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ON CONVEX AND CONCAVE SEQUENCES AND THEIR APPLICATIONS

GÁBOR M. MOLNÁR AND ZSOLT PÁLES ∗

(Communicated by C. P. Niculescu)

Abstract. The aim of this paper is to introduce and to investigate the basic properties of q -
convex, q -affine and q -concave sequences and to establish their surprising connection to Cheby-
shev polynomials of the first and of the second kind. One of the main results shows that q -
concave sequences are the pointwise minima of q -affine sequences. As an application, we
consider a nonlinear selfmap of the n -dimensional space and prove that it has a unique fixed
point. For the proof of this result, we introduce a new norm on the space in terms of a q -concave
sequence and show that the nonlinear operator becomes a contraction with respect to this norm,
and hence, the Banach Fixed Point theorem can be applied.

1. Introduction

In the theory of convexity, the investigation of convex functions play a fundamental
role. We refer to the following monographs for the details: Hardy–Littlewood–Pólya
[1], Kuczma [3], Mitrinović [4], Mitrinović–Pečarić–Fink [5, 6], Niculescu–Persson
[7], Popoviciu [11], and Roberts–Varberg [12]. The investigation of convex sequences
probably started in the book Mitrinović [4]. This subfield is still very active, some
recent results and applications have been obtained by Krasniqi [2], Niezgoda [8, 10, 9],
Sofonoea–Ţincu–Acu [13], Tabor–Tabor–Żoldak [14], Wu–Debnath [15], Yıldız [16].
In this paper we introduce the notions of q -convex, q -affine and q -concave sequences
and we present some basic results on them and we establish their surprising connection
to Chebyshev polynomials of the first and of the second kind. Finally, we present an
application of them to fixed point theory.

Let R , R+ , Z and N denote the sets of real, positive real, integer and positive
integer numbers in this paper. Given n,m ∈ Z with 2 � m− n , let S (n|m) denote
the linear space R

{n,...,m} of all real sequences, i.e., the collection of all functions p :
{n, . . . ,m} → R . It is natural to define the notions of concavity, convexity and affinity
for the elements of S (n|m) . A sequence p = (pn, . . . , pm) ∈ S (n|m) is called convex
if, for all i ∈ {n+1, . . . ,m−1} ,

2pi � pi−1 + pi+1. (1)
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If, for all i ∈ {n+1, . . . ,m−1} , the reversed inequality holds in (1), then the sequence
is termed concave. Finally, if a sequence is simultaneously convex and concave, then it
is said to be affine. If the inequality (1) holds with strict inequality sign, then we speak
about strict convexity and concavity, respectively.

In what follows, we extend the above definitions and introduce the notions of q -
convex, q -concave, and q -affine sequences with respect to a positive number q . A
sequence p = (pn, . . . , pm) ∈ S (n|m) is called q-convex if, for i ∈ {n+1, . . . ,m−1} ,

2qpi � pi−1 + pi+1. (2)

If, for all i ∈ {n+1, . . . ,m−1} , the reversed inequality holds in (2), then the sequence
is termed q-concave. If a sequence is simultaneously q -convex and q -concave, then it
is said to be q-affine.

We can easily see that the strict convexity of a positive (or negative) sequence
implies its q -convexity for some q . Indeed, if p ∈S (n|m) is a positive strictly convex
sequence then, for all i ∈ {n+1, . . . ,m−1} ,

1 <
pi−1 + pi+1

2pi
.

Therefore,

1 < q := min
i∈{n+1,...,m−1}

pi−1 + pi+1

2pi
,

which implies that p is q -convex with a number q > 1. Analogously, p ∈ S (n|m) is
a negative strictly convex sequence, then it is q -convex with a number 0 < q < 1.

The subclasses of q -convex and q -concave sequences in S (n|m) will be denoted
C ∪

q (n|m) and C ∩
q (n|m) , respectively. Finally, Aq(n|m) will stand for the subclass of

q -affine sequences, that is,

Aq(n|m) := C ∪
q (n|m)∩C ∩

q (n|m).

It is easy to see that Aq(n|m) is a linear subspace of S (n|m) and C ∪
q (n|m) and

C ∩
q (n|m) are convex cones in S (n|m) , i.e., they are closed with respect linear combi-

nations with nonnegative coefficients.
The aim of this paper is to investigate the basic properties of these classes of se-

quences and to show their surprising connection to Chebyshev polynomials of the first
and of the second kind. Therefore, in the next section, we recall the notions of Cheby-
shev polynomials and establish the basic relationships among them.

In Section 3, we describe all q -affine sequences in terms of Chebyshev polyno-
mials and show that Aq(n|m) is a two-dimensional linear subspace of S (n|m) . In
another result of this section, we deduce inequalities that are consequences of the q -
convexity/concavity and we also establish an analogue of the so called support theorem
and thus we obtain that q -concave sequences are the pointwise minima of q -affine
sequences.

In Section 4, we consider minimum problems for positive sequences in terms of a
(power) mean M . In the cases when M is either the arithmetic, or the geometric, or the
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maximum mean we obtain the precise solution of this minimum problem. For a general
power mean with a positive parameter, we only obtain lower bounds. The case when
M = max is strongly connected to the results obtained for q -concave sequences.

In the last section, we consider a nonlinear selfmap of the n -dimensional space
R

n and prove that it has a unique fixed point. For the proof of this result, we introduce
a new norm in terms of q -concave sequences and show that the nonlinear operator
becomes a contraction with respect to this norm, and hence, by the Banach Fixed Point
theorem, it has a unique fixed point.

2. Auxiliary results for Chebyshev polynomials

For k ∈ Z , let Tk : R → R and Uk : R → R denote the Chebyshev polynomials of
the first and of the second kind of order k , which are defined by the system of equations

T0(x) := 1, T1(x) := x, Tk−1(x)+Tk+1(x) = 2xTk(x) (k ∈ Z),
U0(x) := 1, U1(x) := 2x, Uk−1(x)+Uk+1(x) = 2xUk(x) (k ∈ Z),

(3)

respectively. The last equalities in (3) rewritten as

Tk+1(x) = 2xTk(x)−Tk−1(x), Uk+1(x) = 2xUk(x)−Uk−1(x),

can be used to compute Tk and Uk for k � 2 recursively. If we rewrite them as

Tk−1(x) = 2xTk(x)−Tk+1(x), Uk−1(x) = 2xUk(x)−Uk+1(x),

then Tk and Uk can be determined for k � −1. One can easily prove that, for k ∈ Z ,

T−k = Tk and U−k = −Uk−2.

In particular, U−1 = 0. It is clear that, for k � 0, the degree of Tk and Uk equals k . It
is well-known that these polynomials satisfy, for all u ∈ R and k ∈ Z , the equalities

Tk(cos(u)) = cos(ku) and Tk(cosh(u)) = cosh(ku) (4)

and

Uk(cos(u)) =
sin((k+1)u)

sin(u)
and Uk(cosh(u)) =

sinh((k+1)u)
sinh(u)

. (5)

From these representations it easily follows that the roots of Tk (for k �= 0) and Uk−1

(for k �∈ {−1,0,1} ) are given by{
cos

(
2i−1

2k
π
)
| i ∈ {1, . . . , |k|}

}
and

{
cos

(
i
k

π
)
| i ∈ {1, . . . , |k|−1}

}
,

respectively. Therefore, the largest root of Tk (for k �= 0) and Uk−1 (for k �∈ {−1,0,1} )
are given by

cos

(
π
2k

)
and cos

(
π
k

)
,

respectively.
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LEMMA 2.1. For 0� x < 1 , the sequence (Tk(x))
τ(x)
k=1 is strictly decreasing, where

τ(x) :=
⌊ π

arccos(x)

⌋
. For x > 1 , the sequence (Tk(x))∞

k=0 is strictly increasing.

Proof. If x > 1, then there exists u > 0 such that x = cosh(u) . Thus, in view of
the second formula in (4), we have

Tk(x) = Tk(cosh(u)) = cosh(ku) (k ∈ N∪{0}),

which by the strict monotonicity of the cosh function implies that the right hand side is
a strictly increasing function of k .

If 0 � x < 1, then there exists u ∈ ]0, π
2 ] such that x = cos(u) . In view of the first

formula in (4), we have

Tk(x) = Tk(cos(u)) = cos(ku) (k ∈ N∪{0}),

which, using that cos is strictly decreasing on [0,π ] , implies that Tk(x) is strictly de-
creasing for k ∈ {0, . . . ,

⌊ π
u

⌋} . �

LEMMA 2.2. Let n � 3 be an odd number. Then, for all x1, . . . ,xn ∈ R with the
notation xi+n := xi ( i ∈ {1, . . . ,n} ), we have

n

∑
i=1

sin

(n−1

∑
j=1

(−1) jxi+ j

)
sin(xi) = 0 and

n

∑
i=1

sin

( n−1

∑
j=1

(−1) jxi+ j

)
cos(xi) = 0. (6)

Proof. Let x1, . . . ,xn ∈ R and denote

yi :=
n−1

∑
j=1

(−1) jxi+ j (i ∈ {1, . . . ,n−1}).

Then, by the well-known product-to-sum identities

2sin

( n−1

∑
j=1

(−1) jxi+ j

)
sin(xi) = 2sin(xi)sin(yi) = cos(xi − yi)− cos(xi + yi),

2sin

( n−1

∑
j=1

(−1) jxi+ j

)
cos(xi) = 2cos(xi)sin(yi) = sin(xi + yi)− sin(xi − yi).

Observe that, by the equality xi = xi+n and by the oddness of n , we have

xi− yi = xi−
n−1

∑
j=1

(−1) jxi+ j = xi + xi+1 +
n−1

∑
j=2

(−1) j−1xi+ j

= xi+1 +(−1)n−1xi+n +
n−2

∑
j=1

(−1) jxi+1+ j = xi+1 + yi+1.
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Therefore

2sin

(n−1

∑
j=1

(−1) jxi+ j

)
sin(xi) = cos(xi+1 + yi+1)− cos(xi + yi),

2sin

(n−1

∑
j=1

(−1) jxi+ j

)
cos(xi) = sin(xi + yi)− sin(xi+1 + yi+1).

Summing up these equalities side by side for i∈{1, . . . ,n} , respectively, we can see that
the right hand sides are telescopic sums which are equal to zero, hence both equalities
in (6) hold true. �

LEMMA 2.3. For all i, j,k ∈ Z , we have

Uk− j−1Ui +Uj−i−1Uk = Uk−i−1Uj and Uk− j−1Ti +Uj−i−1Tk = Uk−i−1Tj. (7)

Furthermore, for i, j ∈ Z , we also have

Ui− j +Ui+ j = 2TjUi and Ti− j +Ti+ j = 2TjTi. (8)

Proof. In the particular case n = 3, with x1 := x , x2 := y and x3 := z , the identities
in (6) yield

sin(z− y)sin(x)+ sin(y− x)sin(z) = sin(z− x)sin(y),
sin(z− y)cos(x)+ sin(y− x)cos(z) = sin(z− x)cos(y).

(9)

Let q∈ ]−1,1[ be arbitrary, let u := arccos(q) and let i, j,k ∈Z . With the substitutions
(x,y,z) := ((i+1)u,( j +1)u,(k+1)u) and (x,y,z) := (iu, ju,ku) , the first and second
identities in (9) imply

sin((k− j)u)
sin(u)

sin((i+1)u)
sin(u)

+
sin(( j− i)u)

sin(u)
sin((k+1)u)

sin(u)
=

sin((k− i)u)
sin(u)

sin(( j +1)u)
sin(u)

,

sin((k− j)u)
sin(u)

cos(iu)+
sin(( j− i)u)

sin(u)
cos(ku) =

sin((k− i)u)
sin(u)

cos( ju).

In view of (4), from these equalities we can easily obtain that

Uk− j−1(q)Ui(q)+Uj−i−1(q)Uk(q) = Uk−i−1(q)Uj(q),
Uk− j−1(q)Ti(q)+Uj−i−1(q)Tk(q) = Uk−i−1(q)Tj(q)

hold for all q ∈ ]− 1,1[ and hence for all q ∈ R . This completes the proof of the
equalities in (7).

To prove (8), let q ∈ ]− 1,1[ be arbitrary, let u := arccos(q) and i, j ∈ Z . Using
(4) and the addition formula for the sine and cosine functions, we obtain

Ui− j(q)+Ui+ j(q) = Ui− j(cos(u))+Ui+ j(cos(u))

=
sin((i− j +1)u)

sin(u)
+

sin((i+ j +1)u)
sin(u)

= 2
sin((i+1)u)

sin(u)
cos( ju)

= 2Ui(cos(u))Tj(cos(u)) = 2Ui(q)Tj(q)
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and

Ti− j(q)+Ti+ j(q) = Ti− j(cos(u))+Ti+ j(cos(u)) = cos((i− j)u)+ cos((i+ j)u)
= 2cos(iu)cos( ju) = 2Ti(cos(u))Tj(cos(u)) = 2Ti(q)Tj(q).

This completes the proof of (8). �
Observe that, in the particular case j = 1, the equalities in (8) reduce to the recur-

sive formulas in (3)

REMARK 2.4. For the difference of two Chebyshev polynomials of the second
kind, using the equality −Uk = U−k−2 , we can deduce the following identity:

Ui+ j −Ui− j = Ui+ j +U−i+ j−2 = U( j−1)+(i+1) +U( j−1)−(i+1) = 2Ti+1Uj−1. (10)

On the other hand, to compute the difference of two Chebyshev polynomials of the first
kind, the following equality can be established:

Tj−i(q)−Tj+i(q) = 2(1−q2)Uj−1(q)Ui−1(q). (11)

To prove this, let q ∈ ]− 1,1[ be arbitrary, let u := arccos(q) and i, j ∈ Z . Using (4)
and the addition formula for the cosine function, we get

2Uj−1(q)Ui−1(q) = 2Uj−1(cos(u))Ui−1(cos(u)) = 2
sin( ju)
sin(u)

sin(iu)
sin(u)

=
cos(( j− i)u)− cos(( j + i)u)

sin2(u)

=
Tj−i(q)−Tj+i(q)

1− cos2(u)
=

Tj−i(q)−Tj+i(q)
1−q2 .

From here, (11) directly follows.

3. q -concave, convex and affine sequences

The next proposition shows that Aq(n|m) is a two dimensional subspace of S (n|m) .

PROPOSITION 3.1. A sequence p ∈ S (n|m) is q-affine if and only if there exist
a,b ∈ R such that

pi := aUi−n(q)+bTi−n(q) (i ∈ {n, . . . ,m}). (12)

In addition, if p ∈ Aq(n|m) , then, for all i, j,k ∈ {n, . . . ,m} ,

Uk− j−1(q)pi +Uj−i−1(q)pk = Uk−i−1(q)p j. (13)

In particular, for i ∈ {n, . . . ,m} and j ∈ {1, . . . ,min(i−n,m− i)} ,

pi− j + pi+ j = 2Tj(q)pi. (14)
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Proof. First assume that p = (pn, . . . , pm) is q -affine. Define

a :=
pn+1

q
− pn, b := 2pn− pn+1

q
.

We prove the equality (12) by induction with respect to i . Observe that pn = a+ b =
aU0(q)+bT0(q) and pn+1 = a(2q)+bq= aU1(q)+bT1(q) , which show that (12) holds
for i = n and i = n+ 1. Assume that we have proved (12) for i � � , where n+ 1 �
� � m−1. Then, applying the q -affinity of the sequence, the inductive hypothesis and
finally the recursive property of Chebyshev polynomials, we obtain

p�+1 = 2qp�− p�−1

= 2q(aU�−n(q)+bT�−n(q))− (aU�−1−n(q)+bT�−1−n(q))
= a(2qU�−n(q)−U�−1−n(q))+b(2qT�−n(q)−T�−1−n(q))
= aU�+1−n(q)+bT�+1−n(q).

This shows the validity of (12) for i = �+1.
For the sufficiency part of our assertion, assume that (12) holds for some a,b ∈ R .

Then, by the recursive property of Chebyshev polynomials, for i ∈ {n+1, . . . ,m−1} ,
we have that

pi+1 = aUi+1−n(q)+bTi+1−n(q)
= a(2qUi−n(q)−Ui−1−n(q))+b(2qTi−n(q)−Ti−1−n(q))
= 2q(aUi−n(q)+bTi−n(q))− (aUi−1−n(q)+bTi−1−n(q))
= 2qpi− pi−1,

which proves that p is a q -affine sequence.
To verify the last two assertions let p ∈ Aq(n|m) . Then, as we have seen it, (12)

holds for some a,b ∈ R .
Let first i, j,k ∈ {n, . . . ,m} be arbitrary. Then, applying Lemma 2.3, we get

Uk− j−1(q)Ui−n(q)+Uj−i−1(q)Uk−n(q) = Uk−i−1(q)Uj−n(q) and

Uk− j−1(q)Ti−n(q)+Uj−i−1(q)Tk−n(q) = Uk−i−1Tj−n(q).

Multiplying the first and second equalities by a and b , respectively, and then adding
them up side by side, we obtain

Uk− j−1(q)(aUi−n(q)+bTi−n(q))+Uj−i−1(q)(aUk−n(q)+bTk−n(q))
= Uk−i−1(q)(aUj−n(q)+bTj−n(q)),

which, in view of (12), shows that (13) holds.
Finally, let i ∈ {n, . . . ,m} and j ∈ {1, . . . ,min(i− n,m− i)} . In view of (8), we

have that

Ui− j−n(q)+Ui+ j−n(q) = 2Tj(q)Ui−n(q), Ti− j−n(q)+Ti+ j−n(q) = 2Tj(q)Ti−n(q).
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Multiplying the first and second equalities by a and b , respectively, and then adding
them up side by side, we obtain

pi− j + pi+ j = (aUi− j−n(q)+bTi− j−n(q))+ (aUi+ j−n(q)+bTi+ j−n(q))
= 2Tj(q)(aUi−n(q)+bTi−n(q)) = 2Tj(q)pi.

This completes the proof of (14). �

In the following statement, we establish some properties of the class of q -concave
(and hence of q -convex) sequences.

PROPOSITION 3.2. The cone C ∩
q (n|m) is closed with respect to the pointwise

minimum and the cone C ∪
q (n|m) is closed with respect to the pointwise maximum.

Proof. To prove the statement for C ∩
q (n|m) , let p,r ∈ C ∩

q (n|m) be arbitrary and
denote s := min(p,r) (i.e., si := min(pi,ri) for all i ∈ {n, . . . ,m} ). Let i ∈ {n +
1, . . . ,m−1} . Then, by the q -concavity of p and r , we have

si−1 + si+1 � pi−1 + pi+1 � qpi and si−1 + si+1 � ri−1 + ri+1 � qri.

Therefore,
si−1 + si+1 � min(qpi,qri) = qmin(pi,ri) = qsi,

which shows that s is also q -concave. The proof of the statement for C ∪
q (n|m) is

analogous. �

As q -affine sequences are q -concave and also q -convex, we obtain that the point-
wise minimum and maximum of a finite family of q -affine sequences are q -concave
and also q -convex, respectively.

PROPOSITION 3.3. Let i, j,k ∈ {n, . . . ,m} with i < j < k . Assume that

q � cos

(
π

max( j− i,k− j)

)
. (15)

Then, for all p ∈ C ∩
q (n|m) ,

Uk− j−1(q)pi +Uj−i−1(q)pk � Uk−i−1(q)p j. (16)

In particular, if i ∈ {n+1, . . . ,m−1} and j ∈ {1, . . . ,min(i−n,m− i)} and

q > cos

(
π
j

)
, (17)

then
pi− j + pi+ j � 2Tj(q)pi. (18)
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Proof. We shall verify (16) by induction on � := k− i . If � = 2, that is, j− i =
k− j = 1, then (16) is equivalent to the q -concavity of p , because U0(q) = 1 and
U1(q) = 2q .

Assume that we have verified (16) for all i < j < k with k− i � � , where � � 2.
Suppose that k− i = �+ 1 � 3 and (15) holds. Then max( j− i,k− j) � 2. We now
distinguish two cases.

The first the case is when j− i � 2. Then k− (i+1) = � and j− i � k− i−1 � �
and, using (15), it follows that

q � cos

(
π

max( j− (i+1),k− j)

)
and q � cos

(
π

max((i+1)− i, j− (i+1))

)
.

Thus, applying the inductive hypotheses for the triplets i+1 < j < k and for i < i+1 <
j , we obtain

Uk− j−1(q)pi+1 +Uj−i−2(q)pk � Uk−i−2(q)p j,

Uj−i−2(q)pi +U0(q)p j � Uj−i−1(q)pi+1.

The inequality (15) shows that q is nonsmaller than the largest roots of Uj−i−1 and
Uk− j−1 , hence Uj−i−1(q) � 0 and Uk− j−1(q) � 0. Multiplying the first inequality by
Uj−i−1(q) , the second one by Uk− j−1(q) , and adding up the inequalities so obtained
side by side, we get

Uk− j−1(q)Uj−i−2(q)pi +Uj−i−1(q)Uj−i−2(q)pk

�
(
Uj−i−1(q)Uk−i−2(q)−Uk− j−1(q)U0(q)

)
p j.

On the other hand, applying Lemma 2.3 for the numbers k− j−1< k− i−2< k− i−1,
we have that

Uj−i−1(q)Uk−i−2(q) = U0(q)Uk− j−1(q)+Uj−i−2(q)Uk−i−1(q).

Therefore, the above inequality can be rewritten as

Uk− j−1(q)Uj−i−2(q)pi +Uj−i−1(q)Uj−i−2(q)pk � Uj−i−2(q)Uk−i−1(q)p j.

By (15), q is strictly bigger than cos
( π

j−i−1

)
, which is the largest root of Uj−i−2 if

j− i > 2, therefore Uj−i−2(q) > 0. If i− j = 2, then Uj−i−2(q) = U0(q) = 1 > 0.
Now dividing the last inequality by this positive value side by side, we arrive at the
desired inequality (16).

The proof in the second case when k− j � 2 is completely analogous, therefore it
is omitted.

Finally, let i ∈ {n+ 1, . . . ,m− 1} and j ∈ {1, . . . ,min(i− n,m− i)} and assume
that (17) is satisfied. We apply the previous statement to the triplet (i− j, i, i+ j) . Then,
also using identity (8), we get

Uj−1(q)pi− j +Uj−1(q)pi+ j � U2 j−1(q)pi = 2Uj−1(q)Tj(q)pi. (19)

In view of (17), we have that q is bigger than the largest root of Uj−1 if j � 2, hence
Uj−1(q) > 0. This inequality is obviously true if j = 1. Thus, after dividing (19) by
Uj−1(q) side by side, this inequality implies (18). �
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PROPOSITION 3.4. Let j,k ∈ {n, . . . ,m} with j < k . In addition, assume that

q > cos
( π

k− j

)
. (20)

Let p ∈ C ∩(n|m) and define

ri := pk
Ui− j−1(q)
Uk− j−1(q)

+ p j
Uk−i−1(q)
Uk− j−1(q)

(i ∈ {n, . . . ,m}).

Then, r = (rn, . . . ,rm) is a q-affine sequence and, for i ∈ {n, . . . ,m} ,

ri

⎧⎪⎨
⎪⎩

� pi if i < j or k < i.

= pi if i ∈ { j,k}.
� pi if j < i < k.

Proof. If k− j = 1, then Uk− j−1(q)=U0(q)= 1> 0. If k− j � 2, then q is bigger
than the largest root of Uk− j−1 . Therefore Uk− j−1(q) > 0 and hence the sequence
(ri) is well-defined. From the recursive formula (3) of Chebyshev polynomials of the
second kind, for i ∈ {n+1, . . . ,m−1} , it follows that

U(i−1)− j−1(q)+U(i+1)− j−1(q) = 2qUi− j−1(q),

Uk−(i−1)−1(q)+Uk−(i+1)−1(q) = 2qUk−i−1(q).

Multiplying theses equalities by pk
Uk− j−1(q) and by

p j
Uk− j−1(q) , respectively, and then

adding them up side by side, we obtain that ri−1 + ri+1 = 2qri , which shows that (ri)
is a q -affine sequence.

If i = j , or i = k , then, by U−1 = 0, we can see that r j = p j and rk = pk . Suppose
first that j < i < k . From the equality (13) of the second assertion of Proposition 3.1
applied to the q -affine sequence (ri) , we get

Uk− j−1(q)ri = Uk−i−1(q)r j +Ui− j−1(q)rk.

On the other hand, applying inequality (16) of Proposition 3.3 for the q -concave se-
quence (pi) , we get

Uk−i−1(q)p j +Ui− j−1(q)pk � Uk− j−1(q)pi

Using that r j = p j and rk = pk , it follows that

Uk− j−1(q)ri = Uk−i−1(q)r j +Ui− j−1(q)rk

= Uk−i−1(q)p j +Ui− j−1(q)pk � Uk− j−1(q)pi,

which, by Uk− j−1(q) > 0 simplifies to the inequality ri � pi .
For the remaining inequalities, suppose first that i < j . By the q affinity of (ri) ,

the second assertion of Proposition 3.1 implies

Uk−i−1(q)r j = Uk− j−1(q)ri +Uj−i−1(q)rk
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and hence

Uk− j−1(q)ri = Uk−i−1(q)r j −Uj−i−1(q)rk.

On the other hand, applying inequality (16) of Proposition 3.3 for the q -concave se-
quence (pi) , we get

Uk− j−1(q)pi +Uj−i−1(q)pk � Uk−i−1(q)p j

and hence

Uk−i−1(q)p j −Uj−i−1(q)pk � Uk− j−1(q)pi.

Combining these inequalities and using r j = p j and rk = pk , we can conclude that

Uk− j−1(q)ri = Uk−i−1(q)r j −Uj−i−1(q)rk = Uk−i−1(q)p j −Uj−i−1(q)pk � Uk− j−1(q)pi.

This inequality, by Uk− j−1(q) > 0, is equivalent to ri � pi as desired.
The proof of ri � pi in the case k < i is completely similar and therefore omit-

ted. �

In the following proposition, we establish a characterization of q -concave se-
quences.

PROPOSITION 3.5. Let p ∈ S (n|m) . Then p is q-concave if and only if, for all
j ∈ {n, . . . ,m−1} , there exists r ∈ Aq(n|m) such that

p j = r j, p j+1 = r j+1, and pi � ri for i ∈ {n, . . . ,m}. (21)

Proof. Assume first that p is q -concave and let j ∈ {n, . . . ,m− 1} . Then, with
k = j +1, we can see that (20) holds, therefore applying Proposition 3.4, the sequence
r ∈ S (n|m) defined by

ri := p j+1Ui− j−1(q)+ p jUj−i(q)

is q -affine and satisfies all te conditions in (21).
To prove the sufficiency part of the assertion, assume that j ∈ {n, . . . ,m−1} , there

exists q -affine sequence r j ∈ Aq(n|m) such that

p j = r j
j , p j+1 = r j

j+1, and pi � r j
i for i ∈ {n, . . . ,m}.

Then, it follows that

pi = min
n� j�m−1

r j
i ,

which shows that p is the pointwise minimum of finitely many (in fact, m−n ) q -affine
sequences. Thus, by Proposition 3.2, it follows that p is q -concave. �
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4. A minimax-type problem

Throughout this section, n,m are integers with 2 � m− n and we consider the
following minimum problem: Let M : R

m−n−1
+ →R+ be an (m−n−1)-variable mean.

Our aim is to find the largest nonnegative constant CM such that, for all p ∈ S (n|m)
with pn, pm � 0 and pn+1, . . . , pm−1 > 0,

CM � M

(
pn + pn+2

2pn+1
, . . . ,

pi−1 + pi+1

2pi
, . . . ,

pm−2 + pm

2pm−1

)
.

By taking p as a constant sequence, one can see that the right hand side of this inequal-
ity then equals 1, hence it follows that CM � 1. As we shall see below, this estimate
can be essentially improved for several concrete means.

In the case when M is the (m−n−1)-variable arithmetic mean Am−n−1 , we can
obtain the following result.

PROPOSITION 4.1. CA = m−n−2
m−n−1 , that is, for all p ∈ S (n|m) with pn, pm � 0

and pn+1, . . . , pm−1 > 0 ,

m−n−2
m−n−1

� 1
m−n−1

m−1

∑
i=n+1

pi−1 + pi+1

2pi
(22)

and the constant on the left hand side is the best possible.

Proof. If m− n = 2, that is, m = n + 2, then the left hand side of (22) equals
zero, thus, the inequality is trivial. On the other hand, for (pn, pn+1, pn+2) = (0,1,0)
equality holds in (22). Thus, in the rest of the proof, we may assume that m−n > 2.

To prove (22), let p ∈ S (n|m) with pn, pm � 0 and pn+1, . . . , pm−1 > 0. Then
(using the arithmetic-geometric mean inequality in the last step), we obtain

m−1

∑
i=n+1

pi−1 + pi+1

2pi
=

pn + pn+2

2pn+1
+

m−2

∑
i=n+2

pi−1 + pi+1

2pi
+

pm−2 + pm

2pm−1

� pn+2

2pn+1
+

m−2

∑
i=n+2

(
pi−1

2pi
+

pi+1

2pi

)
+

pm−2

2pm−1

=
m−2

∑
i=n+1

1
2

(
pi+1

pi
+

pi

pi+1

)
�

m−2

∑
i=n+1

√
pi+1

pi
· pi

pi+1
= m−n−2.

Dividing the above obtained inequality by m−n−1 side by side, we can see that (22)
holds. On the other hand, for (pn, pn+1, . . . , pm−1, pm) = (0,1, . . . ,1,0) equality holds
in (22), therefore, the left hand side of (22) is the largest possible, indeed. �

In order to reach a higher level of generality, for r ∈ [−∞,∞] and k ∈ N , we define
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the k -variable r th power mean (or Hölder mean) of the variables u1, . . . ,uk ∈ R+ by

Hr,k(u1, . . . ,uk) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(x1, . . . ,xk) if r = −∞,(
ur

1 + · · ·+ur
k

k

) 1
r

if r ∈ R\ {0},
k
√

u1 · · ·uk if r = 0,

max(x1, . . . ,xk) if r = ∞.

Obviously, the mean H1,k equals the k -variable arithmetic mean Ak and H0,k equals
the k -variable geometric mean Gk . It is well known that, for all k ∈ N and −∞ � r �
s � ∞ , the comparison inequality Hr,k � Hs,k holds. In particular, Gk � Ak , which is
the celebrated inequality between the geometric and arithmetic means.

For the investigation of the more general problem in terms of power means, for
r ∈ R and k ∈ N , we introduce the function Fr,k : R

k
+ → R+ by

Fr,k(u1, . . . ,uk) := ur
1 +

k−1

∑
i=1

( 1
ui

+ui+1

)r
+

1
ur

k
.

LEMMA 4.2. Let r > 0 and k ∈ N . Then

Fr,k �

⎧⎪⎨
⎪⎩

2 if k = 1,

2
r+1
2 +(k−2)2r +2

r+1
2 if k � 2, r � 1,

2rk1−r
(
2

1−r
2r +(k−2)+2

1−r
2r

)r
if k � 2, r � 1,

(23)

and the estimates are sharp if k ∈ {1,2} or r = 1 . Furthermore, for all k ∈ N

Fr,k � k2r+ 1−r
k , (24)

which is also sharp if if k ∈ {1,2} or r = 1 . In the particular case when k is odd, we
also have that

Fr,k � k+1, (25)

which is sharp if k = 1 and which is sharper than (23) and (24) if r is a sufficiently
small positive number.

Proof. If k = 1 then, by the arithmetic-geometricmean inequality, for all u1 ∈R+ ,
we easily get

Fr,1(u1) = ur
1 +

1
ur

1
= 2A2

(
ur

1,
1
ur

1

)
� 2G2

(
ur

1,
1
ur

1

)
= 2

√
ur

1 ·
1
ur

1
= 2.

Observe that Fr,1(1) = 2, hence the lower estimate 2 is best possible in this case.
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Now assume that r � 1 and k � 2, and let u1, . . . ,uk ∈ R+ be arbitrary. Then, by
the comparison inequality Hr,2 � H1,2 = A2 , for all i ∈ {1, . . . ,k−1} , we get

1
2

( 1
ui

+ui+1

)
= A2

( 1
ui

,ui+1

)
� Hr,2

( 1
ui

,ui+1

)

=
(

1
2

( 1
ur

i
+(ui+1)r

)) 1
r

.

Using this inequality and arithmetic-geometric mean inequality at the end, we obtain

Fr,k(u1, . . . ,uk) := ur
1 +

k−1

∑
i=1

2r
(1

2

( 1
ui

+ui+1

))r
+

1
ur

k

� ur
1 +

k−1

∑
i=1

2r 1
2

( 1
ur

i
+(ui+1)r

)
+

1
ur

k

= ur
1 +2r−1 1

ur
1

+
k−1

∑
i=2

2r−1
( 1

ur
i
+ur

i

)
+2r−1uk +

1
uk

= 2A2

(
ur

1,2
r−1 1

ur
1

)
+

k−1

∑
i=2

2rA2

( 1
ur

i
,ur

i

)
+2A2

(
2r−1uk,

1
uk

)

� 2G2

(
ur

1,2
r−1 1

ur
1

)
+

k−1

∑
i=2

2rG2

( 1
ur

i
,ur

i

)
+2G2

(
2r−1uk,

1
uk

)
= 2

r+1
2 +(k−2)2r +2

r+1
2 .

This proves the assertion when r � 1 and k � 2. Finally, by arithmetic-geometric mean
inequality again, we get

Fr,k(u1, . . . ,uk) � 2
r+1
2 +(k−2)2r +2

r+1
2

= kAk
(
2

r+1
2 ,2r, . . . ,2r,2

r+1
2

)
� kGk

(
2

r+1
2 ,2r, . . . ,2r,2

r+1
2

)
= k

(
2(k−2)r+r+1) 1

k

= k2r+ 1−r
k ,

which shows that (24) is also valid.

In the case r � 1 and k � 2, using the comparison inequality A2k = H1,2k � H 1
r ,2k
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and the 2-variable arithmetic-geometric mean inequality, we obtain

Fr,k(u1, . . . ,uk) = ur
1 +

k−1

∑
i=1

2 · 1
2

( 1
ui

+ui+1

)r
+

1
ur

k

= 2kA2k

(
ur

1, . . . ,
1
2

( 1
ui

+ui+1

)r
,
1
2

( 1
ui

+ui+1

)r
, . . .

1
ur

k

)

� 2kH 1
r ,2k

(
ur

1, . . . ,
1
2

( 1
ui

+ui+1

)r
,
1
2

( 1
ui

+ui+1

)r
, . . .

1
ur

k

)

= 2k

(
1
2k

(
u1 +

k−1

∑
i=1

2 ·2− 1
r

( 1
ui

+ui+1

)
+

1
uk

))r

= (2k)1−r
(

u1 +21− 1
r

1
u1

+
k−1

∑
i=2

21− 1
r

( 1
ui

+ui

)
+21− 1

r uk +
1
uk

)r

� (2k)1−r(2 ·2 r−1
2r +2(k−2)21− 1

r +2 ·2 r−1
2r

)r

= 2rk1−r(2 1−r
2r +(k−2)+2

1−r
2r

)r
.

This proves the assertion when r � 1 and k � 2. Finally, by arithmetic-geometric mean
inequality again, we get

Fr,k(u1, . . . ,uk) � 2rk1−r(2 1−r
2r +(k−2)+2

1−r
2r

)r = 2rkAk
(
2

1−r
2r ,1, . . . ,1,2

1−r
2r

)r

� 2rkGk
(
2

1−r
2r ,1, . . . ,1,2

1−r
2r

)r = 2rk
k
√

2
1−r
r = k2r+ 1−r

k ,

which shows that (24) is also valid.
If k = 2, then the lower estimates (23) and (24) simplify to the inequality

Fr,2 � 2
3+r
2 .

On the other hand, with u1 := 2
r−1
2r and u2 := 2

1−r
2r , one can see that

Fr,2(u1,u2) = ur
1 +

( 1
u1

+u2

)r
+

1
ur

2
= 2

r+1
2 +2

1+r
2 = 2

3+r
2 ,

which proves that the lower estimate 2
3+r
2 is sharp.

If r = 1, then all the lower estimates simplify to the inequality

F1,k � 2k,

which is attained at u1 = · · · = uk = 1. This proves that the lower estimate 2k is sharp
in this case.

Finally, we prove that (25) holds. This inequality is a consequence of (23) in the
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case k = 1. Thus, we may assume that k � 3 is odd. Then, for u1, . . . ,uk ∈ R+ , we get

Fr,k(u1, . . . ,uk) = ur
1 +

( 1
u1

+u2

)r
+

k−2

∑
i=2

( 1
ui

+ui+1

)r
+

( 1
uk−1

+uk

)r
+

1
ur

k

� ur
1 +

1
ur

1
+

k−3
2

∑
j=1

(( 1
u2 j

+u2 j+1

)r
+

( 1
u2 j+1

+u2 j+2

)r
)

+ur
k +

1
ur

k

� ur
1 +

1
ur

1
+

k−3
2

∑
j=1

(
ur

2 j+1 +
1

ur
2 j+1

)
+ur

k +
1
ur

k

=

k−1
2

∑
j=0

(
ur

2 j+1 +
1

ur
2 j+1

)
�

k−1
2

∑
j=0

2 = k+1.

If r tends to zero in (23), then the limit of the lower estimate is 2
√

2+ k− 2, which
is smaller than k + 1, showing that (25) provides a better lower estimate than (23) for
small positive values of r . �

PROPOSITION 4.3. Let r > 0 . Then

CHr,m−n−1 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

if m = n+3,

(
2

1−r
2 +(m−n−4)+2

1−r
2

m−n−1

) 1
r

if m � n+4, 0 < r � 1,

(m−n−2
m−n−1

) 1
r · 2

1−r
2r +(m−n−4)+2

1−r
2r

m−n−2
if m � n+4, 1 � r.

(26)
and the constant on the left hand side is the best possible if either m ∈ {n+3,n+4} or
r = 1 . In addition, if m−n is odd, then

CHr,m−n−1 � 1
2
. (27)

Proof. If m− n = 2, that is, m = n + 2, then the left hand side of (22) equals
zero, thus, the inequality is trivial. On the other hand, for (pn, pn+1, pn+2) = (0,1,0)
equality holds in (22). Thus, in the rest of the proof, we may assume that m−n > 2.

To prove (22), let p ∈ S (n|m) with pn, pm � 0 and pn+1, . . . , pm−1 > 0. Then

2r
m−1

∑
i=n+1

( pi−1 + pi+1

2pi

)r
=

( pn + pn+2

pn+1

)r
+

m−2

∑
i=n+2

( pi−1 + pi+1

pi

)r
+

( pm−2 + pm

pm−1

)r

�
( pn+2

pn+1

)r
+

m−2

∑
i=n+2

( pi−1

pi
+

pi+1

pi

)r
+

( pm−2

pm−1

)r

= Fr,m−n−2

(
pn+2

pn+1
, . . . ,

pm−3

pm−2

)
.
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Therefore,

(
1

m−n−1

m−1

∑
i=n+1

( pi−1 + pi+1

2pi

)r
) 1

r

�
(

1
2r(m−n−1)

Fr,m−n−2

(
pn+2

pn+1
, . . . ,

pm−3

pm−2

)) 1
r

.

If m = n+3, then, by the k = 1 case of Lemma 4.2, we get

(
1
2

n+2

∑
i=n+1

( pi−1 + pi+1

2pi

)r
) 1

r

� 1
2
.

Applying Lemma 4.2, for k := m−n−2 � 2 and 0 < r � 1, we get

(
1

m−n−1

m−1

∑
i=n+1

( pi−1 + pi+1

2pi

)r
) 1

r

�
(

2
1−r
2 +(m−n−4)+2

1−r
2

m−n−1

) 1
r

.

Similarly, for k := m−n−2 � 2 and r � 1, it follows that

(
1

m−n−1

m−1

∑
i=n+1

( pi−1 + pi+1

2pi

)r
) 1

r

�
(m−n−2

m−n−1

) 1
r · 2

1−r
2r +(m−n−4)+2

1−r
2r

m−n−2
.

To prove (27), assume that m− n is odd. Then, applying the inequality (25) for k =
m−n−2, we get

(
1

m−n−1

m−1

∑
i=n+1

( pi−1 + pi+1

2pi

)r
) 1

r

�
(

(m−n−2)+1
2r(m−n−1)

) 1
r

=
1
2
,

which was to be shown. �
In the case when M is the (m−n−1)-variable geometric mean G , we can estab-

lish the following result in which we will get an exact formula for the constant CGk .

PROPOSITION 4.4. CGm−n−1 = 1+(−1)m−n−1

4 , that is, for all sequences p∈S (n|m)
with pn, pm � 0 and pn+1, . . . , pm−1 > 0 ,

1+(−1)m−n−1

4
� m−n−1

√√√√ m−1

∏
i=n+1

pi−1 + pi+1

2pi
. (28)

and the constant on the left hand side is the best possible.

Proof. Assume first that m− n is even. Then the left hand side of (28) equals
zero, thus, the inequality is trivial. To show that the left hand side is optimal, define the
sequence p ∈ S (n|m) by

pn+2i := ε (i ∈ {0, . . . , m−n
2 }) and pn+2i+1 := 1 (i ∈ {0, . . . , m−n−2

2 })
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where ε > 0 is an arbitrary positive number. Then, using that m− n is even, we can
obtain that

m−1

∏
i=n+1

pi−1 + pi+1

2pi
=

m−1

∏
i=n+1

ε(−1)i−(n+1)
= ε.

Therefore, the rights hand side of (28) equals m−n−1
√

ε , which can be arbitrarily small.
Hence, in this case, we obtain that CG = 0.

Consider now the case when m−n is odd and m−n � 3. Using that the product
has an even number of factors, we get

m−1

∏
i=n+1

pi−1 + pi+1

2pi
=

m−n−3
2

∏
j=0

pn+2 j + pn+2+2 j

2pn+1+2 j
· pn+1+2 j + pn+3+2 j

2pn+2+2 j

�
m−n−3

2

∏
j=0

pn+2+2 j

2pn+1+2 j
· pn+1+2 j

2pn+2+2 j
=

1
2m−n−1 .

Taking the (m−n−1) th root of this inequality side by side, we obtain that (28) is also
true in the case when m−n is odd and m−n � 3.

To verify the sharpness of the left hand side of (28), let ε > 0 be arbitrary and, for
i ∈ {n, . . . ,m} , define

pi :=

⎧⎨
⎩

ε
m−i−1

2 if i−n is even,

ε
i−n−1

2 if i−n is odd.

Then
m−1

∏
i=n+1

pi−1 + pi+1

2pi
=

m−n−3
2

∏
j=0

pn+2 j + pn+2+2 j

2pn+1+2 j
· pn+1+2 j + pn+3+2 j

2pn+2+2 j

=

m−n−3
2

∏
j=0

ε
m−n−2 j−1

2 + ε
m−n−2 j−3

2

2ε j · ε j + ε j+1

2ε
m−n−2 j−3

2

=
m−n−3

2

∏
j=0

(
ε +1

2
· 1+ ε

2

)
=

(
1+ ε

2

)m−n−1

.

By taking ε arbitrarily small, we can see that the right hand side of the above equality
can be arbitrarily close to 1

2m−n−1 , which shows that the left hand side of (28) is a sharp
lower bound for the right hand side. �

PROPOSITION 4.5. CH∞,m−n−1 = cos
( π

m−n

)
, that is, for all sequences p∈S (n|m)

with pn, pm � 0 and pn+1, . . . , pm−1 > 0 ,

cos
( π

m−n

)
� max

n+1�i�m−1

pi−1 + pi+1

2pi
. (29)

Moreover, with pi := sin
(

i−n
m−n π

)
, the inequality (29) holds with equality.
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Proof. Let

q := max
n+1�i�m−1

pi−1 + pi+1

2pi
.

Then, using the positivity of p1, . . . , pn , it follows that the sequence p is q -concave.
In the first part of the proof, we show that, for k ∈ {n, . . . ,m−1} ,

0 � Uk−n(q) and Uk−n−1(q)pk+1 � Uk−n(q)pk. (30)

These inequalities are obvious for k = n because U0(q) = 1 and U−1(q) = 0 � pn . As-
sume that we have proved (30) for some k ∈ {n, . . . ,m−2} . Then, by the q -concavity
of p , we have that

pk + pk+2 � 2qpk+1

Multiplying this inequality by Uk−n(q) � 0 and adding it to the second inequality in
(30) side by side, we get

Uk−n−1(q)pk+1 +Uk−n(q)pk+2 � 2qUk−n(q)pk+1,

which, by applying (3), implies

Uk−n(q)pk+2 � (2qUk−n(q)−Uk−n−1(q))pk+1 = Uk−n+1(q)pk+1.

This inequality shows that Uk−n+1(q) is nonnegative and the second inequality in (30)
is valid for k+1 (instead of k ).

Based on the first inequality in (30), for k ∈ {n, . . . ,m−1} , we now show that

cos
( π

k+1−n

)
� q. (31)

This is obvious if k = n , since q is nonnegative. If k = n + 1, then (30) gives that
0 � U1(q) = 2q and hence q � 0 = cos

(π
2

)
, which proves (31) in this case.

Now assume that (31) holds for some k ∈ {n + 1, . . . ,m− 2} . The two largest
zeroes of Uk+1−n are cos

( 2π
k+2−n

)
and cos

( π
k+2−n

)
, furthermore Uk+1−n(t) < 0 if

cos
(

2π
k+2−n

)
< t < cos

( π
k+2−n

)
and Uk+1−n(t) � 0 if t � cos

( π
k+2−n

)
. Observe that

π
k+2−n < π

k+1−n < 2π
k+2−n . Therefore, cos

(
2π

k+2−n

)
< cos

( π
k+1−n

)
< cos

( π
k+2−n

)
. If q

were smaller than cos
( π

k+2−n

)
, then, by the inductive assumption, cos

( π
k+1−n

)
� q <

cos
( π

k+2−n

)
and hence Uk+1−n(q) < 0, which contradicts (30) (if it is applied for k+1

instead of k . Thus must be nonsmaller than cos
( π

k+2−n

)
, which shows that (31) is valid

for k+1.
Finally, applyinq (31) for k = m−1, we can conclude that cos

( π
m−n

)
� q , which

proves that (29) holds.
To verify that (29) is sharp, let pi := sin

(
i−n
m−n π

)
for i ∈ {n, . . . ,m} . Then, for

i ∈ {n+1, . . . ,m−1} ,

pi−1 + pi+1

2pi
=

sin
(

i−1−n
m−n π

)
+ sin

(
i+1−n
m−n π

)
2sin

(
i−n
m−n π

)
=

2sin
(

i−n
m−n π

)
cos

( π
m−n

)
2sin

(
i−n
m−n π

) = cos
( π

m−n

)
,
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which shows that (29) holds with equality for this particular sequence p . �

As a curiosity, we can obtain the following inequality for the cosine function.

COROLLARY 4.6. For m � 3 ,

m−4+
√

2
m−2

� cos
( π

m

)
, (32)

and equality holds if m = 4 .

Proof. If m = 3, then the inequality is equivalent to
√

2− 1 � 1
2 , which is obvi-

ously true.
If m � 4 and r � 1, then, in view of Proposition 4.3, for all sequences p∈S (0|m)

with p0, pm � 0 and p1, . . . , pm−1 > 0, we have that

(m−2
m−1

) 1
r · 2

1−r
2r +(m−4)+2

1−r
2r

m−2

� CHr,m−1

(
p0 + p2

2p1
, . . . ,

pi−1 + pi+1

2pi
, . . . ,

pm−2 + pm

2pm−1

)

� CH∞,m−1

(
p0 + p2

2p1
, . . . ,

pi−1 + pi+1

2pi
, . . . ,

pm−2 + pm

2pm−1

)
= max

1�i�m−1

pi−1 + pi+1

2pi
.

By taking the limit r → ∞ , it follows that

m−4+
√

2
m−2

� max
1�i�m−1

pi−1 + pi+1

2pi
.

In particular, with pi := sin
(

i
m π

)
, we get that

m−4+
√

2
m−2

� cos
( π

m

)
,

which was to be shown.
For m = 4, both sides of the inequality are equal to

√
2

2 and hence equality holds
in (32). �

5. An application of q -concave sequences

In this section, we consider a selfmap of the space R
n which originates from the

investigation of approximately convex real functions. Our main aim here is to prove
that it has a unique fixed point.

In what follows, we will adopt the following convention: For an arbitrary sequence
a ∈ S (1|n) , let a be extended to be in S (0|n+1) by setting a0 := 0 and an+1 := 0.
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For n∈ N and for a vector γ =
(
γ1, . . . ,γ	 n+1

2 

) ∈R

	 n+1
2 
 , we define the map Tγ : R

n →
R

n by

(
Tγ(a)

)
i := min

1� j�min(i,n+1−i)

(ai− j +ai+ j

2
+ γ j

)
(a ∈ R

n, i ∈ {1, . . . ,n}).

In order to make the map Tγ a contraction with respect to a suitable norm on R
n ,

we construct new norms in terms of positive sequences. Let | · |∞ denote the maximum
norm on R

n , which is defined as |a|∞ := max1�i�n |ai| . If p ∈ S (1|n) is a sequence
with positive members, then we define ‖ · ‖p : R

n → R by

‖a‖p := max
1�i�n

p−1
i |ai| = |p−1a|∞ (a ∈ R

n).

It is easy to check that ‖ ·‖p is a norm, and hence R
n is a Banach space with respect to

‖ · ‖p .

THEOREM 5.1. Let p ∈ S (1|n) be a sequence with positive members and define

q := max
1�i�n

pi−1 + pi+1

2pi
and q∗ :=

{
q if q � 1,

T	 n+1
2 
(q) if q > 1.

(33)

Then, for all γ ∈ R
	 n+1

2 
 , the mapping Tγ is q∗ -Lipschitzian on the normed space
(Rn,‖ · ‖p) . In particular, if p is strictly concave, then Tγ is a contraction on the
normed space (Rn,‖ · ‖p) .

Proof. First of all, for all k ∈ N , we prove that the function min : R
k → R is

Lipschitzian with respect to the maximum norm | · |∞ with Lipschitz modulus L = 1.
Indeed, if x,y ∈ R

k , then

min(x) = min
1�i�k

xi � min
1�i�k

(
yi + |xi− yi|

)
� min

1�i�k

(
yi + |x− y|∞

)
� min

1�i�k
yi + |x− y|∞ = min(y)+ |x− y|∞.

Interchanging the roles of x and y in the above argument and then combining the two
inequalities so obtained, we get that∣∣min(x)−min(y)

∣∣ � |x− y|∞,

which proves our statement.
The definition of the number q in (33) implies that p∈S (0|n+1) is a q -concave

sequence, and according to Proposition 4.5, q � cos
( π

n+1

)
. Then, q > cos

(π
j

)
for all

j ∈ {1, . . . ,n} . Therefore, applying the last inequality of Proposition 3.3, we obtain
that, for all i ∈ {1, . . . ,n} and j ∈ {1, . . . ,min(i,n+1− i)} , (18) holds. Hence, on the
same domain,

pi− j + pi+ j

2pi
� Tj(q). (34)
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If i ∈ {1, . . . ,n} , then min(i,n+1− i) � i+(n+1−i)
2 = n+1

2 , which shows that the max-
imal value of j is

⌊
n+1
2

⌋
. Therefore, (34) implies that, for all i ∈ {1, . . . ,n} and

j ∈ {1, . . . ,min(i,n+1− i)} ,

pi− j + pi+ j

2pi
� max

{
T1(q), . . . ,T	 n+1

2 
(q)
}
. (35)

In what follows, we show that the right hand side of this inequality equals q∗ .
If cos

( π
n+1

)
� q < 1, then 0 < arccos(q) � π

n+1 . Therefore, according to the first
part of Lemma 2.1, the sequence Tj(q) is decreasing for j ∈ {0, . . . ,n+1} and hence
Tj(q) � T1(q) = q = q∗ for all j ∈ {1, . . . ,

⌊
n+1
2

⌋} . If q = 1, then Tj(q) = 1 = q∗ for
all j ∈ N . On the other hand, 1 < q , then according to the second part of Lemma 2.1,
the sequence (Ti(q))∞

i=1 is increasing and hence Tj(q) � T	 n+1
2 
(q) = q∗ holds for all

j ∈ {1, . . . ,
⌊

n+1
2

⌋} .
Observe that, by the definition of the norm ‖ · ‖p , for every a ∈ R

n , we have that
|ai|� pi‖a‖p is valid for i ∈ {0,1, . . . ,n,n+1} . Now let i ∈ {1, . . . ,n} be fixed. Using
the Lipschitz property of the minimum function with k := min(i,n + 1− i) and the
inequality (35), for all a,b ∈ R

n , we get

p−1
i

∣∣(Tγ (a)
)
i −

(
Tγ (b)

)
i

∣∣
= p−1

i

∣∣∣∣ min
1� j�min(i,n+1−i)

(ai− j +ai+ j

2
+ γ j

)
− min

1� j�min(i,n+1−i)

(bi− j +bi+ j

2
+ γ j

)∣∣∣∣
� p−1

i max
1� j�min(i,n+1−i)

∣∣∣∣(ai− j +ai+ j

2
+ γ j

)
−

(bi− j +bi+ j

2
+ γ j

)∣∣∣∣
� max

1� j�min(i,n+1−i)

|ai− j −bi− j|+ |ai+ j −bi+ j|
2pi

� max
1� j�min(i,n+1−i)

pi− j + pi+ j

2pi
‖a−b‖p

� max
1� j�min(i,n+1−i)

Tj(q)‖a−b‖p � q∗‖a−b‖p.

Now, upon taking the maximum with respect to i ∈ {1, . . . ,n} , we arrive at∥∥Tγ(a)−Tγ(b)
∥∥

p � q∗‖a−b‖p,

which completes the proof of the q∗ -Lipschitz property of Tγ on (Rn,‖ · ‖p) .
If if the sequence p is strictly concave, then it is q -concave with some q < 1.

Therefore, the q -Lipschitz property of Tγ shows that the map Tγ is a q -contraction
on (Rn,‖ · ‖p) . �

COROLLARY 5.2. For all γ ∈ R
	 n+1

2 
 , the mapping Tγ : R
n → R

n has a unique
fixed point in R

n .

Proof. Let pi := i(n+1− i) for i ∈ {0, . . . ,n+1} . Then, by the geometric mean-

arithmetic mean inequality, we have that pi �
(

n+1
2

)2
. Thus, for all i ∈ {1, . . . ,n} and
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j ∈ {1, . . . ,min(i,n+1− i)} , we have

pi− j + pi+ j

2pi
=

(i− j)(n+1− i+ j)+ (i+ j)(n+1− i− j)
2i(n+1− i)

=
2i(n+1)−2i2−2 j2

2i(n+1− i)
=

i(n+1)− i2− j2

i(n+1− i)

� i(n+1− i)−1
i(n+1− i)

=
pi −1

pi

�
(

n+1
2

)2 −1(
n+1
2

)2 =
n2 +2n−3
n2 +2n+1

=
(n−1)(n+3)

(n+1)2 .

Therefore, the sequence p ∈ S (0|n+ 1) is q -concave with q = (n−1)(n+3)
(n+1)2 < 1. Ac-

cording to the Theorem 5.1, the mapping Tγ is a q -contraction on (Rn,‖ · ‖p) . There-
fore, by the Banach Fixed Point theorem, it possesses a unique fixed point. �
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[1] G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA, Inequalities, Cambridge University Press, Cam-
bridge, 1934, (first edition), 1952 (second edition).

[2] X. Z. KRASNIQI,On α -convex sequences of higher order, J. Numer. Anal. Approx. Theory 45 (2016),
no. 2, 177–182.

[3] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe
Uniwersytetu Śla̧skiego w Katowicach, vol. 489, Państwowe Wydawnictwo Naukowe – Uniwersytet
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in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer-Verlag, New York, 2006, A
contemporary approach.

[8] M. NIEZGODA, Remarks on convex functions and separable sequences, II, Discrete Math. 311 (2011),
no. 2–3, 178–185.

[9] M. NIEZGODA, Inequalities for convex sequences and nondecreasing convex functions, Aequationes
Math. 91 (2017), no. 1, 1–20.

[10] M. NIEZGODA, Sherman, Hermite-Hadamard and Fejér like inequalities for convex sequences and
nondecreasing convex functions, Filomat 31 (2017), no. 8, 2321–2335.

[11] T. POPOVICIU, Les fonctions convexes, Hermann et Cie, Paris, 1944.
[12] A. W. ROBERTS AND D. E. VARBERG, Convex Functions, Pure and Applied Mathematics, vol. 57,

Academic Press, New York-London, 1973.
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Zsolt Páles, Institute of Mathematics, University of Debrecen,
H-4002 Debrecen, Pf. 400, Hungary

e-mail: pales@science.unideb.hu

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


