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Abstract. Two Chernoff-type inequalities are obtained by Fourier series expansion, and a conjec-
ture on the reverse isoperimetric inequality made by Pan et al. [Math. Inequal. Appl. 13 (2010),
329–338] is proved as an application of these inequalities. Furthermore, stability versions of the
inequalities are obtained based on the Hausdorff distance and the L2 metric, respectively.

1. Introduction

A compact convex set K in the n -dimensional Euclidean space R
n is called a con-

vex body if it has a non-empty interior. When n = 2, it is called a planar convex body.
For a planar convex body K with perimeter LK and area AK , the classical isoperimetric
inequality states that

L2
K −4πAK � 0, (1)

where equality holds if and only if K is a disc. There have been many proofs, sharpened
forms, generalizations, and applications of the classical isoperimetric inequality (1);
see, for instance, [1, 4, 8, 13, 17] and the literature therein.

Let K be a planar convex body with area AK . In 1969, Chernoff [2] proved the
following inequality involving the width function w(K,θ ) of K :

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � 2AK , (2)

where equality holds if and only if K is a disc. His proof was based on a Fourier series
expansion derived from Hurwitz’s method (see Courant [3, p. 213] or Groemer [9,
pp. 135–136]) for proving the classical isoperimetric inequality (1). Results in higher
dimensions and recent works on this topic can be found in Lutwak [11], Mao and Yang
[12], Ou and Pan [14], Zhang [18], and Zhang and Yang [19], among others.

Pan and Zhang [16] established the following reverse isoperimetric inequality for
a planar convex body K with perimeter LK and area AK :

L2
K � 4π(AK + |ÃK|),
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where ÃK is the oriented area of K (see Section 2) and equality holds if and only if K
is a disc. Pan et al. [15] improved the above result to

L2
K � 4πAK +2π |ÃK|,

and they also conjectured that the inequality

L2
K � 4πAK + ε|ÃK | (3)

holds for the best constant ε = π . Gao [5] showed that the inequality (3) does indeed
hold and proved that it is sharp. He also pointed out that equality holds in (3) if and
only if the support function of K is of the form

h(K,θ ) =
a0

2
+a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ (4)

for certain real numbers a0 , a1 , a2 , b1 and b2 . This means that K is not necessarily a
disc. Gao et al. [7] systematically studied the planar convex body with support function
(4) and showed that its boundary is a polynomial curve with degree at most 6. For
example, if the support function of K is h(K,θ ) = 10+ 2cos2θ (see Figure 1), then
the boundary ∂K has the following simplified polynomial representation (see [7, pp.
458–459]):

y6 +(3x2−400)y4 +(3x4−512x2 +53248)y2 + x6 +320x4 +12288x2 = 2359296.

Figure 1: Planar convex body with support function h(K,θ ) = 10+2cos 2θ .

To derive a stronger version of (2), Gao and Wang [6] obtained its stability versions
based on the Hausdorff distance and the L2 metric (see Section 2) between two planar
convex bodies.

In this short paper, we focus on the inequality (2) and consider the following ques-
tion:

QUESTION 1. Does the inequality (2) have a sharpened form and an appropriate
reverse version?
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Inspired by the work of Chernoff [2] and of Ou and Pan [14], we give the answer
to this question and derive the following two Chernoff-type inequalities:

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � L2

K +2πAK

3π
(5)

and

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � 2AK +

1
3
|ÃK |, (6)

where equalities hold in (5) and (6) if and only if the planar convex body has support
function (4), that is, the boundary is a polynomial curve with degree at most 6.

Obviously, the inequality (5) is a sharpened form of (2) through the classical
isoperimetric inequality (1), and the inequality (6) is a reverse version of (2). As a
by-product, we give another proof of the reverse isoperimetric inequality (3) using the
inequalities (5) and (6).

The other aim of this paper is to derive stability versions of the two Chernoff-type
inequalities based on the Hausdorff distance and the L2 metric, respectively.

2. Preliminaries

Denote by R
n the usual n -dimensional Euclidean space with canonical inner prod-

uct 〈·, ·〉 . A line l is called a support line of a planar convex body K if it passes through
at least one boundary point of K and if the entire planar convex body K lies in one of
the half-planes determined by l . Let l(θ ) be the support line of K in the direction
u(θ ) = (cosθ ,sinθ ) , where θ is the oriented angle from the positive x axis to a line
perpendicular to l(θ ) . The support function of K is defined by

h(K,θ ) = sup
x∈K

〈x,u(θ )〉, θ ∈ [0,2π ].

It is easy to see that h(K,θ ) is the signed distance of the support line l(θ ) of K with
exterior normal vector u(θ ) from the origin.

If the support function h(K,θ ) is differentiable, then the boundary of K , ∂K , can
be parameterized by (see Hsiung [10, p. 115])

x(θ ) = h(K,θ )cosθ −h′(K,θ )sinθ ,

y(θ ) = h(K,θ )sinθ +h′(K,θ )cosθ .

The radius of curvature ρ(θ ) of ∂K at the point (x(θ ),y(θ )) is given by h(K,θ )+
h′′(K,θ ) when h(K,θ ) is a twice-differentiable function. Thus, the convexity of K is
equivalent to the condition h(K,θ )+ h′′(K,θ ) > 0. The width function of K is given
by

w(K,θ ) = h(K,θ )+h(K,θ + π).
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The length LK and area AK of a planar convex body K can be expressed as

LK =
∫ 2π

0
h(K,θ )dθ ,

AK =
1
2

∫ 2π

0
h(K,θ )(h(K,θ )+h′′(K,θ ))dθ =

1
2

∫ 2π

0
(h(K,θ )2−h′(K,θ )2)dθ .

They are known as Cauchy’s formula and Blaschke’s formula (see [10, pp. 115–116]),
respectively. Since h(K,θ ) is continuous, bounded, and 2π -periodic, it has a Fourier
series expansion

h(K,θ ) =
a0

2
+

∞

∑
n=1

(an cosnθ +bn sinnθ ), (7)

where

a0 =
1
π

∫ 2π

0
h(K,θ )dθ

and

an =
1
π

∫ 2π

0
h(K,θ )cosnθ dθ , bn =

1
π

∫ 2π

0
h(K,θ )sinnθ dθ , n ∈ Z

+.

Differentiation of (7) with respect to θ gives

h′(K,θ ) =
∞

∑
n=1

n(−an sinnθ +bn cosnθ ). (8)

Thus, by (7), (8), and Parseval’s identity (see [9, p. 61 (3.1.4)]), LK and AK can also
be expressed as

LK = πa0, (9)

AK =
πa2

0

4
+

π
2

∞

∑
n=2

(1−n2)(a2
n +b2

n). (10)

Let γ represent the locus of the centers of curvature of ∂K . Then γ(θ ) = (γ1(θ ),γ2(θ ))
can be expressed as

γ(θ ) = (x(θ ),y(θ ))−ρ(θ )u(θ )
= (−h′(K,θ )sinθ −h′′(K,θ )cosθ ,h′(K,θ )cosθ −h′′(K,θ )sinθ ).

By Green’s formula, the oriented area ÃK of K (i.e., the oriented area enclosed by γ )
is given by (see [16, Pro.3.1])

ÃK =
1
2

∫ 2π

0
h′(K,θ )(h′(K,θ )+h′′′(K,θ ))dθ =

1
2

∫ 2π

0
(h′(K,θ )2 −h′′(K,θ )2)dθ .

Similarly to (10), we obtain

ÃK =
π
2

∞

∑
n=2

n2(1−n2)(a2
n +b2

n). (11)
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Obviously, the oriented area ÃK of K is non-positive.
Generally, for planar convex bodies K and L with respective support functions

h(K,θ ) and h(L,θ ) , the functions most frequently used to measure the deviation be-
tween K and L are the Hausdorff distance

h1(K,L) = max
θ

|h(K,θ )−h(L,θ )|

and the L2 metric

h2(K,L) =
(∫ 2π

0
|h(K,θ )−h(L,θ )|2 dθ

) 1
2

.

3. Two Chernoff-type inequalities

In this section, we first show a stronger version of the Chernoff inequality (2) and
obtain a reverse Chernoff-type inequality, and then we give another proof of the reverse
isoperimetric inequality (3).

THEOREM 1. If K is a planar convex body with perimeter LK and area AK , then

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � L2

K +2πAK

3π
, (12)

where equality holds if and only if the support function of K is of the form (4).

Proof. Since w(K,θ ) = h(K,θ )+ h(K,θ + π) , by variable substitution and the
fact that h(K,θ ) is periodic with period 2π ,

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ =

3

∑
i=0

∫ (i+1)π
2

iπ
2

h(K,θ )h
(
K,θ +

π
2

)
dθ

=
∫ 2π

0
h(K,θ )h

(
K,θ +

π
2

)
dθ . (13)

If h(K,θ ) has the Fourier expansion

h(K,θ ) =
a0

2
+

∞

∑
n=1

(an cosnθ +bn sinnθ ), (14)

then

h
(
K,θ +

π
2

)
=

a0

2
+

∞

∑
n=1

((
an cos

nπ
2

+bn sin
nπ
2

)
cosnθ

+
(
bn cos

nπ
2

−an sin
nπ
2

)
sinnθ

)
. (15)
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From (14), (15), and a version of Parseval’s theorem (see [9, p. 61 (3.1.5)]), it follows
that ∫ 2π

0
h(K,θ )h

(
K,θ +

π
2

)
dθ =

πa2
0

2
+

∞

∑
n=2

π(a2
n +b2

n)cos
nπ
2

, (16)

which, together with (9), (10), and (13), yields∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ − L2

K +2πAK

3π
=

∞

∑
n=2

π
(

cos
nπ
2

+
n2−1

3

)
(a2

n +b2
n).

(17)
Since cos nπ

2 + n2−1
3 is equal to 0 for n = 2 and is larger than 0 for n = 3,4, . . . , (12)

follows, and equality holds in (12) only when an = bn = 0 for n = 3,4, . . . . �

REMARK 1. By (12) and the improved isoperimetric inequality (see [20, Thm.
3.4])

L2
K � 4πAK +8π |Ãw(K)|,

where Ãw(K) is the oriented area of the Wigner caustic of K , we obtain∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � 2AK +

8
3
|Ãw(K)|,

which is stronger than the inequality (see [18, Cor. 3.4 (3.14)])∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � 2AK +2|Ãw(K)|.

THEOREM 2. If K is a planar convex body of area AK , then∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � 2AK +

1
3
|ÃK |, (18)

and equality holds if and only if the support function of K is of the form (4).

Proof. From (10), (11), (13), and (16), it follows that

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ −2AK − 1

3
|ÃK |

=
∞

∑
n=2

π
(

cos
nπ
2

− (n2−6)(n2−1)
6

)
(a2

n +b2
n). (19)

Since cos nπ
2 − (n2−6)(n2−1)

6 is equal to 0 for n = 2 and is less than 0 for n = 3,4, . . . ,
(18) follows, and equality holds in (18) only when an = bn = 0 for n = 3,4, . . . . �

Using Theorems 1 and 2, we obtain the reverse isoperimetric inequality (3) (see
[5, Thm. 1.3]).

COROLLARY 1. If K is a planar convex body of perimeter LK and area AK , then

L2
K � 4πAK + π |ÃK|,

and equality holds if and only if the support function of K is of the form (4).
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4. Stability versions of the two Chernoff-type inequalities

Let K be a planar convex body and let v(θ ) = (cos2θ ,sin2θ ) . A planar convex
body P(K) is called a polynomial body associated with K if its support function is of
the form

h(P(K),θ ) =
a0

2
+a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ ,

where

a0 =
1
π

∫ 2π

0
h(K,θ )dθ ,

(a1,b1) =
1
π

∫ 2π

0
u(θ )h(K,θ )dθ

and

(a2,b2) =
1
π

∫ 2π

0
v(θ )h(K,θ )dθ .

If we denote by h1(K) and h2(K) , respectively, the Hausdorff distance and the L2

metric between K and P(K) then, since

|h(K,θ )−h(P(K),θ )|=
∣∣∣∣∣

∞

∑
n=3

(an cosnθ +bn sinnθ )

∣∣∣∣∣�
∞

∑
n=3

|an cosnθ +bn sinnθ |,

we get that

h2(K)2 =
∞

∑
n=3

π(a2
n +b2

n) (20)

and

h1(K) �
∞

∑
n=3

√
a2

n +b2
n. (21)

Next, we shall use the Hausdorff distance and the L2 metric to prove stability
versions of the two Chernoff-type inequalities in Theorems 1 and 2.

THEOREM 3. Let K be a planar convex body with perimeter LK and area AK .
Then ∫ π

2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ − L2

K +2πAK

3π
� 8

3
h2(K)2,

where equality holds if and only if the support function of K is of the form

h(K,θ ) =
a0

2
+a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ +a3 cos3θ +b3 sin3θ .
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Proof. By (17) and (20), we obtain∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ − L2

K +2πAK

3π

=
∞

∑
n=3

π
(

cos
nπ
2

+
n2−1

3

)
(a2

n +b2
n)

� 8
3

∞

∑
n=3

π(a2
n +b2

n) =
8
3
h2(K)2,

where equality holds if and only if an = bn = 0 for n � 4. �

THEOREM 4. Let K be a planar convex body with perimeter LK and area AK .
Then ∫ π

2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ − L2

K +2πAK

3π
� 16π

25
h1(K)2. (22)

Proof. From (17), (21), and Hölder’s inequality, it follows that∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ − L2

K +2πAK

3π

=
∞

∑
n=3

π
(

cos
nπ
2

+
n2−1

3

)
(a2

n +b2
n)

�
∞

∑
n=3

π
3

(n2−4)(a2
n +b2

n)

� π

(
∞

∑
n=3

3
n2−4

)−1( ∞

∑
n=2

√
a2

n +b2
n

)2

=
16π
25

h1(K)2. � (23)

THEOREM 5. Let K be a planar convex body with area AK . Then

2AK +
1
3
|ÃK |−

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � 4h2(K)2,

and equality holds if and only if the support function of K is of the form

h(K,θ ) =
a0

2
+a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ +a3 cos3θ +b3 sin3θ .

Proof. By (19) and (20), we have

2AK +
1
3
|ÃK |−

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ

=
∞

∑
n=3

π
(

(n2 −6)(n2−1)
6

− cos
nπ
2

)
(a2

n +b2
n)

� 4
∞

∑
n=3

π(a2
n +b2

n) = 4h2(K)2,

where equality holds if and only if an = bn = 0 for n � 4. �
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THEOREM 6. Let K be a planar convex body with area AK . Then

2AK +
1
3
|ÃK |−

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ � 7Λπ

6
h1(K)2, (24)

where Λ =
(

51
28 − π cot(

√
7π)

2
√

7
− π2

6

)−1
≈ 2.1318 .

Proof. From (19) and (21), it follows that

2AK +
1
3
|ÃK |−

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ

=
∞

∑
n=3

(n2−6)(n2−1)
6

π(a2
n +b2

n)−
∞

∑
l=2

π(−1)l(a2
2l +b2

2l)

�
∞

∑
n=3

(
(n2−6)(n2−1)

6
−1

)
π(a2

n +b2
n)

=
∞

∑
n=3

(n2−7)n2

6
π(a2

n +b2
n),

which, together with Hölder’s inequality, yields

2AK +
1
3
|ÃK |−

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ

� π

(
∞

∑
n=3

6
(n2−7)n2

)−1( ∞

∑
n=3

√
a2

n +b2
n

)2

=
7π
6

(
∞

∑
n=3

1
n2−7

−
∞

∑
n=3

1
n2

)−1

h1(K)2. (25)

Recall that if c is not an integer, then, by the Fourier series expansion of the function
cot(cπ) , we have

π cot(cπ) =
1
c
−2c

∞

∑
n=1

1
n2− c2 . (26)

By (25), (26), and the fact that π2

6 =
∞
∑

n=1

1
n2 , we obtain

2AK +
1
3
|ÃK |−

∫ π
2

0
w(K,θ )w

(
K,θ +

π
2

)
dθ

� 7π
6

(
51
28

− π cot(
√

7π)
2
√

7
− π2

6

)−1

h1(K)2. �
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REMARK 2. Since Hölder’s inequality is used in the proofs of (22) and (24), the
conditions for it to be an equality yield that equality in the last step of (23) and in the
first inequality of (25) hold if and only if there exist constants c1 and c2 such that

c1 =
n2−4

3

√
a2

n +b2
n,

c2 =
(n2−7)n2

6

√
a2

n +b2
n

for n � 3. Thus, we cannot conclude that the support functions of any two planar
convex bodies required for equality to hold in (23) and (25) are necessarily of the form
(4), and we cannot derive the necessary conditions for equality to hold in (22) and (24).
Hence, we do not know whether the constants in (22) and (24) are optimal.
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