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Abstract. We consider a nonlinear sequential fractional boundary value problem (BVP) in the
frame of generalized ψ -Hilfer derivatives. We obtain the Green function and some of its proper-
ties, from which we derive a new Lyapunov-type inequality for our problem. As a consequence,
we present a lower bound for the eigenvalues of the problem. We give some existence results.
We emphasize that our results are still valid for some other classes of source functions having
some singularities.

1. Introduction

The well-known Lyapunov inequality was firstly proposed and proved by Lya-
punov [10], in which the author showed that the necessary condition for the following
problem {

u′′(t)+q(t)u(t) = 0 a < t < b

u(a) = u(b) = 0

to have a nontrivial classical solution is∫ b

a
|q(s)| ds >

4
b−a

.

This result is one of the most significant inequalities and has many practical applica-
tions in the theory of differential equations such as oscillation theory, stability criteria,
disconjugacy, eigenvalue problems, etc., we refer to [2, 12, 14, 15, 16] and the refer-
ences therein.

In recent years, there are numerous versions of Lyapunov inequality that have
been investigated for differential equations with various types of fractional derivatives.
In fact, Ferreira [3, 4] derived some Lyapunov-type inequalities for the fractional BVPs
with Riemann-Liouville and Caputo fractional derivatives. Ma et al [11] investigated
Lyapunov-type inequality for the fractional BVP with Hadamard fractional derivative.
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Wang et al [17] considered Lyapunov-type inequalities for the fractional differential
equation involving Hilfer fractional derivative with multi-point boundary conditions.
Very recently, Zohra et al [19] established Lyapunov and Hartman-Wintner-type in-
equalities for the nonlinear fractional BVP with generalized ψ -Hilfer fractional deriva-
tive. Besides, the authors also obtained some existence results for this problem.

Lyapunov-type inequalities for BVPs involving sequential fractional derivatives
were also considered in some recent papers. Ferreira [5] and Zhang et al [18] inves-
tigated Lyapunov-type inequality for the linear fractional sequential BVPs involving
Caputo fractional derivatives and Hilfer fractional derivatives, respectively. In 2020,
Ferreira [6] derived Lyapunov-type inequality for the nonlinear sequential fractional
BVP with mixed Riemann-Liouville fractional derivative and Caputo fractional deriva-
tive. Recently, some Lyapunov-type inequalities for nonlinear fractional hybird equa-
tions with sequential Riemann-Liouville fractional derivatives were also considered in
[8] and other existing references therein.

Motivated by [5, 6, 18], we consider the following nonlinear sequential fractional
BVP in the frame of generalized ψ -Hilfer fractional derivatives(

HDα1,β1,ψ
a+

HDα2,β2,ψ
a+ u

)
(t)+ f (t,u(t)) = 0, a < t < b (1)

subject to the conditions
u(a) = HDα3,β3,ψ

a+ u(b) = 0, (2)

where 0< αi � 1, 0 � βi � 1 ( i = 1,2,3), α1+α2 > 1, and HDαi,βi,ψ
a+ ( i = 1,2,3) stand

for the ψ -Hilfer fractional derivatives (see definitions in section 2). Here we obtain a
Lyapunov-type inequality and some existence results for our problem. As a result of
Lyapunov-type inequality, we also obtain a lower bound for the potential eigenvalues
of our problem.

It is worth noting that the results closest to our work were obtained in [5, 6, 18].
However, in the work of Ferreira [5] and Zhang et al [18], Lyapunov-type inqualities
were only investigated for the linear sequential fractional BVPs in the frame of Caputo
fractional derivatives CDα

a+
CDβ

a+(·) and Hilfer fractional derivatives Dα1,β1
a+ Dα2,β2

a+ (·) ,
respectively. Particularly, Ferreira [6] investigated Lyapunov inequality for the nonlin-
ear sequential fractional BVP with Riemann-Liouville and Caputo fractional derivatives
Dα

0+
CDβ

0+(·) . In our work, we consider a nonlinear sequential fractional BVP (1) and

(2) in the frame of generalized ψ -Hilfer fractional derivatives HDα1,β1,ψ
a+

HDα2,β2,ψ
a+ (·) .

The paper is organized as follows. In section 2, we set up some notations, present
the concept of ψ -Hilfer fractional derivative and some of its properties. We also intro-
duce some lemmas that will be used in the proofs of the main results. In section 3, we
discuss a Lyapunov inequality and investigate some existence results for our problem.

2. Mathematical preliminaries

This section is devoted to presenting definitions and some basic properties involv-
ing ψ -Hilfer fractional derivative. Moreover, some auxiliary lemmas are given prior to
proceeding to the main results of this paper. We start by setting some notations.
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For a < b , let us define

H1
+[a,b] =

{
ψ ∈ C1[a,b] : ψ ′(t) > 0 for all t ∈ [a,b]

}
.

For ϕ ∈C([a,b],R) , we denote ||ϕ || = supt∈[a,b] |ϕ(t)| . We also denote R+ = {x ∈ R :
x � 0} .

We now present the concepts of fractional integral and fractional derivative of a
function with respect to another function.

DEFINITION 1. (see [9, 13]) For α > 0, ψ ∈ H1
+[a,b] , and f ∈ L1[a,b] , the frac-

tional integral of a function f with respect to the function ψ is defined by

Iα ,ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ ′(τ)(ψ(t)−ψ(τ))α−1 f (τ) dτ,

where Γ(·) is the classic Gamma function.

DEFINITION 2. (see [13]) For n−1 < α � n , and f ,ψ ∈Cn[a,b] with ψ ′(t) > 0

for all t ∈ [a,b] , the left-side ψ -Hilfer fractional derivative HDα ,β ,ψ
a+ (·) of function of

order α and type 0 � β � 1, is defined by

HDα ,β ,ψ
a+ f (t) = Iβ (n−α),ψ

a+

(
1

ψ ′(t)
d
dt

)n

I(1−β )(n−α),ψ
a+ f (t). (3)

REMARK 1. The ψ -Hilfer fractional derivative is generalized from well-know
fractional derivatives such as Caputo, Caputo-Katugampola,Hadamard, Riemann-Liou-
ville, etc. For example

(i). Taking the limit β → 1 on both side of Eq. (3), we get

HDα ,1,ψ
a+ f (t) = Iβ (n−α),ψ

a+

(
1

ψ ′(t)
d
dt

)n

f (t) = CDα ,ψ
a+ f (t)

the ψ -Caputo fractional derivative with respect to another function.
(ii). Taking the limit β → 0 on both side of Eq. (3), we get

HDα ,0,ψ
a+ f (t) =

(
1

ψ ′(t)
d
dt

)n

I(1−β )(n−α),ψ
a+ f (t) = Dα ,ψ

a+ f (t)

the ψ -Riemann-Liouville fractional derivative with respect to another function.

For complete surveys of basic properties of the fractional operators Iα ,ψ
a+ (·) and

HDα ,β ,ψ
a+ (·) , we refer to [9, 13]. In this paper, we will use only the following properties.

LEMMA 1. (see [9, 13]) We have
(i). If f ∈Cn[a,b] , n−1 < α < n, and 0 � β � 1 , then

Iα ,ψ
a+

HDα ,β ,ψ
a+ f (t) = f (t)−

n

∑
k=1

ck(ψ(t)−ψ(a))γ−k,
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with γ = α + β (n−α) and ck = 1
Γ(γ−k+1) f [n−k]

ψ I(1−β )(n−α)
a+ f (a) . Herein f [n]

ψ f (x) =(
1

ψ ′(x)
d
dx

)n
f (x) .

(ii). For α,β > 0 , we have Iα ,ψ
a+ Iβ ,ψ

a+ f (t) = Iα+β ,ψ
a+ f (t) .

Now, we present some lemmas which play an importance role in the proof of main
results of the paper.

LEMMA 2. (see [1]) Let α,β be two non-negative numbers. Then, the function

p(x,α,β ) =
Γ(x)Γ(α + β + x)
Γ(α + x)Γ(β + x)

is completely monotonic on (0,+∞) . Moreover, we have

Γ(x)Γ(α + β + x)
Γ(α + x)Γ(β + x)

� 1

for any x > 0 .

LEMMA 3. (Jensen’s inequality) Let μ be a positive measure and let Ω be a mea-
surable set with μ(Ω)= 1 . If u is a real function in L1(μ) , if a< u(t)< b for all t ∈Ω ,
and if f is a convex on (a,b) , then

f

(∫
Ω

u dμ
)

�
∫

Ω
( f ◦ u) dμ . (4)

If f is concave on (a,b) , then the inequality (4) holds with � reversed.

LEMMA 4. (The nonlinear Leray-Schauder alternatives fixed point theorem [7])
Let B be a Banach space, and let W be a closed convex subset of B . Let V be a
relatively open subset of W and 0 ∈ V . Suppose that Q : V → W is a continuous
compact mapping. Then we have either

(i). Q has a fixed point in V
or

(ii). There exist λ ∈ (0,1) and u ∈ ∂V such that u = λQu.

3. Main results

This section is divided in three parts. In the first part, we investigate the Green
function of our problem and some of its properties. In the second part, we present a
Lyapunov inequality and give a lower bound estimate for the possible eigenvalues of
the problem. In the third part, based on the properties of the Green function, we discuss
the existence results for our problem.
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3.1. Green’s function

We begin by transforming the problem (1) and (2) to integral equation.

LEMMA 5. Let 0 < αi � 1 , 0 � βi � 1 (i = 1,2,3) and α1 + α2 > 1 , and let
ψ ∈ H1

+[a,b] . Let u be a solution of the problem (1) and (2). If f (·,u(·)) ∈ L1[a,b]
then u is a solution of the following integral equation

u(t) =
∫ b

a
G(s,t)ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 f (s,u(s)) ds (5)

where

G(s, t) =

{
C1(ψ(t)−ψ(a))α2+γ1−1−C2

(ψ(t)−ψ(s))α1+α2−1

(ψ(b)−ψ(s))α1+α2−α3−1 , a � s � t � b,

C1(ψ(t)−ψ(a))α2+γ1−1 a � t � s � b,
(6)

with γ1 = α1+β1(1−α1) and C1 = Γ(α2+γ1−α3)/
[
Γ(α2+γ1)Γ(α1 +α2−α3)(ψ(b)

−ψ(a))α2+γ1−α3−1
]
, C2 = 1/Γ(α1 + α2) .

REMARK 2. The Green function G in Lemma 5 is independent of the parameters
β2 , β3 . Consequently, if the problem (1) and (2) admit a mild solution then, it may not
depend continuously on these parameters.

Proof. We have

Iα1,ψ
a+

(
HDα1,β1,ψ

a+
HDα2,β2,ψ

a+ u
)

(t) = −Iα1,ψ
a+ f (t,u(t)). (7)

On the other hand, we invoke Lemma 2.4 to deduce that

Iα1,ψ
a+

(
HDα1,β1,ψ

a+
HDα2,β2,ψ

a+ u
)

(t) = HDα2,β2,ψ
a+ −d1(ψ(t)−ψ(a))γ1−1. (8)

Combining (7) and (8), we obtain

HDα2,β2,ψ
a+ u(t) = −Iα1,ψ

a+ f (t,u(t))+d1(ψ(t)−ψ(a))γ1−1.

Again, using Lemma 1, we get

u(t) = d2(ψ(t)−ψ(a))γ2−1 + Iα2,ψ
a+

(
d1(ψ(t)−ψ(a))γ1−1)− Iα1+α2,ψ

a+ f (t,u(t))

= d2(ψ(t)−ψ(a))γ2−1 +d1
Γ(γ1)

Γ(α2 + γ1)
(ψ(t)−ψ(a))α2+γ1−1− Iα1+α2,ψ

a+ f (t,u(t))

(9)

due to Iα2,ψ
a+ (ψ(t)−ψ(a))γ1−1 = Γ(γ1)

Γ(α2+γ1)
(ψ(t)−ψ(a))α2+γ1−1 , where γi = αi +βi(1−

αi) for i = 1,2. Using the condition u(a) = 0 and γ2 −1 = (1−α2)(β1 −1) � 0, we
figure out that d2 = 0. On the other hand, we have

HDα3,β3,ψ
a+ Iα1+α2,ψ

a+ f (t,u(t)) = HDα3,β3,ψ
a+ Iα3,ψ

a+

(
Iα1+α2−α3,ψ
a+ f (t,u(t))

)
= Iα1+α2−α3,ψ

a+ f (t,u(t))
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and HDα3,β3,ψ
a+ (ψ(t)−ψ(a))α2+γ1−1 = Γ(α2+γ1)(ψ(t)−ψ(a))α2+γ1−α3−1/Γ(α2+γ1−

α3) . It follows from (9) together with d2 = 0 that

HDα3,β3,ψ
a+ u(t) = d1

Γ(γ1)
Γ(α2 + γ1−α3)

(ψ(t)−ψ(a))α2+γ1−α3−1− Iα1+α2−α3,ψ
a+ f (t,u(t))

From the condition HDα3,β3,ψ
a+ u(b) = 0, we obtain

d1
Γ(γ1)(ψ(b)−ψ(a))α2+γ1−α3−1

Γ(α2 + γ1−α3)

− 1
Γ(α1 + α2−α3)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 f (s,u(s)) ds = 0.

Or,

d1 =
Γ(α2 + γ1−α3)

Γ(γ1)Γ(α1 + α2−α3)(ψ(b)−ψ(a))α2+γ1−α3−1

×
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 f (s,u(s)) ds.

Finally, pushing the obtained coefficients d1 and d2 into (9), we have

u(t) =
Γ(α2 + γ1−α3)(ψ(t)−ψ(a))α2+γ1−1

Γ(α2 + γ1)Γ(α1 + α2−α3)(ψ(b)−ψ(a))α2+γ1−α3−1

×
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 f (s,u(s)) ds

− 1
Γ(α1 + α2)

∫ t

a
ψ ′(s)(ψ(t)−ψ(s))α1+α2−1 f (s,u(s)) ds

=
∫ b

a
G(s,t)ψ ′(s)(ψ(b)−ψ(s))α1+α2−1 f (s,u(s)) ds.

The proof of Lemma is completed. �

DEFINITION 3. The function G(·, ·) given by (6) is called the Green function of
the problem (1) and (2).

In the following propositions, we investigate some properties of the Green func-
tion.

PROPOSITION 1. Let 0 < αi � 1, 0 � βi � 1 (i = 1,2,3) and α1 + α2 > 1, and
γ1 = α1 + β1(1−α1) . Let ψ ∈ H1

+[a,b] and the Green function G be defined as in
Lemma 5. Then, for any a � t1 � t2 � b , we have

|G(s,t1)−G(s,t2)| � C(ψ(t2)−ψ(t1))σ ,

where σ = min{α1 + α2 − 1,α3} and C = C1(ψ(b)−ψ(a))α2+γ1−σ−1 +C2(ψ(b)−
ψ(a))α3 .
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Proof. For a � t1 � t2 � s � b , using the fact that |Ax −Bx| � |A−B|x for any
A,B � 0, x ∈ [0,1] , we have

|G(s, t2)−G(s, t1)| = C1
(
(ψ(t2)−ψ(a))α2+γ1−1− (ψ(t1)−ψ(a))α2+γ1−1)

� C1(ψ(t2)−ψ(t1))α2+γ1−1

� C1(ψ(b)−ψ(a))α2+γ1−1−σ (ψ(t2)−ψ(t1))σ (10)

due to 0 < α2 + γ1−1 � 1, where σ = min{α1 + α2−1,α3} .
For a � s � t1 � t2 � b , we also use the fact that |Ax −Bx| � |A−B|x for any

A,B � 0, x ∈ [0,1] together with 0 < α1 + α2−1 � α2 + γ1−1 � 1 to obtain

|G(s, t2)−G(s, t1)|
� C1

(
(ψ(t2)−ψ(a))α2+γ1−1− (ψ(t1)−ψ(a))α2+γ1−1)

+C2
(ψ(t2)−ψ(s))α1+α2−1− (ψ(t1)−ψ(s))α1+α2−1

(ψ(b)−ψ(s))α1+α2−α3−1

� C1(ψ(t2)−ψ(t1))α2+γ1−1 +C2
(ψ(t2)−ψ(t1))α1+α2−1

(ψ(b)−ψ(s))α1+α2−α3−1

� C1(ψ(t2)−ψ(t1))α2+γ1−1 +C2(ψ(b)−ψ(s))α3(ψ(t2)−ψ(t1))σ

=
[
C1(ψ(b)−ψ(a))α2+γ1−σ−1 +C2(ψ(b)−ψ(a))α3

]
(ψ(t2)−ψ(t1))σ , (11)

where σ = min{α1 + α2−1,α3} . Here we have used the following estimate

(ψ(t2)−ψ(t1))α1+α2−1

(ψ(b)−ψ(s))α1+α2−α3−1

=
(

ψ(t2)−ψ(t1)
ψ(b)−ψ(s)

)α1+α2−σ−1

(ψ(b)−ψ(s))α3(ψ(t2)−ψ(t1))σ

� (ψ(b)−ψ(a))α3(ψ(t2)−ψ(t1))σ .

For a � t1 � s � t2 � b , we have

|G(s, t2)−G(s, t1)|
� C1

(
(ψ(t2)−ψ(a))α2+γ1−1− (ψ(t1)−ψ(a))α2+γ1−1)

+C2
(ψ(t2)−ψ(s))α1+α2−1

(ψ(b)−ψ(s))α1+α2−α3−1

� C1(ψ(t2)−ψ(t1))α2+γ1−1 +C2
(ψ(t2)−ψ(t1))α1+α2−1

(ψ(b)−ψ(s))α1+α2−α3−1

�
[
C1(ψ(b)−ψ(a))α2+γ1−σ−1 +C2(ψ(b)−ψ(a))α3

]
(ψ(t2)−ψ(t1))σ , (12)

where σ = min{α1 +α2−1,α3} . Combining (10), (11) and (12), we obtain the desired
result of Proposition. �
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PROPOSITION 2. Let 0 < αi � 1, 0 � βi � 1 (i = 1,2,3) and α1 + α2 > 1, and
γ1 = α1 + β1(1−α1) . Let ψ ∈ H1

+[a,b] and the Green function G be defined as in
Lemma 5. Then

max
a�s,t�b

|G(s,t)| = Cmax,

where

Cmax = max

{
Γ(α2 + γ1−α3)

Γ(α2 + γ1)Γ(α1 + α2−α3)
(ψ(b)−ψ(a))α3 ,

γ1 −α1

α2 + γ1−1
(ψ(b)−ψ(a))α3

Γ(α1 + α2)

(
Γ(α2 + γ1−1)Γ(α1 + α2−α3)
Γ(α1 + α2−1)Γ(α2 + γ1−α3)

) α1+α2−1
γ1−α1

⎫⎬
⎭

with γ1 > α1 , and

Cmax =
(ψ(b)−ψ(a))α3

Γ(α1 + α2)

with γ1 = α1 .

Proof. We define the function

Φ(s,t) =C1(ψ(t)−ψ(a))α2+γ1−1

for a � t � s � b . Using the fact that C1 > 0, α2 + γ1 � α2 + α1 > 1, and ψ is the
increasing function, it follows that

max
a�s,t�b

Φ(s, t) = C1(ψ(b)−ψ(a))α2+γ1−1 =
Γ(α2 + γ1−α3)(ψ(b)−ψ(a))α3

Γ(α2 + γ1)Γ(α1 + α2−α3)
. (13)

We continue by defining the function

ϒ(s, t) = C1(ψ(t)−ψ(a))α2+γ1−1 −C2
(ψ(t)−ψ(s))α1+α2−1

(ψ(b)−ψ(s))α1+α2−α3−1

for a � s � t � b .
Let us fix t ∈ [a,b] and consider the function ϒ with respect to second variable,

then

ϒs(s, t) = −C2
(ψ(t)−ψ(s))α1+α2−2(ψ(b)−ψ(s))α1+α2−α3−2

(ψ(b)−ψ(s))2(α1+α2−α3−1)

× [(α1 + α2−1)(ψ(b)−ψ(s))− (α1 + α2−α3−1)(ψ(t)−ψ(s))]
� 0

due to (α1 + α2 − 1)(ψ(b)−ψ(s))− (α1 + α2 −α3 − 1)(ψ(t)−ψ(s)) � (α1 + α2 −
1)(ψ(t)−ψ(s))−(α1 +α2−α3−1)(ψ(t)−ψ(s))= α3(ψ(t)−ψ(s)) � 0. Therefore,
ϒ(s,t) is a decreasing function of s , which implies

max
a�s�t�b

|ϒ(s,t)| = max
a�t�b

{|ϒ(a,t)|, |ϒ(t,t)|}.
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It is clear to see that |ϒ(t,t)| = Φ(s,t) . Hence, we only find maximum of the
function |ϒ(a, t)| . To this aim, let us consider the following function

Θ(t) = C1(ψ(t)−ψ(a))α2+γ1−1−C2
(ψ(t)−ψ(a))α1+α2−1

(ψ(b)−ψ(a))α1+α2−α3−1

=
Γ(α2 + γ1−α3)(ψ(t)−ψ(a))α2+γ1−1

Γ(α2 + γ1)Γ(α1 + α2−α3)(ψ(b)−ψ(a))α2+γ1−α3−1

− 1
Γ(α1 + α2)

(ψ(t)−ψ(a))α1+α2−1

(ψ(b)−ψ(a))α1+α2−α3−1 .

We can easily see that Θ(t) = 0 for γ1 = α1 . So, we consider only the case γ1 > α1 .
Firstly, for γ1 > α1 , we will prove that Θ(t) � 0 for all t ∈ [a,b] . Indeed, it is

clear to see that Θ(a) = 0. Therefore, we only show that Θ(t) � 0 for all t ∈ (a,b] .
Applying Lemma 2 with x := α1 + α2−α3 , α := α3 , β := γ1−α1 , one has

Γ(α1 + α2)Γ(α2 + γ1−α3)
Γ(α2 + γ1)Γ(α1 + α2−α3)

=
Γ(x+ α)Γ(x+ β )
Γ(x)Γ(x+ α + β )

� 1.

This leads to

Θ(t) =
1

Γ(α1 + α2)
(ψ(t)−ψ(a))α1+α2−1

(ψ(b)−ψ(a))α1+α2−α3−1

×
(

Γ(α1 + α2)Γ(α2 + γ1−α3)
Γ(α2 + γ1)Γ(α1 + α2−α3)

(
ψ(t)−ψ(a)
ψ(b)−ψ(a)

)γ1−α1

−1

)

� 1
Γ(α1 + α2)

(ψ(t)−ψ(a))α1+α2−1

(ψ(b)−ψ(a))α1+α2−α3−1

(
Γ(α1 + α2)Γ(α2 + γ1−α3)
Γ(α2 + γ1)Γ(α1 + α2−α3)

−1

)
� 0

due to γ1 −α1 > 0 and (ψ(t)−ψ(a))/(ψ(b)−ψ(a)) � 1 for all t ∈ (a,b] .
Secondly, for γ1 > α1 , by direct computations, we have

Θ′(t) =
1

Γ(α1 + α2−1)
(ψ(t)−ψ(a))α1+α2−2

(ψ(b)−ψ(a))α1+α2−α3−1

×
(

Γ(α1 + α2−1)Γ(α2 + γ1−α3)
Γ(α2 + γ1−1)Γ(α1 + α2−α3)

(
ψ(t)−ψ(a)
ψ(b)−ψ(a)

)γ1−α1

−1

)
.

Thus, Θ′(t0) = 0 if and only if(
ψ(t0)−ψ(a)
ψ(b)−ψ(a)

)γ1−α1

=
Γ(α2 + γ1−1)Γ(α1 + α2−α3)
Γ(α1 + α2−1)Γ(α2 + γ1−α3)

. (14)

Or,

ψ(t0) = ψ(a)+ (ψ(b)−ψ(a))
(

Γ(α2 + γ1−1)Γ(α1 + α2−α3)
Γ(α1 + α2−1)Γ(α2 + γ1−α3)

)1/(γ1−α1)

.
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Applying Lemma 2 with x := α1 + α2−1 and α := γ1 −α1 , β := 1−α3 , we have

0 <
Γ(α2 + γ1−1)Γ(α1 + α2−α3)
Γ(α1 + α2−1)Γ(α2 + γ1−α3)

=
Γ(x+ α)Γ(x+ β )
Γ(x)Γ(x+ α + β )

� 1. (15)

It follows ψ(a) < ψ(t0) � ψ(a)+ (ψ(b)−ψ(a)) = ψ(b) , or a = ψ−1(ψ(a)) < t0 <
ψ−1(ψ(b)) = b . Thus, from the facts that Θ(a) = 0 and Θ(t) � 0 for all t ∈ (a,b] , we
deduce that maxa�t�b |Θ(t)| = |Θ(t0)| . Using (14), we have

Θ(t0) =
1

Γ(α1 + α2)
(ψ(t0)−ψ(a))α1+α2−1

(ψ(b)−ψ(a))α1+α2−α3−1

×
(

Γ(α1 + α2)Γ(α2 + γ1−α3)
Γ(α2 + γ1)Γ(α1 + α2−α3)

(
ψ(t0)−ψ(a)
ψ(b)−ψ(a)

)γ1−α1

−1

)

=
1

Γ(α1 + α2)
(ψ(b)−ψ(a))α1+α2−1

(ψ(b)−ψ(a))α1+α2−α3−1

×
(

Γ(α2 + γ1−1)Γ(α1 + α2−α3)
Γ(α1 + α2−1)Γ(α2 + γ1−α3)

) α1+α2−1
γ1−α1

(
Γ(α1 + α2)Γ(α2 + γ1−1)
Γ(α2 + γ1)Γ(α1 + α2−1)

−1

)

=
α1− γ1

α2 + γ1−1
(ψ(b)−ψ(a))α3

Γ(α1 + α2)

(
Γ(α2 + γ1−1)Γ(α1 + α2−α3)
Γ(α1 + α2−1)Γ(α2 + γ1−α3)

) α1+α2−1
γ1−α1

due to

Γ(α1 + α2)Γ(α2 + γ1−1)
Γ(α2 + γ1)Γ(α1 + α2−1)

−1 =
α1 + α2−1
α2 + γ1−1

−1 =
α1 − γ1

α2 + γ1−1
.

Combining the above equality and (13), we obtain the desired result of Proposition. �

REMARK 3. It is clear to see that γ1 −α1 → 0 if and only if α1 → 1 or β1 → 0.
Moreover, we find from (15) that

0 � γ1 −α1

α2 + γ1−1
(ψ(b)−ψ(a))α3

Γ(α1 + α2)

(
Γ(α2 + γ1−1)Γ(α1 + α2−α3)
Γ(α1 + α2−1)Γ(α2 + γ1−α3)

) α1+α2−1
γ1−α1

� γ1 −α1

α2 + γ1−1
(ψ(b)−ψ(a))α3

Γ(α1 + α2)
→ 0 as γ1−α1 → 0+. (16)

Therefore, we deduce from (16) that if the values of β1 sufficiently close to zero or α1

sufficiently close to one, then

max
a�s,t�b

|G(s,t)| = Γ(α2 + γ1−α3)
Γ(α2 + γ1)Γ(α1 + α2−α3)

(ψ(b)−ψ(a))α3 .

3.2. Lyapunov-type inequality

We present a generalized Lyapunov-type for our problem. We start by making an
assumption and a definition.
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• Assumption (A 1): There exist q : (a,b) → R , and a positive, non-decreasing
and concave function h : R → R such that

| f (t,u)| � |q(t)||h(u)|

for any t ∈ (a,b) and u ∈ R .

DEFINITION 4. Solution u of the Eq. (5) is called mild solution of the problem
(1) and (2).

Based on the above assumption and definition, we can state and prove the main
result of this part.

THEOREM 3. Let 0 < αi � 1 , 0 � βi � 1 (i = 1,2,3) and α1 + α2 > 1 , and
γ1 = α1 + β1(1−α1) . Assume that Assumption (A 1) holds. If ψ ∈ H1

+[a,b] and
gψ(·) := ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1q(·) ∈ L1(a,b) and the problem (1) and (2) has
a nontrivial mild solution, then

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1|q(s)| ds � 1

Cmax

||u||
h(||u||) ,

where Cmax defined in Proposition 2.

Proof. If the problem (1) and (2) has a nontrivial mild solution, then we obtain
from Eq. (5) and Lemma 3 that

|u(t)| � Cmax

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1| f (s,u(s))| ds

� Cmax

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1|q(s)||h(u(s))| ds

= Cmax
∣∣∣∣gψ

∣∣∣∣
L1(a,b)

∫ b

a

|gψ(s)|∣∣∣∣gψ
∣∣∣∣

L1(a,b)
|h(u(s))| ds

� Cmax
∣∣∣∣gψ

∣∣∣∣
L1(a,b)h

(∫ b

a

|gψ(s)|∣∣∣∣gψ
∣∣∣∣

L1(a,b)

|u(s)| ds

)

� Cmax
∣∣∣∣gψ

∣∣∣∣
L1(a,b)h(||u||),

where gψ(·) := ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1q(·) . This implies

∣∣∣∣gψ
∣∣∣∣

L1(a,b) � 1
Cmax

||u||
h(||u||) .

The proof of Theorem is completed. �
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COROLLARY 1. Suppose that there exists q : (a,b) → R+ such that

| f (t,u)| � q(t)|u|

for all t ∈ (a,b) . If ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1q(·) ∈ L1(a,b) and

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1q(s) ds < 1/Cmax,

where Cmax defined in Proposition 2, then the problem (1) and (2) has no non-trivial
mild solution.

If β1 = β2 = β3 = 1 then ψ -Hilfer fractional derivatives become the ψ -Caputo
fractional derivatives (see Remark 1) and we obtain the following result which is a
general result of Ferreira [5] as follows.

COROLLARY 2. Let the assumptions in Theorem 3 hold for β1 = β2 = β3 = 1 . If
the following problem{(

CDα1,ψ
a+

CDα2,ψ
a+ u

)
(t)+ f (t,u(t)) = 0, a < t < b,

u(a) = CDα3,ψ
a+ u(b) = 0

has a nontrivial mild solution. Then

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1|q(s)| ds � 1

C∗
max

||u||
h(||u||) ,

where

C∗
max = (ψ(b)−ψ(a))α3 max

{
Γ(α2 +1−α3)

Γ(α2 +1)Γ(α1 + α2−α3)
,

1−α1

α2

1
Γ(α1 + α2)

(
Γ(α2)Γ(α1 + α2−α3)

Γ(α1 + α2−1)Γ(α2 +1−α3)

) α1+α2−1
1−α1

⎫⎬
⎭

with α1 < 1 , and

C∗
max =

(ψ(b)−ψ(a))α3

Γ(1+ α2)

with α1 = 1 .

Proof. Apply Theorem 3 with remark that if β1 = 1 then γ1 = 1 and Cmax ≡
C∗

max . �

The obtained Lyapunov inequality gives us a lower bound for the sequential frac-
tional BVP as below.
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COROLLARY 3. Let 0 < αi � 1 , 0 � βi � 1 (i = 1,2,3) , and ψ ∈ H1
+[a,b] . Sup-

pose that λ is an eigenvalue of the following problem

{(
HDα1,β1,ψ

a+
HDα2,β2,ψ

a+ u
)

(t) = λu(t), a < t < b,

u(a) = HDα3,β3,ψ
a+ u(b) = 0.

Then

|λ | � 1
Cmax

α1 + α2−α3

(ψ(b)−ψ(a))α1+α2−α3
,

where Cmax defined in Proposition 2.

REMARK 4. If α1 = α2 = α3 = 1, we have 1/Cmax = ψ(b)−ψ(a) and obtain
|λ | � 1.

Proof. Apply Theorem 3 with q(t) = −λ , h(u) = u , we obtain

|λ |
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 ds � 1/Cmax.

Or,

|λ | (ψ(b)−ψ(a))α1+α2−α3

α1 + α2−α3
� 1/Cmax.

This leads to the desired result of Corollary. �

3.3. Existence and non-existence results

This part, based on properties of the Green function, we obtain some existence
results for our problem. It is worth noting that our results hold for some source functions
having some singularities.

In the following result, we use the following assumption.

• Assumption (A 2): There exist two functions k f , l f : (a,b) → R+ , and a posi-
tive, non-decreasing function ϑ : R+ → R+ such that

| f (t,u)| � k f (t)ϑ(|u|), a < t < b, u ∈ R,

| f (t,u)− f (t,v)| � l f (t)|ς(u,v)|, a < t < b, u,v ∈ R,

where ς ∈C(R×R;R) and ς(u,v) → 0 as |u− v| → 0.

We now state and prove the existence result for our problem.

THEOREM 4. Let 0 < αi � 1 , 0 � βi � 1 (i = 1,2,3) and α1 + α2 > 1 , and
γ1 = α1 + β1(1−α1) . Assume that Assumption (A 2) holds. Suppose further that
ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)
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∈ L1(a,b) and ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1l f (·) ∈ L1(a,b) . If there exist M > 0
such that

M >Cmaxϑ(M)
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)

∣∣∣∣
L1(a,b),

where Cmax defined in Proposition 2, then the problem (1) and (2) has at least one mild
solution.

Proof. Define the operator Q : C[a,b] →C[a,b] by

Qu(t) =
∫ b

a
G(s,t)ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 f (s,u(s)) ds. (17)

We firstly verify that Q is a compact operator. Put ΩR = {u ∈C[a,b] : ||u|| � R} .
Claim 1. Q(ΩR) maps bounded sets into bounded sets in C[a,b] . For u ∈ ΩR , in

view of Proposition 2 and Assumption (A 2) , we have

||Qu|| = max
a�t�b

∣∣∣∣
∫ b

a
G(s,t)ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 f (s,u(s)) ds

∣∣∣∣
� Cmax

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1k f (s)ϑ(|u(s)|) ds

� Cmaxϑ(R)
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)

∣∣∣∣
L1(a,b),

where Cmax defined in Proposition 2.
Claim 2. Q is continuous operator, i.e., |Qu(t)−Qv(t)| → 0 as u → v in C[a,b] .

Without lost of generality, we assume that u,v ∈ ΩR for some R > 0. Using Assump-
tion (A 2) , we have

||Qu−Qv||

= max
a�t�b

∣∣∣∣
∫ b

a
G(s,t)ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1( f (s,u(s))− f (s,v(s))) ds

∣∣∣∣
� Cmax

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1l f (t)|ς(u(s),v(s))| ds

� Cmax
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1l f (·)

∣∣∣∣
L1(a,b)||ς(u(·),v(·))||

→ 0 as |u− v| → 0,

where Cmax defined in Proposition 2.
Claim 3. Q(ΩR) maps bounded sets into equicontinuous sets of C[a,b] . For u ∈

ΩR and a � t1 � t2 � b , using Assumption (A 2) and Proposition 1, one has

|Qu(t2)−Qu(t1)|

�
∫ b

a
|G(s, t2)−G(s,t1)|ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1 f (s,u(s)) ds

� C(ψ(t2)−ψ(t1))σ
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1k f (s)ϑ(|u(s)|) ds

� C(ψ(t2)−ψ(t1))σ ϑ(R)
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)

∣∣∣∣
L1(a,b),
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where C and σ defined in Proposition 1. The latter inequality shows that |Qu(t2)−
u(t1)| → 0 uniformly as |t2 − t1| → 0.

We now at a position to prove the result of Theorem. Put

Ω = {u ∈C[a,b] : ||u|| < M}.
Since | f (t,u)| � ϑ(M)k f (t) for any u ∈ Ω and t ∈ (a,b) , by an argument analogous
to that used for the proof of Claim 1, one has

||Qu|| � Cmaxϑ(M)
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)

∣∣∣∣
L1(a,b), (18)

where Cmax defined in Proposition 2. If there exists λ ∈ (0,1) and u ∈ ∂Ω such that
u = λQu , then we obtain from (18) that

M = ||u|| = λ ||Qu||� ||Qu||�Cmaxϑ(M)
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)

∣∣∣∣
L1(a,b).

This contradicts the hypothesis. Therefore, by virtue of Lemma 4, we conclude that Q
has a fixed point in Ω , which is a mild solution of the problem (1) and (2). The proof
of Theorem is completed. �

COROLLARY 4. Suppose that there exist κ1,κ2 > 0 and γ1,γ2 < α1 + α2 −α3 ,
θ1,θ2 < 1 , and a positive, non-decreasing function ϑ : R+ → R+ such that

| f (t,u)| � κ1(ψ(b)−ψ(t))−γ1(ψ(t)−ψ(a))−θ1ϑ(|u|), a < t < b, u ∈ R,

| f (t,u)− f (t,v)| � κ2(ψ(b)−ψ(t))−γ2(ψ(t)−ψ(a))−θ2 |ς(u,v)|, a < t < b, u,v ∈ R,

where ς ∈C(R×R;R) and ς(u,v) → 0 as |u− v| → 0 . If κ1 sufficiently close to zero
then the problem (1) and (2) has at least one mild solution.

Proof. By change the variable of integration from t to z = (ψ(t)−ψ(a))/(ψ(b)−
ψ(a)) , we can prove that∫ b

a
(ψ(b)−ψ(t))x−1(ψ(t)−ψ(a))−y dt = (ψ(b)−ψ(a))x−yB(x,1− y), (19)

where x > 0 and y < 1. Using (19), we can check directly that the assumptions in
Theorem 4 hold. �

To close this paper, we present a uniqueness result for our problem.

THEOREM 5. Let 0 < αi � 1 , 0 � βi � 1 (i = 1,2,3) and α1 + α2 > 1 , and
γ1 = α1 + β1(1−α1) . Assume that there exists k f : (a,b) → R+ such that

| f (t,u)− f (t,v)| � k f (t)|u− v|, a < t < b, u,v ∈ R.

If ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1 f (·,0), ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)∈L1(a,b) ,
and satisfying ∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1k f (s) ds < 1/Cmax,

where Cmax defined in Proposition 2, then the problem (1) and (2) has a unique mild
solution.
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Proof. Regarding the operator Q given by (17), we firstly verify that Q is well-
defined. It is clear to see that | f (t,u)| � k f (t)|u|+ | f (t,0)| . For any u ∈ C[a,b] and
a � t1 � t2 � b , we obtain from Proposition 1 that

|Qu(t2)−Qu(t1)|

�
∫ b

a
|G(s, t2)−G(s,t1)|ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1| f (s,u(s))| ds

� C(ψ(t2)−ψ(t1))σ
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1(k f (t)|u(t)|+ | f (t,0)) ds

� C(ψ(t2)−ψ(t1))σ ||u||∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)
∣∣∣∣

L1(a,b)

+C(ψ(t2)−ψ(t1))σ ∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1 f (·,0)
∣∣∣∣

L1(a,b)

→ 0 as |t2 − t1| → 0.

Herein C and σ defined in Proposition 1. This shows that Q is well-defined. For
u,v ∈C[a,b] , by virtue of Proposition 2, one has

||Qu−Qv|| � Cmax

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1| f (s,u(s))− f (s,v(s))| ds

� Cmax

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))α1+α2−α3−1k f (s)|u(s)− v(s)| ds

� Cmax
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)

∣∣∣∣
L1(a,b)||u− v||.

Since Cmax
∣∣∣∣ψ ′(·)(ψ(b)−ψ(·))α1+α2−α3−1k f (·)

∣∣∣∣
L1(a,b) < Cmax(1/Cmax) = 1, we

conclude that Q is a contraction. Consequently, Q admits a unique fixed point in
C[a,b] , which is a mild solution of the problem (1) and (2). The proof of Theorem is
done. �

COROLLARY 5. Suppose that there exist κ1,κ2 > 0 , γ1,γ2 < α1 + α2 −α3 , and
θ1,θ2 < 1 such that

| f (t,0)| � κ1(ψ(b)−ψ(t))−γ1(ψ(t)−ψ(a))−θ1 , a < t < b,

| f (t,u)− f (t,v)| � κ2(ψ(b)−ψ(t))−γ2(ψ(t)−ψ(a))−θ2 |u− v|, a < t < b, u,v ∈ R.

If κ2 is small then the problem (1) and (2) has a unique mild solution.

Proof. We can use (19) to verify that the assumptions in Theorem 5 hold. �
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