on the boundedness of fractional
integral operators on the congruent Riesz-Morrey spaces [22] and related results on
special John-Nirenberg-Campanato spaces in [15].

2. Preliminaries

2.1. On vanishing Morrey spaces and characterization of subspaces in
Definition 2

In this section, we take a closer view to the relation among subspaces (of the
Morrey spaces). For instance, intersection of all those subspaces is non-empty, χB(0,1)
being inside that intersection.
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Let ε,ϕ be non-negative, and define

fε,ϕ(x) =

{
|x| λ−n

p +ε , for|x| � 1

|x| λ−n
p −ϕ , for|x| � 1.

For ε > 0 and ϕ = 0, we have fε,0 ∈V0Lp,λ but fε,0 /∈V∞Lp,λ . For ε = 0 and ϕ > 0,
we have f0,ϕ /∈V0Lp,λ but f0,ϕ ∈V∞Lp,λ .

We now recall the following characterization of Lp,λ ,
∗

Lp,λ , and L̃p,λ . In a way
then, the characterization is more explicit.

LEMMA 1. [7, 8, 10] Let 1 � p < ∞ and 0 < λ < n. Then

Lp,λ =
{

f ∈ Lp,λ : lim
R→∞

‖ f χ{| f |>R}‖Lp,λ = 0
}

,

∗
Lp,λ =

{
f ∈ Lp,λ : lim

R→∞
‖ f χRn\B(0,R)‖Lp,λ = 0

}
,

and
L̃p,λ =

{
f ∈ Lp,λ : lim

R→∞
‖ f χ{| f |>R}∪(Rn\B(0,R))‖Lp,λ = 0

}
.

According to Lemma 1, we can verify that L̃p,λ is a proper subset of
∗

Lp,λ and

of Lp,λ . In fact, f (x) := |x| λ−n
p χ{x:|x|>1} ∈ Lp,λ \ L̃p,λ and g(x) := |x| λ−n

p χ{x:|x|�1} ∈
∗

Lp,λ \ L̃p,λ . In addition, we have f /∈
∗

Lp,λ and g /∈ Lp,λ . Moreover,
∗

Lp,λ and Lp,λ are

proper subsets of Lp,λ because h(x) := |x| λ−n
p belongs to Lp,λ but it is not a member

of both
∗

Lp,λ and Lp,λ .
By Lemma 1, we have the following inclusion relation.

LEMMA 2. Let 1 � p < ∞ and 0 < λ < n. Then
∗

Lp,λ ⊂V (∗)Lp,λ ⋂V∞Lp,λ .

Proof. According to Lemma 1, we immediately have
∗

Lp,λ ⊂ V (∗)Lp,λ . We now

need to verify that
∗

Lp,λ ⊂ V∞Lp,λ . Let f ∈
∗

Lp,λ . Given ε > 0, by Lemma 1 we can
find K such that for any R > K

‖ f χRn\B(0,R)‖Lp,λ <
ε
2
.

Fix R > K and choose R∗ > R
(

2‖ f‖
Lp,λ

ε

) p
λ

, then

Mp,λ ( f ;z,R∗) � ‖ f χRn\B(0,R)‖Lp,λ +Mp,λ ( f χB(0,R);z,R
∗)

<
ε
2

+
(

R∗

R

)− λ
p

‖ f‖Lp,λ < ε.

This shows that f ∈V∞Lp,λ . �
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In fact,
∗

Lp,λ is a proper subset of V (∗)Lp,λ . For example, in dimension one, the

function f (x) = x
λ−1

p χ[0,∞) with 0 < λ < 1 belongs to V (∗)Lp,λ but it is not in
∗

Lp,λ .

Moreover, the function is neither in V∞Lp,λ nor in V0Lp,λ .

2.2. On TΩ,α and Rough maximal operators

The rough maximal operator MΩ plays an important role in this article. Let us
recall the definition of MΩ . Let Ω : Rn → R with the property Ω(kx) = Ω(x) for every
k > 0 and x ∈ R

n . The rough maximal operator MΩ is defined by

MΩ f (x) := sup
r>0

1
rn

∫
B(x,r)

|Ω(x− y) f (y)|dy

for any suitable function f . It is well known that MΩ is bounded on Lp for 1 < p � ∞
if Ω ∈ L1(Sn−1) , in the sense

‖MΩ f‖Lp � ‖Ω‖L1(Sn−1)‖ f‖Lp .

By [20, Theorem 3.1], we have a pointwise estimate of TΩ,α f in term of MΩ f as
follows.

LEMMA 3. Let 1 < p < n−λ
α and f ∈ Lp,λ . Assume that Ω ∈ Ls(Sn−1) with

s � p′ . Then, for almost every x ∈ Rn ,

|TΩ,α f (x)| � ‖Ω‖1−u
Ls(Sn−1)‖ f‖1−u

Lp,λ (MΩ f (x))u

where u = 1− α p
n−λ .

3. Proof of Theorem 1

3.1. Proof of Theorem 1 (i) and (ii)

Fix z ∈ Rn and r > 0. Let f = f1 + f2 , where f1 = f χB(z,2r) , and f2 = f − f1 .
By the linearity of TΩ,α and the Minkowski inequality for the Lebesgue norm,

Mq,μ(TΩ,α f ;z,r) � Mq,μ(TΩ,α f1;z,r)+Mq,μ(TΩ,α f2;z,r).
Let us first work on TΩ,α f1 . By Lemma 3 with u = 1− α p

n−λ , the Hölder inequality with
order p/uq , and the boundedness of MΩ on Lebesgue spaces, we have

Mq,μ(TΩ,α f1;z,r) � r−
μ
q ‖Ω‖1−u

Ls(Sn−1)‖ f‖1−u
Lp,λ ‖MΩ f u

1 ‖Lq(B(z,r))

� r
n−μ

q − un
p ‖Ω‖1−u

Ls(Sn−1)‖ f‖1−u
Lp,λ ‖MΩ f1‖u

Lp

� r
n−μ

q − un
p ‖Ω‖Ls(Sn−1)‖ f‖1−u

Lp,λ ‖ f‖u
Lp(B(z,2r)).

Since ‖ f‖Lp(B(z,2r)) is increasing in r ,

Mq,μ(TΩ,α f1;z,r) � r
n−μ

q + αλ
n−λ ‖Ω‖Ls(Sn−1)‖ f‖1−u

Lp,λ

∫ ∞

2r
tα− n

p−1‖ f‖u
Lp(B(z,t))dt

� r
n−μ

q ‖Ω‖Ls(Sn−1)‖ f‖1−u
Lp,λ

∫ ∞

r
t

μ−n
q −1(Mp,λ ( f ;z,t))udt. (1)
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Let us now work on TΩ,α f2 . By the Fubini Theorem and the Hölder inequality with
order p , for any x ∈ B(z,r)

|TΩ,α f2(x)| �
∫

Rn\B(z,2r)
|Ω(x− y)|| f (y)|

∫ ∞

|x−y|
tα−n−1dtdy

�
∫ ∞

2r
tα−n−1

∫
B(x,t)

|Ω(x− y)|| f (y)|dydt

� ‖Ω‖Ls(Sn−1)‖ f‖1−u
Lp,λ

∫ ∞

r
t

μ−n
q −1Mp,λ ( f ;z,t)udt.

Hence,

Mq,μ(TΩ,α f2;z,r) � r
n−μ

q ‖Ω‖Ls(Sn−1)‖ f‖1−u
Lp,λ

∫ ∞

r
t

μ−n
q −1

Mp,λ ( f ;z,t)udt. (2)

Thus, from (1) and (2), we have

Mq,μ(TΩ,α f ;z,r) � r
n−μ

q ‖Ω‖Ls(Sn−1)‖ f‖1−u
Lp,λ

∫ ∞

r
t

μ−n
q −1

Mp,λ ( f ;z, t)udt. (3)

Let f ∈V0Lp,λ . For any ε > 0, we can find δ < 1 such that for any t < δ ,

Mp,λ ( f ;z,t)u‖ f‖1−u
Lp,λ ‖Ω‖Ls(Sn−1) <

ε
2
.

Therefore, from (3)

Mq,μ(TΩ,α f ;z,r) � r
n−μ

q ‖Ω‖Ls(Sn−1)‖ f‖1−u
Lp,λ

∫ δ

r
t

μ−n
q −1Mp,λ ( f ;z,t)udt

+ r
n−μ

q ‖Ω‖Ls(Sn−1)‖ f‖1−u
Lp,λ

∫ ∞

δ
t

μ−n
q −1

Mp,λ ( f ;z,t)udt

� ε
2

+‖Ω‖Ls(Sn−1)‖ f‖Lp,λ (
r
δ

)
n−μ

q .

Hence, we can choose a small r such that Mq,μ(TΩ,α f ;z,r) � ε . We conclude that
TΩ,α f ∈V0Lp,λ .

Let f ∈ V∞Lp,λ . For any ε > 0, we can find K > 0, such that for any t > K , we
have Mp,λ ( f ;z, t)u‖ f‖1−u

Lp,λ ‖Ω‖Ls(Sn−1) < ε . Therefore, for any r > K , we have

Mq,μ(TΩ,α f ;z,r) � r
n−μ

q ‖Ω‖Ls(Sn−1)‖ f‖1−u
Lp,λ

∫ ∞

r
t

μ−n
q −1Mp,λ ( f ;z,t)udt � ε.

We conclude that TΩ,α f ∈V∞Lq,μ , and this proves part (ii). �

3.2. Proof of Theorem 1 (iii)

For any f ∈ Lp,λ and N � 0, let us define

AN,p( f ) := sup
x∈Rn

∫
B(x,1)∩Bc(0,N)

| f (y)|pdy

where Bc(0,N) = Rn \B(0,N) for N � 0. It is clear that f ∈V (∗)Lp,λ if AN,p( f ) → 0
as N → ∞ .

From [1], we note that M1(V (∗)Lp,λ ) ⊂ V (∗)Lp,λ for p > 1 and we extend this
result as follows.

THEOREM 3. For p > 1 , s � p′ , and Ω ∈ Ls(Sn−1) , MΩ(V (∗)Lp,λ ) ⊂V (∗)Lp,λ .
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Proof. Let f ∈ V (∗)Lp,λ be not equivalent to zero. For x ∈ Rn and N ∈ N , we
decompose f into f1 and f2 , with f1 = f χB(x,2)∩Bc(0,N/2) and f2 = f − f1 . Since MΩ
is a sublinear operator,

AN,p(MΩ f ) � AN,p(MΩ f1)+AN,p(MΩ f2).
Let us treat AN,p(MΩ f1) first. By the boundedness of MΩ on Lp ,∫

B(x,1)∩Bc(0,N)
(MΩ f1(y))pdy � ‖ f1‖p

Lp =
∫

B(x,2)∩Bc(0,N/2)
| f (y)|pdy. (4)

Note that we can cover B(x,2) with a finite number of open unit balls. Thus,

B(x,2) ⊂
K0⋃
j=1

B(x j,1)

Hence, from (4), we have∫
B(x,1)∩Bc(0,N)

(MΩ f1(y))pdy �
K0

∑
j=1

∫
B(x j ,1)∩Bc(0,N/2)

| f (y)|pdy

� AN/2,p( f ). (5)

Since the right-hand-side of (5) is independent of x , we conclude that AN,p(MΩ f1)→ 0
as N → ∞ .

Let us now handle AN,p(MΩ f2) . For any given ε > 0, we can choose t1 > 1 such
that tλ−n‖ f‖p

Lp,λ < ε for all t � t1 . Then,∫
B(x,1)∩Bc(0,N)

(MΩ f2(y))pdy

�
∫

B(x,1)∩Bc(0,N)

(
sup

0<t<t1

t−n
∫

B(y,t)
|Ω(y− z)|| f2(z)|dz

)p

dy

+
∫
B(x,1)∩Bc(0,N)

(
sup
t�t1

t−n
∫

B(y,t)
|Ω(y− z)|| f2(z)|dz

)p

dy

= I1(x,N)+ I2(x,N). (6)

For I1(x,N) , we note that z ∈ B(y,t) and also z ∈ Rn \ (B(x,2)∩Bc(0,N/2)) . If z ∈
B(0,N/2) , then t � |z− y| � |y|− |z| � N/2. Since we can choose N > 2t1 , we can
ignore the case of z ∈ B(0,N/2) . For z ∈ Bc(x,2) , we have t � |z− y| � |z− x|− |y−
x| � 1. These results tell us that the supremum part of I1(x,N) only takes places in
1 < t < t1 . By the Hölder inequality,

I1(x,N) �
∫

B(x,1)∩Bc(0,N)

(
sup

1<t<t1

t−
n
p

(∫
B(y,t)

| f (z)|pdz

) 1
p
)p

dy

�
∫

B(x,1)∩Bc(0,N)

∫
B(0,t1)

| f (y− z)|pdzdy

� tn1 sup
w∈Rn

∫
B(w,1)∩Bc(0,N−t1)

| f (y)|pdy.

Hence, I1(x,N) → 0 as N → ∞ .
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For I2(x,N) , we can use the Hölder inequality to obtain

I2(x,N) �
∫

B(x,1)

(
sup
t�t1

t−
n
p

(∫
B(y,t)

| f (z)|pdz

) 1
p
)p

dy

�
∫

B(x,1)

(
sup
t�t1

t
λ−n

p ‖ f‖Lp,λ

)p

dy � ε.

Therefore, by (6), we conclude that AN,p(MΩ f2) → 0 as N → ∞ . This completes the
proof of Theorem 3. �

By Lemma 3 with u = 1− α p
n−λ , and the Hölder inequality with order p/uq , we

have

AN,q(TΩ f ) � ‖Ω‖q−qu
Ls(Sn−1)‖ f‖q−qu

Lp,λ AN,uq(MΩ f )

� ‖Ω‖q−qu
Ls(Sn−1)‖ f‖q−qu

Lp,λ (AN,p(MΩ f ))
uq
p .

Followed by Theorem 3, the proof of Theorem 1 (iii) is now complete. �

4. Proof of Theorem 2

4.1. Proof of Theorem 2 point (i)

Let f ∈ Lp,λ . We will prove that TΩ,α f ∈ Lq,μ . According to Lemma 1, it suffices
to show that

lim
R→∞

‖χ{|TΩ,α f |>R}TΩ,α f‖Lq,μ = 0. (7)

Let 0 < R1 < R < ∞ . Note that,

‖χ{|TΩ,α f |>R}TΩ,α f‖Lq,μ � ‖χ{|TΩ,α f |>R}TΩ,α( f χ| f |�R1
)‖Lq,μ

+‖TΩ,α( f χ| f |>R1
)‖Lq,μ . (8)

According to Lemma 3 and the boundedness of MΩ on L∞ , we have

‖χ{|TΩ,α f |>R}TΩ,α( f χ| f |�R1
)‖Lq,μ

� ‖Ω‖1−u
Ls(Sn−1)‖ f‖1−u

Lp,λ ‖χ{|TΩ,α f |>R}MΩ( f χ| f |�R1
)u‖Lq,μ

� Ru
1‖Ω‖Ls(Sn−1)‖ f‖1−u

Lp,λ ‖χ{|TΩ,α f |>R}‖Lq,μ . (9)

The inequality (9) and the boundedness of TΩ,α from Lp,λ and Lq,μ yield

‖χ{|TΩ,α f |>R}TΩ,α( f χ| f |�R1
)‖Lq,μ � Ru

1

R
‖Ω‖Ls(Sn−1)‖ f‖1−u

Lp,λ ‖χ{|TΩ,α f |>R}R‖Lq,μ

� Ru
1

R
‖Ω‖Ls(Sn−1)‖ f‖1−u

Lp,λ ‖TΩ,α f‖Lq,μ

� Ru
1

R
‖Ω‖2

Ls(Sn−1)‖ f‖2−u
Lp,λ . (10)

Using the boundedness of TΩ,α from Lp,λ and Lq,μ once again, we get

‖TΩ,α( f χ{| f |>R1})‖Lq,μ � ‖ f χ{| f |>R1}‖Lp,λ (11)
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Combining the inequalities (8), (10), and (11), we obtain

‖χ{|TΩ,α f |>R}TΩ,α f‖Lq,μ � Ru
1

R
‖Ω‖2

Ls(Sn−1)‖ f‖2−u
Lp,λ +‖ f χ{| f |>R1}‖Lp,λ .

Taking R → ∞ , we get

limsup
R→∞

‖χ{|TΩ,α f |>R}TΩ,α f‖Lq,μ � ‖ f χ{| f |>R1}‖Lp,λ . (12)

By f ∈ Lp,λ and Lemma 1, we have lim
R1→∞

‖ f χ{| f |>R1}‖Lp,λ = 0. Thus, (7) follows from

this limit and the inequality (12). �

4.2. Proof of Theorem 2 point (ii)

Let f ∈
∗

Lp,λ , then by Lemma 2 f ∈ V∞Lp,λ . According to Theorem 1 point (ii),
TΩ,α f ∈V∞Lq,μ . Given ε > 0, we can find K such that for any r > K and x ∈ Rn

Mq,μ(TΩ,α f ;x,r) < ε.

Hence,

‖χBc(0,R)TΩ,α f‖Lq,μ < sup
x∈Rn,r�K

Mq,μ(χBc(0,R)TΩ,α f ;x,r)+ ε.

Let f1 = f χB(0, R
2 ) and f2 = f − f1 . By the linearity of TΩ,α , we now only need to show

that

sup
x∈Rn,r�K

Mq,μ(χBc(0,R)TΩ,α fi;x,r) < ε

for both i = 1 and i = 2.
Let us now work on i = 1. For z ∈ Bc(0,R) and y ∈ B(0, R

2 ) , we have |z−y|> R
2 .

Therefore, for z ∈ Bc(0,R) , by the Hölder inequality, we have

|TΩ,α f1(z)| � Rα−n
∫

B(0, R
2 )
|Ω(z− y)|| f (y)|dy � Rα− n−λ

p ‖ f‖Lp,λ .

Hence, for sufficiently large enough R , we have

sup
x∈Rn,r�K

Mq,μ(χBc(0,R)TΩ,α f1;x,r) � Rα− n−λ
p ‖ f‖Lp,λ sup

r�K
r

n−μ
q

� K
n−μ

q Rα− n−λ
p ‖ f‖Lp,λ < ε.

For i = 2, by boundedness of TΩ,α : Lp,λ → Lq,μ , and the fact f ∈
∗

Lp,λ , we can find
large enough R , such that

sup
x∈Rn,r�K

Mq,μ(χBc(0,R)TΩ,α f2;x,r) � ‖TΩ,α f2‖Lq,μ � ‖ f χBc(0, R
2 )‖Lp,λ < ε.

This proves Theorem 2 (ii). �
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