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SHARP NONLINEAR ESTIMATES FOR MULTIPLYING

DERIVATIVES OF POSITIVE DEFINITE TENSOR FIELDS

MICHAL BATHORY

(Communicated by G. P. H. Styan)

Abstract. The simple product formulae for derivatives of scalar functions raised to different
powers are generalized for functions which take values in the set of symmetric positive definite
matrices. These formulae are fundamental in derivation of various non-linear estimates, espe-
cially in the PDE theory. To get around the non-commutativity of the matrix and its derivative,
we apply some well-known integral representation formulas and then we make an observation
that the derivative of a matrix power is a logarithmically convex function with respect to the
exponent. This is directly related to the validity of a seemingly simple inequality combining the
integral averages and the inner product on matrices. The optimality of our results is illustrated
on numerous examples.

1. Introduction and main results

Let V ⊂ R
n , n ∈ N , be an open set and let Di , i = 1, . . . ,n , denote the partial

derivatives. As a consequence of the differentiation rules for the real power function
x �→ xα , α �= −1, the identities

Diuuα =
1

α +1
Diu

α+1 and
n

∑
i=1

DiuDiu
α =

4α
(α +1)2

n

∑
i=1

∣∣Diu
α+1

2
∣∣2 (1.1)

hold true almost everywhere in V for any positive and locally Lipschitz continuous
function u : V → R+ (denoted by u ∈W 1,∞

loc (V ;R+) , see Section 2 for details). These
identities are frequently used in the theory of nonlinear partial differential equations
(PDE) to find information about the unknown function. Our goal is to prove (1.1)
when the scalar u is replaced by A ∈W 1,∞

loc (V ;Rd×d
+ ) , where R

d×d
+ denotes the set of

symmetric positive definite matrices of the size d×d , d ∈ N . Such a situation occurs
in numerous physical applications, see Section 3 for more details. It turns out that
while (1.1)1 continues to hold, the identity (1.1)2 fails due to non-commutativity of
A and DiA . Nevertheless, we show that (1.1)2 can still be recovered as an inequality

Mathematics subject classification (2020): 35A23, 15A69, 15A16, 76A10.
Keywords and phrases: Non-linear gradient estimate, symmetric positive definite, tensor field, loga-

rithmic convexity, matrix calculus.
This research is supported by the Austrian Science Fund (FWF) projects F 65, I 4354, P 32788, by the OeAD-WTZ

project CZ 01/2021 and by the project 20-11027X funded by the Czech Science Foundation.

c© � � , Zagreb
Paper MIA-25-48

751

http://dx.doi.org/10.7153/mia-2022-25-48


752 M. BATHORY

in the preferable direction. Since our result is more general, let us first define, for any
A ∈W 1,∞

loc (V ;Rd×d
+ ) and λ ∈ R , the non-linear differential operator Dλ = (Dλ

i )n
i=1 , by

Dλ
i A :=

{λ−1DiAλ if λ �= 0

Di logA if λ = 0

}
=

∫ 1

0
Aλ (1−s)(Di logA)Aλ s ds, (1.2)

where we used the matrix power and matrix logarithm functions (see Section 2) and
the last equality follows from standard results, see Lemma 4 below. The case λ = 1
recovers the usual partial derivative DiA = D1

i A . We also denote the Euclidian inner
product and norm on the spaces R

m1× ...×mk , k ∈ N , of rank-k tensors by

〈X ,Y 〉m1× ...×mk :=
m1

∑
i1=1

. . .
mk

∑
ik=1

Xi1...ikYi1...ik , |X |m1×...×mk :=
√
〈X ,X〉m1× ...×mk (1.3)

for any X ,Y ∈ R
m1× ...×mk . Then, our generalization of (1.1) takes the following form.

THEOREM 1. Let p,q � 0 , α,β ,γ,δ ∈ R and let A ∈W 1,∞
loc (V ;Rd×d

+ ) . Then

〈DαA,Aβ 〉d×d = 〈Dα+β A, I〉d×d , (1.4)

where I is the identity matrix, and

〈DαA,Dβ A〉p
n×d×d〈DγA,Dδ A〉qn×d×d �

∣∣∣D (α+β)p+(γ+δ )q
2p+2q A

∣∣∣2p+2q

n×d×d
(1.5)

almost everywhere in V .

In Section 4.1, we show that (1.5) can not hold with the equality sign in general.
Also, we would like to point out that the matrix symmetry assumption is important and
that (1.5) can not hold (in general) for non-symmetric positive definite valued functions,
see Section 4.2. From the analytic point of view, the direction of inequality (1.5) is the
preferred one as the right hand side is non-negative and has a simple structure. Never-
theless, to provide a more complete picture, we investigate also the reverse inequality to
(1.5) in Section 4.3. Using (1.2), we will show that (1.5) is rather a simple consequence
of the following theorem, which is thus our key result.

THEOREM 2. Let A ∈W 1,∞
loc (V ;Rd×d

+ ) . Then, the function

λ �→ ∣∣Dλ A
∣∣
n×d×d , λ ∈ R, (1.6)

is logarithmically convex in the following (strengthened ) sense:
For every α,β ∈ R , there holds

〈DαA,Dβ A〉n×d×d �
∣∣D α+β

2 A
∣∣2
n×d×d a.e. in V. (1.7)



ESTIMATES FOR MULTIPLYING DERIVATIVES OF POSITIVE DEFINITE TENSOR FIELDS 753

Theorem 2 naturally generalizes the scalar case d = 1, u ∈W 1,∞
loc (V ;R+) , where

log |Dλ u|n = λ logu+ log |D logu|n, Du �= 0,

is simply a linear function of λ . Note that (1.7) takes into account the structure of the
Frobenius inner product, unlike the usual definitions of logarithmic convexity which
use only the standard multiplication. We remark that (1.7) implies the logarithmic
convexity of (1.6) in the usual sense, see Lemma 2 below.

It turns out that the heart of the matter is the following inequality.

LEMMA 1. Let B ∈ R
d×d
+ and X ∈ R

d×d , d ∈ N . Then the function

P(x) :=
∫ 1

0
B(1+x)sXB−(1+x)s ds, x ∈ R, (1.8)

satisfies the inequality

〈P(x),P(−x)〉d×d � |P(0)|2d×d for all x ∈ R. (1.9)

We remark that if x = ±1, then (1.9) becomes a Jensen inequality for | · |2d×d .
In Theorems 1 and 2 above, the assumption of local Lipschitz continuity is con-

sidered for convenience since W 1,∞
loc (V ;Rd×d

+ ) is a convex cone that is also closed under
the operation A �→ Aα , α ∈ R (see Lemma 4). At the same time, this setting seems
sufficient for many PDE applications. Our results, of course, continue to hold in any
subset of W 1,∞

loc (V ;Rd×d
+ ) (such as Ck(V ;Rd×d

+ ) , k ∈ N∪ {∞} , or W 1,∞(V ;Rd×d
+ )),

but it may no longer be true that A−1 belongs to the same set as A . On the other
hand, in the last Section 7, we briefly discuss a possible relaxation of the assumption
A ∈W 1,∞

loc (V ;Rd×d
+ ) .

2. Notation

The set R
d×d
sym , d ∈ N , consists of all symmetric matrices A ∈ R

d×d , i.e., those
which fulfil A = AT , where AT is the transpose of A . Furthermore, the set of all
symmetric positive definite matrices R

d×d
+ consists of all A ∈ R

d×d
sym with the property

〈Av,v〉d > 0 for all 0 �= v ∈ R
d . (2.1)

In the special case d = 1, we abbreviate R+ := R
1×1
+ = (0,∞) . Seeing the matrix mul-

tiplication as a composition of linear operators and the matrix transpose as the operator
adjoint, it is not surprising that the identity

〈A1A2A3A4, I〉d×d =〈A1A2A3,A
T
4 〉d×d =〈A1A2,A

T
4 AT

3 〉d×d =〈A2,A
T
1 AT

4 AT
3 〉d×d (2.2)

holds for all A1,A2,A3,A4 ∈ R
d×d , where I is always the identity matrix. Therefore,

since for any B1,B2 ∈ R
d×d
+ , we can write B1 = B

1
2
1 B

1
2
1 and B2 = B

1
2
2 B

1
2
2 (see below),

we obtain, for all A ∈ R
d×d , that

〈B1AB2,A〉d×d =
∣∣B 1

2
1 AB

1
2
2

∣∣2
d×d . (2.3)
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As a consequence of the Schur decomposition, every symmetric (and thus normal)
matrix A admits a spectral decomposition of the form

A = QDQT , (2.4)

where D is a diagonal matrix containing the real eigenvalues {λi}d
i=1 of A and Q

is a unitary matrix of the corresponding eigenvectors, see [6, p. 101] or [8, p. 17].
Then, we can extend the definition of any real function f : R → R to symmetric matrix
arguments via

f (A) = Qf (D)QT , A ∈ R
d×d
sym , (2.5)

where f (D) is diagonal matrix with entries f (Dii) , i = 1, . . . ,d on its diagonal. If the
natural domain of the function f is R+ (such as for xα or logx ), we can still use (2.5)
to define f (A) provided that A ∈ R

d×d
+ . Using definition (2.5), it is easy to see that all

the basic calculus identities remain true also in the matrix case, for example:

AαAβ = Aα+β = Aβ Aα , logAα = α logA, explogA = A, α,β ∈ R. (2.6)

The symbol V always denotes an open subset of R
n , n∈N . Let N ∈N , 1 � p � ∞

and let us recall that the Sobolev space W 1,p(V ;RN) is defined as the set of all functions
u : V → R

N whose distributional gradient can be represented by a locally integrable
function Du and the norm

‖u‖W1,p(V ;RN ) :=
{ (∫

V (|u|pN + |Du|pn×N)
) 1

p if p < ∞;

ess sup
V

(|u|N + |Du|n×N) if p = ∞

is finite. The space W 1,p(V ;Rd×d) is then defined analogously. We refer to [2] for
properties of Sobolev spaces. We define the set W 1,∞

loc (V ;Rd×d
+ ) as

{
A : V → R

d×d
+ : ‖A‖W1,∞(K;Rd×d) < ∞ for all K open with K ⊂V

}
. (2.7)

Although this is not a vector space (it is not closed under subtraction), it has other
useful properties (most importantly, it is invariant with respect to the matrix inverse)
as is shown in Lemma 4 below. It is known that functions from W 1,∞(Rn;Rd×d) are
continuous (up to a null set) and in fact as a consequence of Morrey’s inequalities, it is
not hard to see that W 1,∞

loc (V ;Rd×d) coincides with the traditional space C0,1
loc (V ;Rd×d)

of locally Lipschitz functions, whose classical derivative exists a.e. in V . Nevertheless,
we stick to the notation W 1,∞

loc (V ;Rd×d) (and W 1,∞
loc (V ;Rd×d

+ )), since the definition (2.7)
is easy to work with in what follows.

3. PDE motivation and related results

Our motivation to investigate (1.5) originates from the study of certain non-linear
partial differential equations arising in the theory of viscoelastic fluids. These equations
contain a tensorial function as an unknown and they have been used by physicist and
engineers for a long time, see e.g. [9] or [3]. We refrain from introducing these complex



ESTIMATES FOR MULTIPLYING DERIVATIVES OF POSITIVE DEFINITE TENSOR FIELDS 755

equations in detail here. Instead, we shall present here only an illustrational example
involving a nonlinear Poisson equation with Dirichlet boundary conditions. This ex-
ample nicely demonstrates how (1.5) can be applied to improve information about the
solution.

3.1. Application of (1.5)

Suppose that Ω ⊂ R
3 is an open set with a Lipschitz boundary. Then, let us

consider the boundary value problem

−
3

∑
i=1

Di
(√|DA|3×d×d DiA

)
= F in Ω, (3.1)

A = 0 on ∂Ω, (3.2)

for an unknown function A and with the data satisfying F ∈ L
15
13 (Ω;Rd×d

sym ) (i.e., |F|
15
13
d×d

is Lebesgue-integrable in Ω). Then, we claim that every (distributional) positive defi-
nite solution of (3.1) and (3.2) must actually satisfy

(∫
Ω
|A|45

d×d

) 1
6 +

∫
Ω
|DA3|

5
2
3×d×d � C

(∫
Ω
|F |

15
13
d×d

) 13
3

< ∞ (3.3)

with some C > 0 depending only on Ω . This can be seen by taking the inner product
of both sides of (3.1) with A6 , integrating the result over Ω , integrating by parts and
using (3.2), leading to∫

Ω

√
|DA|3×d×d〈DA,DA6〉3×d×d =

∫
Ω
〈F,A6〉d×d . (3.4)

To get any useful information out of this, one would like to proceed as in the scalar
case: estimate the integrand on the left from below by a simpler expression of the type
|DAλ |r3×d×d . In the matrix case, this seems not so easy. Nevertheless, a straightforward
application of Theorem 1 with p = 1

4 , α = β = 1 and q = 1, γ = 1, δ = 6, gives

√
|DA|3×d×d〈DA,DA6〉3×d×d � 2√

27
|DA3|

5
2
3×d×d . (3.5)

Then, we use the Hölder inequality, the Cauchy-Schwarz inequality and the Sobolev
embedding W 1, 5

2 (Ω;Rd×d
sym ) ↪→ L15(Ω;Rd×d

sym ) to estimate
∫

Ω
〈F,A6〉d×d � ‖F‖

L
15
13 (Ω)

‖A3‖2
L15(Ω) � C‖F‖

L
15
13 (Ω)

‖DA3‖2

L
5
2 (Ω)

.

If we use this inequality together with (3.5) in (3.4) and apply also the inequality

|A|45
d×d � 315|A3|15

d×d (3.6)

(explained below), we easily deduce (3.3).
We would like to point out that although one could test also by the functions of

the type 〈A, I〉λ
d×dI (where the result is easier to manipulate), this can never yield the

control of DA3 as in (3.3).
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3.2. Matrix power and matrix norm “commute”

Note that in the example above, inequality (3.6) was also quite important (besides
(3.5)). While (3.6) may seem obvious after a while, this may be not be the case for
similar inequalities with different natural, rational or even real exponents. However, due
to the next proposition, we can manipulate the powers and norms of positive definite
matrices analogously as in the scalar case, with certain multiplicative constants and up
to one exception.

PROPOSITION 1. Let A ∈ R
d×d
+ . Then the following estimates hold:

|A|d×d � 〈A, I〉d×d �
√

d|A|d×d ; (3.7)

min{1,d
1−α

2 }|A|αd×d � |Aα |d×d � max{1,d
1−α

2 }|A|αd×d for any α � 0; (3.8)

min{d 1
2 ,d

−α
2 }|A|αd×d � |Aα |d×d for any α � 0. (3.9)

Proof. By the Cauchy-Schwarz inequality (in R
d and then in R

d×d ) and Young’s
inequality, we get

|A|d×d =
∣∣A 1

2 A
1
2
∣∣
d×d �

∣∣A 1
2
∣∣2
d×d = 〈A, I〉d×d � |A|d×d |I|d×d =

√
d|A|d×d ,

which proves (3.7).
Next, for α ∈ [0,∞) , we denote σ(α) = ∑d

i=1 λ 2α
i , where λi = Dii and D is

defined in (2.4). If we use concavity of the power function x �→ xα for α ∈ [0,1] twice
(first time in the form εxα � (εx)α , ε ∈ (0,1)), we get the inequality

σ(1)α =
d

∑
i=1

λ 2
i

σ(1)
σ(1)α �

d

∑
i=1

λ 2α
i = σ(α) = d

d

∑
i=1

λ 2α
i

d
� d

( d

∑
i=1

λ 2
i

d

)α
= d1−ασ(1)α .

Thus, since σ(α)
1
2 = |Dα |d×d = |Aα |d×d , we obtain

|A|αd×d = σ(1)
α
2 � σ(α)

1
2 = |Aα |d×d = σ(α)

1
2 � d

1−α
2 σ(1)

α
2 = d

1−α
2 |A|αd×d . (3.10)

Analogously, for α ∈ [1,∞) , the convexity of x �→ xα leads to

d
1−α

2 |A|αd×d � |Aα |d×d � |A|αd×d , (3.11)

which finishes the proof of (3.8).
To prove (3.9), note first that

√
d = |I|d×d = |BB−1|d×d � |B|d×d |B−1|d×d for any B ∈ R

d×d
+ .

Hence, on choosing B = Aα and using the second inequality in (3.8), we get

∣∣Aα ∣∣
d×d �

√
d
∣∣A−α ∣∣−1

d×d �
√

d max{1,d
1+α

2 }−1|A|αd×d = min{d 1
2 ,d− α

2 }|A|αd×d
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and the proof of the proposition is finished. �

The missing upper bound in (3.9) can not hold as can be seen by considering, for
example, the case α = −1 and matrices of the form

A0 =
(

k 0
0 k−1

)
, k ∈ N.

4. Optimality, (counter-)examples and the reverse inequality

In this section, using only simple arguments and examples, we argue that the
assumptions and conclusions of Theorem 1 are optimal in several aspects. To this
end, we will explicitly evaluate both sides of (1.5) in the case d = 2, n = 1, α = 1,
β = 3, p = 1, q = 0, for appropriately chosen functions Ai ∈ W 1,∞

loc (R;R2×2
+ ) . This

case seems ideal as it is particularly easy to evaluate in hand, while exhibiting fully the
non-commutativity of A and DA . It should be intuitively clear that the examples below
and their analogies would work also for the other choices of the parameters d � 2, n ,
α , β , γ , δ , p , q , however proving this rigorously would be too exhaustive. Thus, the
examples and conclusions in this section should be perceived only as strong indications
of optimality of Theorem 1 (and its converse), but nothing more.

4.1. Why (1.5) is only an inequality?

Theorem 1 implies that

〈DA,DA3〉2×2 � 3
4

∣∣DA2
∣∣2
2×2 (4.1)

and we do not hope to improve the factor 3
4 (for general A) since (4.1) is always an

equality if d = 1. However, we may still ask why (4.1) is only an inequality when
d > 1. To answer this, let us consider the function

A1(x) =
(

coshx 1
1 2

)
, x ∈ R.

As coshx � 1 for every x ∈ R , the matrix A1 is positive definite in R . Note also, that
A1 and D1A1 commute only if x = 0. Then, denoting

rA(x) :=
〈DA(x),DA3(x)〉2×2

|DA2(x)|22×2

, x ∈ R, (4.2)

and performing some elementary algebra, we discover that

rA1(x) =
(sinhx)(2sinhx+3cosh2 xsinhx)∣∣∣∣

(
2coshxsinhx sinhx

sinhx 0

)∣∣∣∣
2

2×2

=
3
4

+
1

4+8cosh2 x
,
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Figure 1: Graph of the function rA2 .

which is always strictly greater than 3
4 . This shows that we can not expect (4.1) to hold

with equality, unlike in the scalar case, where r always evaluates to 3
4 , of course. We

support this claim by another, this time only graphical example: see Figure 1 for the
graph of the function rA2 , where

A2(x) =
(

coshx 1
5 sin(5x)

1
5 sin(5x) 1

)
, x ∈ R. (4.3)

There we can see nicely that 3
4 is indeed an optimal lower bound in (4.1) (and that this

remains true even if we restrict x to a smaller domain).

4.2. Matrix symmetry is important

The notion of positive definiteness can be understood also in a more general sense,
without the symmetry requirement (i.e. merely that (2.1) holds). However, in this class
of functions, inequality (1.5) is no longer true, in general. Indeed, for k ∈ N , consider
the non-symmetric matrix

A3(x) =
(

coshx k
0 k2

)
, x ∈ R.

Since, by Young’s inequality, we have

〈A3(x)(a,b),(a,b)〉2 = 〈(coshxa+ kb,k2b),(a,b)〉2 = coshxa2 + kab+ k2b2

�
(
coshx− 1

2

)
a2 + 1

2k2b2 > 0
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for all (a,b) �= (0,0) , the matrix A3(x) is nonsymmetric positive definite for all x ∈ R .
Then, we compute

rA3(x) =
(sinhx)(3cosh2 xsinhx)∣∣∣∣

(
2coshxsinhx k sinhx

0 0

)∣∣∣∣
2

2×2

=
3

4+ k2

cosh2 x

<
3
4
,

which contradicts (4.1). Moreover, as k → ∞ , we have rA3(0) → 0 and thus, there
exists no positive multiplicative constant with which (4.1) could hold. Hence, we see
that the requirement on the symmetry of A is crucial.

4.3. Reverse inequality

To give a complete picture about (1.1)2 and its generalization for symmetric pos-
itive definite functions, we investigate also the reverse inequality to (1.5). Using an
elementary approach, we prove the following result, which however seems optimal.

THEOREM 3. Let α,β ∈ R and A ∈W 1,∞
loc (V ;Rd×d

+ ) . Then

〈DAα ,DAβ 〉n×d×d �
∣∣DA

α+β
2

∣∣2
n×d×d . (4.4)

Proof. For any p,q ∈ N , B ∈W 1,∞
loc (V ;Rd×d

+ ) , we use the product rule, (2.2) and
(2.3) to write

〈
DB2q, DB2p〉

n×d×d =
〈 2q−1

∑
i=0

Bi(DB)B2q−1−i,
2p−1

∑
j=0

Bj(DB)B2p−1− j
〉

n×d×d

=
2q−1

∑
i=0

2p−1

∑
j=0

∣∣B i+ j
2 (DB)Bp+q−1− i+ j

2
∣∣2
n×d×d

=
2p+2q−2

∑
s=0

Q(2q−1,2p−1,s)
∣∣B s

2 (DB)Bp+q−1− s
2
∣∣2
n×d×d , (4.5)

where
Q(b,a,s) = min{b,s}+min{a,s}− s+1

is the number of decompositions of the form v + w = s with v ∈ {0,1, . . . ,b} and
w ∈ {0,1, . . . ,a} . Proceeding completely analogously, we find that

∣∣DBp+q
∣∣2
n×d×d =

2p+2q−2

∑
s=0

Q(p+q−1, p+q−1)
∣∣B s

2 (DB)Bp+q−1− s
2
∣∣2
n×d×d . (4.6)

Hence, using the simple inequality

Q(2q−1,2p−1,s)� Q(p+q−1, p+q−1,s),
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which can be easily verified case by case, we obtain

〈
DB2q,DB2p〉

n×d×d �
∣∣DBp+q

∣∣2
n×d×d .

If we let E ∈W 1,∞
loc (V ;Rd×d

+ ) and choose B = E
1
2q ∈W 1,∞

loc (V ;Rd×d
+ ) (using Lemma 3

below), this leads to

〈
DE,DE

p
q
〉
n×d×d �

∣∣DE(1+ p
q )/2∣∣2

n×d×d , p,q ∈ N.

It can be deduced from (1.2) and from (5.2) below that there is a smooth dependence of
DAλ on λ > 0, hence

〈
DE,DEγ〉

n×d×d �
∣∣DE

1+γ
2

∣∣2
n×d×d , γ > 0, (4.7)

by the density of rational numbers in R . Finally, for any α,β ∈ R such that αβ > 0
we choose γ := α

β > 0 and E := Aβ in (4.7) to get (4.4).
The remaining case αβ � 0 is trivial since the left hand side of (4.4) becomes

non-positive. Indeed, this can be easily seen if we use (1.2), (2.2) and (2.3). �
We remark that the same method (i.e. expanding the powers as in (4.5)) could be

also used to prove (1.5), however, with a sub-optimal multiplicative constant.
Let us consider the function

A4(x) =
(

1 sinx
sinx m

)
, x ∈ [−1,1]. (4.8)

where m > 2. The matrix A4(x) is obviously positive definite for all x ∈ [−1,1] and,
recalling the definition of rA in (4.2), we compute that

rA4(x) =
2cos2 x(m2 +m+1+3sin2 x)∣∣∣∣

(
2sinxcosx (m+1)cosx

(m+1)cosx 2sinxcosx

)∣∣∣∣
2×2

=
m2 +m+1+3sin2 x

m2 +2m+1+4sin2 x
,

hence rA4(0) → 1 as m → ∞ . This example indicates that the multiplicative constant
in (4.4) can not be improved, in general.

Inequality (4.4) is obviously only a partial converse to (1.5) since it misses “half”
of the left hand side (i.e. q = 0). This omission is necessary as, e.g., the inequality

|DA3|2×2|DA|2×2 � C
∣∣DA2

∣∣2
2×2 (4.9)

with some C > 0 can not hold in general. To see this, we choose

A5(x) =
(

2+ cosx sinx
sinx m,

)
, x ∈ R,
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which is a symmetric positive definite matrix for any m > 1, since

〈A5(x)(a,b),(a,b)〉2 = a2(2+ cosx)+2absinx+b2m � a2−2ab+b2m > 0

for all (a,b) �= (0,0) , x ∈ R . Then, we compute

|DA5(π
2 )|2×2|DA3

5(
π
2 )|2×2

|DA2
5(

π
2 )|22×2

=

√
2m2 +16m+229

18
,

which diverges as m → ∞ , violating (4.9) for all C > 0.
Our final remark about Theorem 3 concerns the case αβ < 0. We may ask if

Theorem 3 would still hold in that case if (4.4) was replaced by an inequality

〈DαA,Dβ A〉n×d×d � C
∣∣D α+β

2 A
∣∣2
n×d×d (4.10)

for some C > 0, where the left hand side now becomes positive. The following example
shows that the answer is generally negative. We set α = 1, β = −1, m > 2 and,
recalling (4.8), we evaluate

〈D1A4,D
−1A4〉2×2

|D0A4|22×2

=
−〈DA4,DA−1

4 〉2×2

|D logA4|22×2

=
(m−1)2

m(logm)2 ,

which diverges as m → ∞ , showing that (4.10) can not hold, regardless of how large
C > 0 is.

All the examples above indicate that Theorem 1 and Theorem 3 may not be im-
proved in any obvious way.

5. Proofs of the main results

We start by proving Lemma 1, which is the cornerstone of our estimates. Note that
its conclusion is trivial if the matrices B and X commute (as in the case d = 1).

Proof of Lemma 1. Let us define the function

f (x) =
〈∫ 1

0
B(1+x)sXB−(1+x)s ds,

∫ 1

0
B(1−x)sXB−(1−x)s ds

〉
d×d

, x ∈ R. (5.1)

Using the formula (which is standard in the ODE theory)

d
dx

exp(xY ) = Y exp(xY ) = exp(xY )Y, Y ∈ R
d×d ,

we find, for any a,b ∈ R that

d
dx

Aa+bx =
d
dx

exp
(
(a+bx) logA

)
= bAa+bx logA = b logAAa+bx, (5.2)
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where A∈R
d×d
+ . From this we can deduce that f is a smooth function in R . Moreover,

due to the commutativity of the inner product appearing in (5.1), the function f is even
(and hence f ′(0) = 0). That x = 0 is a point of global minimum of f then follows
from convexity of f , which we now prove by showing that f ′′ � 0 in R .

Using (2.2) and the symmetry of B , we can write

f (x) =
∫ 1

0

∫ 1

0
〈Bs+t+(s−t)xXB−s−t−(s−t)x,X〉d×d dsdt.

Thus, setting xst := s+ t +(s− t)x , L := logB and using (5.2), (2.2), we get

f ′(x) =
∫ 1

0

∫ 1

0
(s− t)〈LBxst XB−xst −Bxst XB−xst L,X〉d×d dsdt

=
∫ 1

0

∫ 1

0
(s− t)〈Bxst XB−xst ,LX −XL〉d×d dsdt.

Furthermore, relying on (2.2) and (2.3), we find that

f ′′(x) =
∫ 1

0

∫ 1

0
(s− t)2〈Bxst XB−xst ,L2X −LXL〉d×d dsdt

−
∫ 1

0

∫ 1

0
(s− t)2〈Bxst XB−xst ,LXL−XL2〉d×d dsdt

=
∫ 1

0

∫ 1

0
(s− t)2

∣∣B 1
2 xst LXB− 1

2 xst
∣∣2
d×d dsdt

−2
∫ 1

0

∫ 1

0
(s− t)2〈B 1

2 xst LXB− 1
2 xst ,B

1
2 xst XLB− 1

2 xst
〉
d×d dsdt

+
∫ 1

0

∫ 1

0
(s− t)2

∣∣B 1
2 xst XLB− 1

2 xst
∣∣2
d×d dsdt

=
∫ 1

0

∫ 1

0

∣∣(s− t)B
1
2 xst (LX −XL)B− 1

2 xst
∣∣2
d×d dsdt

is non-negative for all x ∈ R , which proves the convexity of f and, consequently, that
f (x) � f (0) for all x ∈ R . Rewriting this using (5.1) and (1.8), we arrive at (1.9). �

In the next proof, we apply Lemma 1 in its explicit form

〈∫ 1

0
B(1+x)sXB−(1+x)sds,

∫ 1

0
B(1−x)sXB−(1−x)s ds

〉
d×d

�
∣∣∣
∫ 1

0
BsXB−s ds

∣∣∣2
d×d

. (5.3)

Proof of Theorem 2. Let us first exclude the case α +β = 0. We set λ := −α+β
2 ,

x := α−β
α+β and apply (1.2) (proved in Lemma 4 below) twice, properties of the matrix
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power, (2.2) and inequality (5.3) to get

〈
DαA,Dβ A

〉
n×d×d =

〈∫ 1

0
Aα(1−s)(D0A)Aαs ds,

∫ 1

0
Aβ (1−s)(D0A)Aβ s ds

〉
n×d×d

=
〈∫ 1

0
A−αs(A α+β

2 D0A
)
Aαs ds,

∫ 1

0
A−β s(A α+β

2 D0A
)
Aβ s ds

〉
n×d×d

=
〈∫ 1

0
(Aλ )(1+x)s(A α+β

2 D0A
)
(Aλ )−(1+x)s ds,

∫ 1

0
(Aλ )(1−x)s(A α+β

2 D0A
)
(Aλ )−(1−x)s ds

〉
n×d×d

�
∣∣∣
∫ 1

0
(Aλ )s(A α+β

2 D0A
)
(Aλ )−s ds

∣∣∣2
n×d×d

=
∣∣∣
∫ 1

0
A

α+β
2 (1−s)(D0A)A

α+β
2 s ds

∣∣∣2
n×d×d

=
∣∣D α+β

2 A
∣∣2
n×d×d .

In the case α + β = 0, we use |X |d×d = |XT |d×d and symmetry of A , D0A , then
we apply the Cauchy-Schwarz inequality, (2.2), (2.3) and get

〈DαA,Dβ A〉n×d×d

=
〈∫ 1

0
Aα(1−s)(D0A)Aαs ds,

∫ 1

0
Aβ (1−s)(D0A)Aβ s ds

〉
n×d×d

=
∫ 1

0

∫ 1

0

〈
A−αs(D0A)Aαs,A−β t(D0A)Aβ t〉

n×d×d dsdt

=
∫ 1

0

∫ 1

0

∣∣A− 1
2 (αs+β t)(D0A)A

1
2 (αs+β t)∣∣2

n×d×d dsdt

=
∫ 1

0

∫ 1

0

∣∣A− 1
2 (αs+β t)(D0A)A

1
2 (αs+β t)∣∣

n×d×d

∣∣A 1
2 (αs+β t)(D0A)A− 1

2 (αs+β t)∣∣
n×d×d dsdt

�
∫ 1

0

∫ 1

0

〈
A− 1

2 (αs+β t)(D0A)A
1
2 (αs+β t),A

1
2 (αs+β t)(D0A)A− 1

2 (αs+β t)〉
n×d×d dsdt

= |D0A|2n×d×d =
∣∣D α+β

2 A
∣∣2
n×d×d .

Hence, the property (1.7) follows and Theorem 2 is proved. �

Up to some auxiliary results, Theorem 1 is an easy consequence of Theorem 2.

Proof of Theorem 1. The identity (1.4) is a direct consequence of (1.2) (proved in
Lemma 4 below) and of (2.2) since

〈DαA,Aβ 〉d×d =
〈∫ 1

0
Aα(1−s)(D0A)Aαs ds,Aβ

〉
d×d

=
∫ 1

0

〈
Aα(1−s)(D0A)Aαs,Aβ (1−s)+β s〉

d×d ds

=
∫ 1

0

〈
A(α+β )(1−s)(D0A)A(α+β )s, I

〉
d×d ds = 〈Dα+β A, I〉d×d .
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To prove (1.5), we apply (1.7) of Theorem 2 twice and then we use the logarithmic
convexity of λ �→ |Dλ A|n×d×d , which follows from (1.7) (see Lemma 2 below):

〈DαA,Dβ A〉p
n×d×d〈DγA,Dδ A〉qn×d×d �

∣∣D α+β
2 A

∣∣2p
n×d×d

∣∣D γ+δ
2 A

∣∣2q
n×d×d

=
(∣∣D α+β

2 A
∣∣ p

p+q
n×d×d |D

γ+δ
2 A|

q
p+q
n×d×d

)2p+2q

�
∣∣D α p+β p+γq+δq

2p+2q A
∣∣2p+2q
n×d×d . �

We remark that by iterating the above argument, it is of course possible to include
more terms of the same form in the product on the left hand side of (1.5).

Note also that the special case of (1.4) recovers the Jacobi’s formula. Indeed, de-
composition (2.4) and properties of the matrix determinant, imply that 〈 logA, I〉d×d =
logdetA . This, together with (1.4) for α = 1, β = −1 gives

〈DA,A−1〉d×d = D logdetA, A ∈W 1,∞
loc (V ;Rd×d

+ ). (5.4)

6. Auxiliary results

As we suggested above, the strengthened logarithmic convexity provided by The-
orem 2 yields the logarithmic convexity for functions of the form λ �→ |X(λ )|n×d×d .

LEMMA 2. Let H be a real vector space with the scalar product 〈·, ·〉H and the
corresponding norm | · |H :=

√〈·, ·〉H . Let the function X : R → H be such that |X |H
is Lebesgue-measurable in R and

∣∣X(α+β
2 )

∣∣2
H � 〈X(α),X(β )〉H for all α,β ∈ R. (6.1)

Then |X |H is logarithmically convex.

Proof. Let ε > 0. If we apply (6.1), the Cauchy-Schwarz inequality and the Young
inequality in that order, we arrive at

(
ε +

∣∣X(α+β
2 )

∣∣
H

)2 �
(
ε +

√
〈X(α),X(β )〉H

)2 �
(
ε + |X(α)|

1
2
H |X(β )|

1
2
H

)2

= ε2 +2ε|X(α)|
1
2
H|X(β )|

1
2
H + |X(α)|H |X(β )|H

� ε2 + ε|X(α)|H + ε|X(β )|H + |X(α)|H |X(β )|H
=

(
ε + |X(α)|H

)(
ε + |X(β )|H

)
.

Then, taking the logarithm of both sides of this inequality, we obtain

log
(
ε +

∣∣X(α+β
2 )

∣∣
H

)
� 1

2
log

(
ε + |X(α)|H

)
+

1
2

log
(
ε + |X(β )|H

)
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for all α,β ∈ R , which shows that the real function

�ε : λ �→ log
(
ε + |X(λ )|H

)
is midpoint convex in R . Since the function �ε is a composition of a smooth function
with the measurable function |X |H , it is itself measurable. Hence, midpoint convexity
of �ε is equivalent to convexity of �ε by the Blumberg-Sierpiński theorem. This gives

log
(
ε +

∣∣X(
(1−λ )α + λ β

)∣∣
H

)
� (1−λ ) log

(
ε + |X(α)|H

)
+ λ log

(
ε + |X(β )|H

)
,

which is equivalent to

ε +
∣∣X(

(1−λ )α + λ β
)∣∣

H �
(
ε + |X(α)|H

)1−λ (
ε + |X(β )|H

)λ

and by taking the limit ε → 0+ , we get
∣∣X(

(1−λ )α + λ β
)∣∣

H � |X(α)|1−λ
H |X(β )|λH

for all α,β ∈R and λ ∈ [0,1] , which is the desired logarithmic convexity of |X |H . �
We further remark that there are functions X , for which |X |H is logarithmically

convex, but the property (6.1) does not hold, indicating that (6.1) is a rather strong
notion of logarithmic convexity for functions of the form λ �→ |X(λ )|H . Indeed, let us
consider the function

X(λ ) =
(

sinhλ 1
0 0

)
, λ ∈ R.

Then
|X(λ )|2×2 =

√
sinh2 λ +1 = coshλ

is logarithmically convex in R since (logcoshλ )′′ = (coshλ )−2 > 0, but

〈X(0),X(2)〉2×2 = 1 < 1+ sinh2 1 = |X(1)|22×2,

violating (6.1).
To prove the following lemma, we use different representations of the basic matrix

functions than those which were introduced by (2.5). These representations are much
more useful from the analytic point of view.

LEMMA 3. Let a,b > 0 and α ∈ R . If A ∈W 1,∞
loc (V ;Rd×d

+ ) , then aA+bB, Aα ∈
W 1,∞

loc (V ;Rd×d
+ ) and logA ∈ W 1,∞

loc (V ;Rd×d
sym ) . Furthermore, if A ∈ C1(V ;Rd×d

+ ) , then

aA+bB, Aα ∈C1(V ;Rd×d
+ ) and logA ∈C1(V ;Rd×d

sym ) .

Proof. It is obvious that aA+bB∈W 1,∞
loc (V ;Rd×d) . Moreover, we have

〈(aA+bB)v,v〉d = a〈Av,v〉d +b〈Bv,v〉d > 0 for all 0 �= v ∈ R
d (6.2)

in V , and thus W 1,∞
loc (V ;Rd×d

+ ) is a convex cone.
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Next, we shall prove that A−1 ∈W 1,∞
loc (V ;Rd×d

+ ) . Note that the property

〈Av,v〉d > 0 for all 0 �= v ∈ R
d (6.3)

holds everywhere in V since A is continuous in V . Hence, we deduce that the eigen-
values of A are all positive everywhere in V and therefore, the matrix inverse A−1

exists everywhere in V and it is again a positive definite matrix. Moreover, the func-
tion A−1 : V → R

d×d
+ obtained hereby is locally bounded. To see this, let us define the

function ρ : R
d×d
+ → R+ by

ρ(B) := min{λ : det(λ I−B) = 0}, B ∈ R
d×d
+ .

It is a well known fact that the spectrum of a matrix depends continuously on its entries
(see, e.g., [6, p. 539]), and thus ρ is continuous. From this and the continuity of A
we deduce that also the composition ρ ◦A : V → R+ is continuous. Thus, the function
ρ ◦A attains its minimum mK > 0 on any compact subset K of V . Hence, using (2.5),
we can estimate

|A−1|d×d = |QD−1QT |d×d = |D−1|d×d � d
ρ ◦A

� d
mK

in K,

which proves the local boundedness of A−1 . Hence, the product A−1(DA)A−1 is well
defined and locally bounded a.e. in V . Next, for any B ∈C1(V ;Rd×d

+ ) , we can write

DB−1 = B−1B(DB−1) = B−1D(BB−1)−B−1(DB)B−1 = −B−1(DB)B−1.

If we apply this identity for B = Aε := A∗ηε , where ηε , ε > 0, is a standard mollifi-
cation kernel (note also that Aε fulfils (6.3) in V ), we arrive, integrating also by parts,
at

−
∫
V
〈A−1

ε (DAε)A−1
ε ,Φ〉d×d =

∫
V
〈DA−1

ε ,Φ〉d×d = −
∫
V
〈A−1

ε ,DΦ〉d×d (6.4)

for all compactly supported Φ ∈C∞(V ;Rd×d) . Then, using the standard approximation
properties of Aε , we take the limit ε → 0+ on both sides of (6.4) to find

−
∫
V
〈A−1(DA)A−1,Φ〉d×d = −

∫
V
〈A−1,DΦ〉d×d .

for all Φ as above. This implies that A−1 ∈W 1,∞
loc (V ;Rd×d

+ ) and

DA−1 = −A−1(DA)A−1 a.e. in V.

Next, we prove that logA ∈W 1,∞
loc (V ;Rd×d

sym ) . It follows from the properties proved

so far that ((1− s)I + sA)−1 ∈W 1,∞
loc (V ;Rd×d

+ ) for any s ∈ [0,1] . Then, we invoke the
well known integral representation of the matrix logarithm

logA =
∫ 1

0
((1− s)I + sA)−1(A− I)ds, A ∈ R

d×d
+ , (6.5)
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which can be easily verified by using (2.4) on the right hand side of (6.5), evaluating the
integrals on the diagonal and finally applying (2.5) (see [4, p. 269] or [5, Exc. 2.3.9],
cf. also [11]). Moreover, by applying the derivative to (6.5) (more precisely, by writing
(6.5) for the mollification of A , applying the derivative and then taking the limit as
above), one can deduce that

D logA =
∫ 1

0
((1− s)I + sA)−1DA((1− s)I + sA)−1 ds a.e. in V, (6.6)

cf. [4, (11.10)], from which we readily see that logA ∈W 1,∞
loc (V ;Rd×d

sym ) .
It remains to deal with the general matrix power Aα . To this end, we recall that

the function exp can be given by the everywhere convergent matrix power series

expX =
∞

∑
k=0

1
k!

Xk, X ∈ R
d×d . (6.7)

Then, it is standard to show that exp: R
d×d →R

d×d is a smooth map (cf. [5, Sec. 2.1.])
and that it takes R

d×d
sym into R

d×d
+ . Hence, by the virtue of the formula

Aα = explogAα = exp(α logA), (6.8)

which follows from (2.6), we finally conclude Aα ∈W 1,∞
loc (V ;Rd×d

+ ) .
The proof of Lemma 3 for A∈C1(V ;Rd×d

+ ) is analogous and is thus omitted. �

Due to Lemma 3, the set W 1,∞
loc (V ;Rd×d

+ ) provides a very convenient setting for our
results. Moreover, this setting is advantageous in PDE applications since if a solution
of some system is expected to be at least weakly differentiable, it can be always con-
structed (at least locally) as a limit of some approximating sequence, consisting of Lips-
chitz continuous functions (constructed, e.g., by a convolution, by a semi-discretization,
by the approximation lemma from [1] etc.). Frequently, the solution inherits certain
properties of the approximating sequence, in particular, inequalities are often preserved
by a weak convergence. Then it is enough to apply our results to such approximations.

Our last result concerns the representation formula for DAα (or DαA) that was
stated already in (1.2) and used frequently thereafter. In a different context, this formula
for α = 1 can be found in [4, (11.9)].

LEMMA 4. Let A ∈W 1,∞
loc (V ;Rd×d

+ ) and α ∈ R . Then, the identity

DαA =
∫ 1

0
Aα(1−s)(D logA)Aαs ds (6.9)

holds almost everywhere in V .

Proof. It is well known (see [10, (2.1)] and references therein, cf. also [4, (10.15)])
that the formula

DexpX =
∫ 1

0
exp((1− s)X)DX exp(sX)ds (6.10)
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holds in the classical sense, i.e., for X ∈C1(V ;Rd×d
sym ) . Moreover, if A ∈C1(V ;Rd×d

+ ) ,
Lemma 2 yields logA ∈C1(V ;Rd×d

sym ) . Then (6.9) follows if we choose X = logAα =
α logA in (6.10), using (6.8). In the general case A ∈ W 1,∞

loc (V ;Rd×d
+ ) , we can again

approximate A by its convolution Aε , hereby obtaining
∫
V
〈DαAε ,Φ〉d×d =

∫
V

〈∫ 1

0
Aα(1−s)

ε (D logAε)Aαs
ε ds,Φ

〉
d×d

(6.11)

for all Φ ∈C∞(V ;Rd×d) compactly supported. Then, since DαA and D logA are well
defined and locally bounded due to Lemma 3, it is standard to take the limit in (6.11),
obtaining (6.9). �

7. Concluding remarks

We provided the most basic calculus for locally Lipschitz continuous functions
whose codomain is the set of symmetric positive definite matrices. It was shown that,
although we need to relieve from the equality sign in (1.1)2 , our results are optimal in
many aspects. We illustrated that our results apply directly in the theory of tensorial
partial differential equations, also due to a rather mild smoothness assumption A ∈
W 1,∞

loc (V ;Rd×d
+ ) . Nevertheless, we would like to remark that this assumption can be

further relaxed if needed.
Focusing, e.g., on (1.5) and replacing the space W 1,∞

loc (V ;Rd×d
+ ) by W 1,r

loc (V ;Rd×d
+ )

for certain 1 � r < ∞ , we need to face two additional issues. First, we have to en-
sure that the left hand side of (1.5) is well defined and locally integrable (so that it can
be well approximated by smooth functions). When this actually happens depends cru-
cially, of course, on the exponents α , β , γ , δ , but also on n and V (due to Sobolev
embeddings) and the complete characterization would get too complicated. The second
issue may occur in the case where some of the exponents α , β , γ , δ are negative. Note
that A ∈W 1,r

loc (V ;Rd×d
+ ) no longer implies continuity of A if r � n , and A−1 may then

develop singularities inside V even if A is positive definite in V . Hence, in this situa-
tion, one has to introduce additional assumptions, such as A−1 ∈W 1,q

loc (V ;Rd×d
+ ) with

appropriately chosen q . Then, the idea is to use (1.5) for the approximation (A+ εI)ε
and pass to the limit ε → 0+ . Another obvious remedy is assuming the uniform posi-
tive definiteness, i.e., that there exists λ > 0, such that 〈Av,v〉d � λ |v|2d for all v ∈ R

d .
A detailed treatment of these modifications is omitted, as we believe that the setting
provided by the space W 1,∞

loc (V ;Rd×d
+ ) is sufficiently general.

It seems that the proof of Theorem 1 illuminates several interesting mathematical
results of a more abstract nature. These results would be difficult to conjecture based
only on their scalar version. For example, although the function λ �→ log | 1

λ DAλ |n×d×d

is linear if d = 1, there seems to be no obvious reason, why the same function should
be convex if d > 1 (as claimed in Theorem 2). Next, while it is easy to see that the
scalar function p fulfils (1.9) if and only if the even part of the function log p attains its
global minimum at 0, such a characterization becomes quite ambiguous in the tensorial
case, although the form of the inequality (1.9) remains the same. Here it seems that
the choice of the inner product on R

d×d plays a prominent role and in our case, the
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Frobenius inner product is considered as it arises naturally in the PDE applications (cf.
Section 3). Note that Lemma 1 provides only one example of matrix function (although
quite non-trivial) satisfying (1.9), while again this example is of no value in the scalar
case. It thus seems that there is plenty of room for further exploration.
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