ON MINMAX AND MAXMIN INEQUALITIES FOR CENTERED CONVEX BODIES

ZOKHRAB MUSTAFAEV

(Communicated by H. Martini)

Abstract. One of the challenging problems from the geometry of (normed or) Minkowki spaces is the question of whether the unit ball must be an ellipsoid if it is a solution of the corresponding isoperimetric problem. The inner and outer radii of the unit ball with respect to the corresponding isoperimetrix (represented in terms of cross-section measures) will be used to establish a result on this problem for a specific measure. Some new minmax and maxmin inequalities for centered convex bodies will also be established.

1. Introduction

Let $\mathbb{M}^d := (\mathbb{R}^d, || \cdot ||)$ be a *d*-dimensional *Minkowski space* (i.e., a finite-dimensional real Banach space). When d = 2, it is called a *Minkowski plane*. The setting for this paper will be both the standard Euclidean space \mathbb{R}^d and a *d*-dimensional Minkowski space \mathbb{M}^d . Some definitions and notations from both spaces will be used.

There are various ways of introducing the notion of measure in a Minkowski space. Two notions of measure, one due to Busemann and the other due to Holmes-Thompson (see Section 2 below), have been widely used in the literature. Once the notion of measure is introduced in a given Minkowski space, the question of whether the unit ball *B* of \mathbb{M}^d must be an ellipsoid (i.e. \mathbb{M}^d is an Euclidean space) if it is a solution of the isoperimetric problem is a challenging open problem for $d \ge 3$ (see [3], [4], and [22]). For the Holmes-Thompson measure this question is equivalent to asking whether *B* must be an ellipsoid if *B* and the projection body of its polar ΠB° are homothetic (or B° and ΠB are homothetic). With Busemann's definition of measure the question becomes whether *B* and the polar body of its intersection body $(IB)^\circ$ are homothetic (or B° and *IB* are homothetic). For d = 2, the unit ball *B* has this property if and only if ∂B is a *Radon curve*. These curves were introduced by Radon [15] (see [14] and the references therein for more about Radon curves). In \mathbb{M}^2 the following statement holds: if the unit circle ∂B is a Radon curve, then *B* is a solution of the isoperimetric problem.

The purpose of this manuscript is to establish some minmax and maxmin inequalities for centered convex bodies. We also show that if the unit ball *B* satisfies a certain

Keywords and phrases: Busemann measure, cross-section measures, Holmes-Thompson measure, relative inner radius, intersection body, isoperimetrix, radial function, relative outer radius, projection body, support function.

Mathematics subject classification (2020): 52A21, 52A40, 46B20.

property, then *B* and ΠB° cannot be homothetic unless *B* is an ellipsoid. To derive the results conveniently, the inner radius and outer radius of the unit ball with respect to its isoperimetrix (for Holmes-Thompson and Busemann measures) will be represented in terms of cross-section measures.

2. Notations and background materials

A convex body K in \mathbb{R}^d , $d \ge 2$, is a compact, convex set with nonempty interior. K is said to be *centered* if it is symmetric with respect to the origin o of \mathbb{R}^d . S^{d-1} will denote the standard Euclidean unit sphere in \mathbb{R}^d . We write $\lambda_i(\cdot)$ for the *i*-dimensional Lebesgue measure (volume) in \mathbb{R}^d , where $1 \le i \le d$, and when i = d we omit the subscript. For a given direction $u \in S^{d-1}$, we use u^{\perp} to denote the (d-1)-dimensional hyperplane (passing through the origin) orthogonal to u, and by l_u the 1-subspace parallel to u. Furthermore, $\lambda_1(K|l_u)$ denotes the width of K at u, and $\lambda_{d-1}(K|u^{\perp})$ the (d-1)-dimensional outer cross-section measure or brightness of K at $u \in S^{d-1}$, where $K|u^{\perp}$ is the orthogonal projection of K onto u^{\perp} (see [4] for these notations).

For a convex body K in \mathbb{R}^d , the *polar body* K° of K is defined by

$$K^{\circ} = \{ y \in \mathbb{R}^d : \langle x, y \rangle \leq 1, x \in K \},\$$

where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product in \mathbb{R}^d .

The following properties of the centered convex bodies will be used here: $(K^{\circ})^{\circ} = K$, $(\alpha K)^{\circ} = (1/\alpha)K^{\circ}$ for $\alpha > 0$, and if $K_1 \subseteq K_2$, then $K_2^{\circ} \subseteq K_1^{\circ}$.

We will use the standard basis to identify \mathbb{R}^{d} and its *dual space* \mathbb{R}^{d*} . In that case, $\lambda_{i}(\cdot)$ and $\lambda_{i}^{*}(\cdot)$ coincide in \mathbb{R}^{d} . For the *i*-dimensional volume of the unit ball in \mathbb{R}^{i} , we write ε_{i} .

The support function $h_K : S^{d-1} \to \mathbb{R}$ of a convex body K is defined as $h_K(u) = \sup\{\langle u, y \rangle : y \in K\}$. It is well known that h_K is monotone with respect to inclusion (i.e. if $K \subseteq L$, then $h_K \leq h_L$), and positive homogeneous (i.e. $h_{\alpha K}(u) = h_K(\alpha u) = \alpha h_K$ for all $\alpha > 0$). Furthermore, if $0 \in K$, then $h_K(u)$ is the distance from the origin to the supporting hyperplane of K with outer unit normal vector u (see [19] for more about support functions). When the origin is an interior point of K its *radial function* $\rho_K(u)$ is defined by $\rho_K(u) = \max\{\alpha \ge 0 : \alpha u \in K\}$. The following relation between these two functions is well known:

$$\rho_{K^{\circ}}(u) = \frac{1}{h_K(u)}, \ u \in S^{d-1}.$$
(1)

Note that if *K* is a centered convex body, then $2\rho_K(u) = \lambda_1(K \cap l_u)$, and $2h_K(u) = \lambda_1(K|l_u)$ for any $u \in S^{d-1}$.

For a given convex body K in \mathbb{R}^d , the *projection body* ΠK of K is defined as the convex body whose supporting hyperplane in a given direction u has a distance $\lambda_{d-1}(K|u^{\perp})$ from the origin, i.e., $h_{\Pi K}(u) = \lambda_{d-1}(K|u^{\perp})$ for each $u \in S^{d-1}$ (see [4, Chapter 4]). Note that any projection body is a *zonoid* (i.e., a limit of vector sums of segments) centered at the origin (see [20] and [5] for properties and applications of zonoids). The *intersection body IK* of a convex body $K \subset \mathbb{R}^d$ is defined by its radial function $\rho_{IK}(u) = \lambda_{d-1}(K \cap u^{\perp})$ for each $u \in S^{d-1}$ (cf. [7] and [4, Chapter 8]). If *K* is a symmetric convex body, then the result of Busemann (see [2]) states that *IK* is also convex and symmetric.

A Minkowski space \mathbb{M}^d with unit ball *B* possesses a Haar measure μ_B , and this measure is unique up to multiplication of the Lebesgue measure by a constant, i.e., $\mu_B(\cdot) = \sigma_B \lambda(\cdot)$. These two measures μ_B and λ must also agree in the standard Euclidean space. For a given convex body *K* in \mathbb{M}^d , its *d*-dimensional Busemann volume is defined by

$$\mu_B^{Bus}(K) = \frac{\varepsilon_d}{\lambda(B)}\lambda(K), \text{ i.e.}, \ \sigma_B = \frac{\varepsilon_d}{\lambda(B)},$$

and its *d*-dimensional Holmes-Thompson volume is defined by

$$\mu_B^{HT}(K) = \frac{\lambda(K)\lambda(B^\circ)}{\varepsilon_d}, \text{ i.e., } \sigma_B = \frac{\lambda(B^\circ)}{\varepsilon_d},$$

see [22, Chapter 5]. In order to define the Minkowski surface area of a convex body K in \mathbb{M}^d , $\mu_B(\partial K)$, one has to define σ_B similarly in \mathbb{M}^{d-1} . This area generating function $\sigma_B(u)$ is invariant under linear transformations of \mathbb{R}^d , continuous with respect to Hausdorff metric, and normalized by $\sigma(E) = \varepsilon_{d-1}$ if E is an (d-1)-dimensional ellipsoid. For the Holmes-Thompson measure, this function is defined to be $\sigma_B(u) = \lambda_{d-1}((B \cap u^{\perp})^{\circ})/\varepsilon_{d-1}$, and for the Busemann measure it is $\sigma_B(u) = \varepsilon_{d-1}/\lambda_{d-1}(B \cap u^{\perp})$ (see [22, pp. 150–151]).

 $\sigma_B(u)$ is the support function of a convex body I_B which is related to isoperimetric problems in Minkowski spaces. Namely, among all convex bodies of a given volume (area), a homothetical copy of I_B has minimal surface area (perimeter). In a Minkowski plane, I_B is the polar body of the unit disc B, rotated by an angle of 90°.

For the Holmes-Thompson measure, I_B is given by $I_B^{HT} = \Pi B^{\circ} / \varepsilon_{d-1}$ (cf. [22, p. 150 and p. 157] for detailed explanation), and therefore it is a centered zonoid. For the Busemann measure, I_B is defined by $I_B^{Bus} = \varepsilon_{d-1} (IB)^{\circ}$ (see again [22, pp. 150-151]).

For a given Minkowski space \mathbb{M}^d with unit ball B, $\hat{I}_B = \sigma_B^{-1}I_B$ is called the *isoperimetrix* of the space. This body has the property of $\mu_B(\partial \hat{I}_B) = d\mu_B(\hat{I}_B)$. Thus, for the Holmes-Thompson measure, we have

$$\hat{I}_B^{HT} = \frac{\varepsilon_d}{\lambda(B^\circ)} I_B^{HT} = \frac{\varepsilon_d}{\varepsilon_{d-1}} \frac{1}{\lambda(B^\circ)} \Pi B^\circ, \qquad (2)$$

and for the Busemann measur, we have

$$\hat{I}_{B}^{Bus} = \frac{\lambda(B)}{\varepsilon_{d}} I_{B}^{Bus} = \frac{\varepsilon_{d-1}}{\varepsilon_{d}} \lambda(B) (IB)^{\circ}.$$
(3)

For convex bodies K and L, we define the (relative) inner radius of K with respect to L to be the largest value of $\alpha \ge 0$ such that a translate of K contains αL , i.e.

 $r(K,L) := \max\{\alpha : \exists x \in \mathbb{M}^d \text{ with } \alpha L \subseteq K + x\},\$

and the *(relative) outer radius* of K with respect to L to be the smallest value of $\alpha \ge 0$ such that a translate of K is contained in αL , i.e.

$$R(K,L) := \min\{\alpha : \exists x \in \mathbb{M}^d \text{ with } \alpha L \supseteq K + x\}.$$

When *K* and *L* are centered convex bodies, the quantities r(K,L) and R(K,L) can also be defined in terms of the support functions of the involved sets. That is r(K,L)is the maximum value of α such that $\alpha \leq h_K(u)/h_L(u)$ for all $u \in S^{d-1}$. Similarly, R(K,L) is the minimum value of α such that $\alpha \geq h_K(u)/h_L(u)$ for all $u \in S^{d-1}$ (cf. [18] and [23]).

3. Representations of radii using cross-section measures

For a convex body K in \mathbb{M}^d , let $w_B(K)$ and $D_B(K)$ be the *Minkowskian width* (i.e., $w_B(K) = \min_{u \in S^{d-1}} \frac{2w(K, u)}{w(B, u)}$, where w(K, u) is the Euclidean width of K in the direction u) and the respective maximum, namely the *Minkowskian diameter*, respectively. One can easily see that $r(\hat{I}_B, B) = R(B, \hat{I}_B)^{-1}$ and $R(\hat{I}_B, B) = r(B, \hat{I}_B)^{-1}$ hold for the Holmes-Thompon and also for the Busemann measures. Also, it is easy to establish that if K is a centered convex body in \mathbb{M}^d , then $2r(K, B) = w_B(K)$ and $2R(K, B) = D_B(K)$.

Some sharp bounds for $r(B, \hat{l}_B^{HT})$, $R(B, \hat{l}_B^{HT})$, $r(B, \hat{l}_B^{Bus})$, and $R(B, \hat{l}_B^{Bus})$ have been already established (see [10], [22]). It turns out that the inner and outer radii of the unit ball with respect to its isoperimetrix can also be represented in terms of cross-section measures in Minkowski spaces. These representations are given below, and the confirmation of them presented here is different (and simpler) than the one given in [12] and [13].

PROPOSITION 3.1. Let B be the unit ball of \mathbb{M}^d . Then

$$r(B, \hat{I}_B^{HT}) = \frac{2\varepsilon_{d-1}}{\varepsilon_d} \min_{u \in S^{d-1}} \frac{\lambda(B^\circ)}{\lambda_{d-1}(B^\circ | u^\perp)\lambda_1(B^\circ \cap l_u)},$$
$$R(B, \hat{I}_B^{HT}) = \frac{2\varepsilon_{d-1}}{\varepsilon_d} \max_{u \in S^{d-1}} \frac{\lambda(B^\circ)}{\lambda_{d-1}(B^\circ | u^\perp)\lambda_1(B^\circ \cap l_u)}.$$

Proof. As mentioned above,

$$r(B, \hat{I}_B^{HT}) = \min_{u \in S^{d-1}} \frac{h_B(u)}{h_{\hat{I}_R^{HT}}}.$$

Using (1) and (2), the right side can be written as

$$r(B, \hat{I}_B^{HT}) = \frac{\lambda(B^\circ)\varepsilon_{d-1}}{\varepsilon_d} \min_{u \in S^{d-1}} \frac{h_B(u)}{h_{\Pi B^\circ}} = \frac{2\varepsilon_{d-1}}{\varepsilon_d} \min_{u \in S^{d-1}} \frac{\lambda(B^\circ)}{\lambda_{d-1}(B^\circ|u^\perp)\lambda_1(B^\circ \cap l_u)}$$

For $R(B, \hat{I}_B^{HT})$, we use

$$R(B, \hat{I}_B^{HT}) = \max_{u \in S^{d-1}} \frac{h_B(u)}{h_{\hat{I}_R^{HT}}}.$$

Hence,

$$R(B, \hat{I}_B^{HT}) = \frac{\lambda(B^\circ)\varepsilon_{d-1}}{\varepsilon_d} \max_{u \in S^{d-1}} \frac{h_B(u)}{h_{\Pi B^\circ}} = \frac{2\varepsilon_{d-1}}{\varepsilon_d} \max_{u \in S^{d-1}} \frac{\lambda(B^\circ)}{\lambda_{d-1}(B^\circ|u^\perp)\lambda_1(B^\circ \cap l_u)}.$$

PROPOSITION 3.2. Let B be the unit ball of \mathbb{M}^d . Then

$$r(B, \hat{I}_B^{Bus}) = \frac{\varepsilon_d}{2\varepsilon_{d-1}} \min_{u \in S^{d-1}} \frac{\lambda_{d-1}(B \cap u^{\perp})\lambda_1(B|l_u)}{\lambda(B)},$$
$$R(B, \hat{I}_B^{Bus}) = \frac{\varepsilon_d}{2\varepsilon_{d-1}} \max_{u \in S^{d-1}} \frac{\lambda_{d-1}(B \cap u^{\perp})\lambda_1(B|l_u)}{\lambda(B)}.$$

Proof. From the definition of the inner radius, we have

$$r(B, \hat{I}_B^{Bus}) = \min_{u \in S^{d-1}} \frac{h_B(u)}{h_{\tilde{I}_B^{Bus}}}.$$

Applying (1) and (3), we get

$$r(B, \hat{I}_B^{Bus}) = \frac{\varepsilon_d}{\lambda(B)\varepsilon_{d-1}} \min_{u \in S^{d-1}} \frac{h_B(u)}{h_{(IB)^\circ}} = \frac{\varepsilon_d}{\varepsilon_{d-1}} \min_{u \in S^{d-1}} \frac{h_B(u)\rho_{IB}(u)}{\lambda(B)}$$
$$= \frac{\varepsilon_d}{2\varepsilon_{d-1}} \min_{u \in S^{d-1}} \frac{\lambda_{d-1}(B \cap u^{\perp})\lambda_1(B|l_u)}{\lambda(B)}.$$

For $R(B, \hat{I}_B^{Bus})$, we have

$$R(B, \hat{I}_B^{Bus}) = \max_{u \in S^{d-1}} \frac{h_B(u)}{h_{\hat{I}_B^{Bus}}}.$$

The result is obtained by expanding the right side of this identity similar to $r(B, \hat{I}_B^{Bus})$.

We mention the following well-known sharp inequalities for centered convex bodies in \mathbb{R}^d (see [16], [21], and [9] for general results).

$$1 \leqslant \frac{\lambda_{d-1}(B|u^{\perp})\lambda_1(B \cap l_u)}{\lambda(B)} \leqslant d,$$

$$1 \leqslant \frac{\lambda_{d-1}(B \cap u^{\perp})\lambda_1(B|l_u)}{\lambda(B)} \leqslant d.$$

Using these inequalities and Propositions 3.1 and 3.2, one can easily establish some sharp bounds for the inner and outer radii of the unit ball *B* with respect to its isoperimetrix. Establishing some other exact bounds are challenging minmax/maxmin problems. For example, for centered convex bodies of *B* in \mathbb{R}^d , the minimum value of

$$\max_{u\in S^{d-1}}\frac{\lambda_{d-1}(B\cap u^{\perp})\lambda_1(B|l_u)}{\lambda(B)}$$

is still unknown.

4. Inequalities for cross-section measures and radii

If *B* and ΠB° are homothetic, then $r(B, \hat{l}_{B}^{HT}) = R(B, \hat{l}_{B}^{HT})$. Due to Proposition 3.1, it is equivalent to the fact that $\lambda_{d-1}(B|u^{\perp})\lambda_{1}(B \cap l_{u})/\lambda(B)$ is a constant for all $u \in S^{d-1}$. The quantity $\lambda_{d-1}(B|u^{\perp})\lambda_{1}(B \cap l_{u})$ is the volume of a cylinder circumscribed about *B* with generators parallel to *u* and bounded by the two parallel hyperplanes that support *B* at $\partial B \cap l_{u}$.

THEOREM 4.1. If B is a centered convex body in \mathbb{R}^d , $d \ge 3$, satisfying

$$\min_{u\in S^{d-1}}rac{\lambda_{d-1}(B|u^{\perp})\lambda_1(B\cap l_u)}{\lambda(B)}\leqslant rac{2arepsilon_{d-1}}{arepsilon_d},$$

then B and ΠB° are homothetic if and only if B is an ellipsoid.

Proof. It is well known that $r(B, \hat{I}_B^{HT}) \leq 1$ with equality if and only if B is an ellipsoid. Using Proposition 3.1, we get

$$\max_{u\in S^{d-1}}\frac{\lambda_{d-1}(B|u^{\perp})\lambda_1(B\cap l_u)}{\lambda(B)}\geqslant \frac{2\varepsilon_{d-1}}{\varepsilon_d},$$

with equality if and only if B is an ellipsoid (see also [10], [6], and [17] for all convex bodies). By Proposition 3.1, the property

$$\min_{u\in S^{d-1}}\frac{\lambda_{d-1}(B|u^{\perp})\lambda_1(B\cap l_u)}{\lambda(B)}\leqslant \frac{2\varepsilon_{d-1}}{\varepsilon_d}$$

is equvalent to $R(B, \hat{I}_B^{HT}) \ge 1$. Therefore $r(B, \hat{I}_B^{HT}) = R(B, \hat{I}_B^{HT})$ if and only if

$$\frac{\lambda_{d-1}(B|u^{\perp})\lambda_1(B\cap l_u)}{\lambda(B)} = \frac{2\varepsilon_{d-1}}{\varepsilon_d}$$

for all $u \in S^{d-1}$. This is the true if and only if *B* is an ellipsoid. \Box

The quantity $(1/d)\lambda_{d-1}(B \cap u^{\perp})\lambda_1(B|l_u)$ is the maximum volume of a doublecone inscribed in *B* with base $B \cap u^{\perp}$. We mention that in their paper [3], Busemann and Petty posed ten problems about centrally symmetric convex bodies. So far only Problem 1 from there (called *the Busemann-Petty problem*) has been solved completely (see [4] and the references therein). Problem 5 of that paper asks the following: For a given unit vector *u* we construct the cone of maximal volume C(u) with base $\lambda_{d-1}(B \cap u^{\perp})$ and apex in *B*. The apex of such a cone is any point of *B* on a supporting hyperplane parallel to u^{\perp} . Are the ellipsoids characterized by the property that C(u) is constant when $d \ge 3$? In [1], the authors proved that if *B* is sufficiently close to the Euclidean ball in the Banach-Mazur metric, then *B* is an ellipsoid. In [8], Lutwak proved the following result for the volume of double-cones inscribed in a centered convex body *B* in \mathbb{R}^d with $d \ge 3$:

$$\min_{u\in S^{d-1}}\lambda_{d-1}(B\cap u^{\perp})\lambda_1(B|l_u)\leqslant \frac{2\varepsilon_d\varepsilon_{d-1}}{\lambda(B^\circ)},$$

with equality if and only if B is an ellipsoid.

One can also see that the quantities $\lambda_{d-1}(B \cap u^{\perp})\lambda_1(B|l_u)/\lambda(B)$ and $\lambda_{d-1}(B|u^{\perp})$ $\lambda_1(B \cap l_u)/\lambda(B)$ are invariant under a dilatation. Therefore, one could set $\lambda(B) = \varepsilon_d$. In [11], it was proved that if *B* is a centered convex body in \mathbb{R}^d with $\lambda(B) = \varepsilon_d$, then

$$\min_{u\in S^{d-1}}\lambda_{d-1}(B\cap u^{\perp})\lambda_1(B^{\circ}|l_u) \leqslant 2\varepsilon_{d-1},\tag{4}$$

with equality if and only if *B* is an ellipsoid.

We also mention that $\lambda_{d-1}(B \cap u^{\perp}) \leq \lambda_{d-1}(B|u^{\perp})$ and $\lambda_1(B \cap l_u) \leq \lambda_1(B|l_u)$ for all $u \in S^{d-1}$. Furthermore, $\min_{u \in S^{d-1}} \lambda_1(B \cap l_u) = \min_{u \in S^{d-1}} (B|l_u)$.

We present here the proof of the following exact inequalities (see also [12]).

THEOREM 4.2. If *B* is the unit ball of \mathbb{M}^d , $d \ge 2$, then

$$R(B, \hat{I}_B^{HT}) r(B^{\circ}, \hat{I}_{B^{\circ}}^{Bus}) \leqslant 1,$$
$$R(B, \hat{I}_B^{Bus}) r(B^{\circ}, \hat{I}_{B^{\circ}}^{HT}) \leqslant 1.$$

Proof. It is well known that $IB^{\circ} \subseteq \Pi B^{\circ}$, with equality for $d \ge 3$ if and only if *B* is an ellipsoid (see [4]). Using (2) and (3), this inclusion can be written as

$$(\hat{I}_{B^{\circ}}^{Bus})^{\circ} \subseteq \hat{I}_{B}^{HT} \tag{5}$$

with equality for $d \ge 3$ if and only if *B* is an ellipsoid. From the definition of inner and outer radii of the polar of *B* for the Busemann measure, we have

$$r(B^{\circ}, \hat{I}^{Bus}_{B^{\circ}})\hat{I}^{Bus}_{B^{\circ}} \subseteq B^{\circ} \subseteq R(B^{\circ}, \hat{I}^{Bus}_{B^{\circ}})\hat{I}^{Bus}_{B^{\circ}}.$$

Thus,

$$\frac{1}{R(B^{\circ},\hat{I}^{Bus}_{B^{\circ}})}(\hat{I}^{Bus}_{B^{\circ}})^{\circ} \subseteq B \subseteq \frac{1}{r(B^{\circ},\hat{I}^{Bus}_{B^{\circ}})}(\hat{I}^{Bus}_{B^{\circ}})^{\circ} \subseteq \frac{1}{r(B^{\circ},\hat{I}^{Bus}_{B^{\circ}})}\hat{I}^{HT}_{B}.$$

Hence

$$R(B, \hat{I}^{HT}) \leqslant rac{1}{r(B^{\circ}, \hat{I}^{Bus}_{B^{\circ}})}$$

To obtain the second inequality one needs to use the inner and outer radii of B° for the Holmes-Thompson measure and the dual of (5). One can easily establish that equality holds for both cases when *B* is a centered Euclidean ball. \Box

COROLLARY 4.3. If B is a centered convex body in \mathbb{R}^d , then

$$\begin{split} \min_{u\in S^{d-1}}\lambda_{d-1}(B\cap u^{\perp})\lambda_1(B|l_u) &\leqslant \min_{u\in S^{d-1}}\lambda_{d-1}(B|u^{\perp})\lambda_1(B\cap l_u),\\ \max_{u\in S^{d-1}}\lambda_{d-1}(B\cap u^{\perp})\lambda_1(B|l_u) &\leqslant \max_{u\in S^{d-1}}\lambda_{d-1}(B|u^{\perp})\lambda_1(B\cap l_u). \end{split}$$

Proof. The results follow from Theorem 4.2, Propositions 3.1 and 3.2. \Box

The significance of Corollary 4.3 is given by the fact that if

$$\min_{u\in S^{d-1}}\lambda_{d-1}(B|u^{\perp})\lambda_1(B\cap l_u)/\lambda(B)\leqslant 2\varepsilon_{d-1}/\varepsilon_d,$$

then

$$\min_{u \in S^{d-1}} \lambda_{d-1}(B \cap u^{\perp}) \lambda_1(B|l_u) / \lambda(B) \leqslant 2\varepsilon_{d-1} / \varepsilon_d$$

In [13], it was proved that for a Minkowski plane with unit ball B

$$r(B, \hat{l}_B^{HT})r(B^\circ, \hat{l}_{B^\circ}^{Bus}) = 1,$$
$$(B, \hat{l}_B^{Bus})r(B^\circ, \hat{l}_{B^\circ}^{HT}) = 1$$

if and only if ∂B is a Radon curve.

One might conjecture that for $d \ge 3$, $r(B, \hat{l}_B^{HT})r(B^\circ, \hat{l}_B^{Bus}) = 1$ and $r(B, \hat{l}_B^{Bus})r(B^\circ, \hat{l}_{B^\circ}^{HT}) = 1$ if and only if *B* is a centered ellipsoid.

QUESTION. Is it true that in \mathbb{M}^d , $d \ge 3$,

$$R(B, \hat{I}^{Bus}_B)R(B^{\circ}, \hat{I}^{HT}_{B^{\circ}}) \ge 1$$

with equality if and only if B is an ellipsoid? This question is equivalent to asking whether

$$\max_{u \in S^{d-1}} \lambda_{d-1}(B \cap u^{\perp}) \lambda_1(B|l_u) \geqslant \min_{u \in S^{d-1}} \lambda_{d-1}(B|u^{\perp}) \lambda_1(B \cap l_u)$$

with equality if and only if *B* is an ellipsoid?

Establishing the exact upper bound of $r(B, \hat{I}_B^{Bus})$ is a challenging open maxmin problem (cf. Problem 6 in [3]). We prove the following related inequality.

THEOREM 4.4. Let *B* be the unit ball of \mathbb{M}^d with $\lambda(B) = \varepsilon_d$. Then

$$r(B^{\circ}, \hat{I}_B^{Bus}) \leqslant 1$$

with equality if and only if B is an ellipsoid.

Proof. From the definition of the inner radius, we have

$$r(B^{\circ}, \hat{I}_B^{Bus}) = \min_{u \in S^{d-1}} \frac{h_{B^{\circ}}(u)}{h_{\hat{I}_R^{Bus}}(u)}.$$

The right side of this identity can be expanded as

$$\min_{u\in S^{d-1}}\frac{h_{B^{\circ}}(u)}{h_{f_{R}^{Bus}}(u)}=\frac{\lambda(B)}{\varepsilon_{d}\varepsilon_{d-1}}\min_{u\in S^{d-1}}\frac{h_{B^{\circ}}(u)}{h_{(IB)^{\circ}}(u)}=\frac{\lambda(B)}{\varepsilon_{d}\varepsilon_{d-1}}\min_{u\in S^{d-1}}h_{B^{\circ}}(u)\rho_{IB}(u).$$

The result follows from $\lambda(B) = \varepsilon_d$, (4), and Proposition 3.2.

Acknowledgement. The author would like to thank the referee for valuable suggestions and comments to improve the manuscript.

REFERENCES

- M. A. ALFONSECA, P. NAZAROV, D. RYABOGIN, V. YASKIN, A solution to the fifth and the eighth Busemann-Petty problems in a small neighborhood of the Euclidean ball, Adv. Math. 390 (2021), Paper No. 107920, 28 pp.
- [2] H. BUSEMANN, A theorem on convex bodies of the Brunn-Minkowski type, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 27–31.
- [3] H. BUSEMANN AND C. M. PETTY, Problems on convex bodies, Math. Scand. 4 (1956), 88-94.
- [4] R. J. GARDNER, Geometric Tomography, second edition, Encyclopedia of Mathematics and its Applications 58, Cambridge University Press, New York, 2006.
- [5] P. GOODEY, AND W. WEIL, Zonoids and generalizations, In: Handbook of Convex Geometry, vol. B, pp. 1297–1326, North-Holland, Amsterdam et al., 1993.
- [6] Á. G. HORVÁTH AND Z. LÁNGI, On the volume of the convex hull of two convex bodies, Monatsh. Math. 174 (2014), no. 2, 219–229.
- [7] E. LUTWAK, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232–261.
- [8] E. LUTWAK, A minimax inequality for inscribed cones, J. Math. Anal. Appl. 176 (1993), no. 1, 148– 155.
- [9] H. MARTINI, Cross-sectional measures, Intuitive Geometry (Szeger, 1991) Colloq. Math. Soc. Janos Bolyai 63, North-Holland, AMsterdam, 1994, 269–310.
- [10] H. MARTINI AND Z. MUSTAFAEV, Some applications of cross-section measures in Minkowski spaces, Period. Math. Hungar. 53 (2006), 185–197.
- [11] H. MARTINI AND Z. MUSTAFAEV, Centered convex bodies and inequalities for cross-section measures, Math. Inequal. Appl. 18 (2015), no. 2, 759–767.
- [12] H. MARTINI AND Z. MUSTAFAEV, New inequalities for product of cross-section measures, Math. Inequal. Appl. bf 20 (2017), no. 2, 353–361.
- [13] H. MARTINI AND Z. MUSTAFAEV, Cross-section measures, radii, and Radon curves, (submitted) (2022).
- [14] H. MARTINI AND K. J. SWANEPOEL, Antinorms and Radon curves, Aequationes Math. 72 (2006), 110–138.
- [15] J. RADON, Über eine besondere Art ebener Kurven, Ber. Verh. Sächs. Ges. Wiss. Leipzig. Math.-Phys. Kl. 68 (1916), 23–28.
- [16] C. A. ROGERS AND G. C. SHEPHARD, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270–281.
- [17] C. A. ROGERS AND G. C. SHEPHARD, Some extremal problems for convex bodies, Mathematika 5 (1958), 93–102.
- [18] R. SCHNEIDER, Stability for some extremal properties of the simplex, J. Geom. 96 (2009), 135–148.
- [19] R. SCHNEIDER, Convex Bodies: The Brunn-Minkowski Theory, second edition, Encyclopedia of Mathematics and its Applications 151, Cambridge University Press, 2014.
- [20] R. SCHNEIDER AND W. WEIL, *Zonoids and related topics*, In: Convexity and its Applications, pp. 269–317, Birkhäuser, Basel, 1983.
- [21] J. E. SPINGARN, An inequality for sections and projections of convex sets, Proc. Amer. Math. Soc. 118 (1993), 1219–1224.
- [22] A. C. THOMPSON, *Minkowski Geometry*, Encyclopedia of Mathematics and its Applications 63, Cambridge University Press, 1996.
- [23] G. TÓTH, Notes on Schneider's stability estimates for convex sets in Minkowski spaces, J. Geom. 104 (2013), 585–598.

(Received February 26, 2022)

Zokhrab Mustafaev Department of Mathematics University of Houston-Clear Lake Houston, TX 77058 USA mustafaev@uhcl.edu