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ON MINMAX AND MAXMIN INEQUALITIES
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Abstract. One of the challenging problems from the geometry of (normed or) Minkowki spaces
is the question of whether the unit ball must be an ellipsoid if it is a solution of the corresponding
isoperimetric problem. The inner and outer radii of the unit ball with respect to the corresponding
isoperimetrix (represented in terms of cross-section measures) will be used to establish a result
on this problem for a specific measure. Some new minmax and maxmin inequalities for centered
convex bodies will also be established.

1. Introduction

Let M
d := (Rd , || · ||) be a d -dimensional Minkowski space (i.e., a finite-dimen-

sional real Banach space). When d = 2, it is called a Minkowski plane. The set-
ting for this paper will be both the standard Euclidean space R

d and a d -dimensional
Minkowski space M

d . Some definitions and notations from both spaces will be used.
There are various ways of introducing the notion of measure in a Minkowski space.

Two notions of measure, one due to Busemann and the other due to Holmes-Thompson
(see Section 2 below), have been widely used in the literature. Once the notion of
measure is introduced in a given Minkowski space, the question of whether the unit
ball B of M

d must be an ellipsoid (i.e. M
d is an Euclidean space) if it is a solution

of the isoperimetric problem is a challenging open problem for d � 3 (see [3], [4], and
[22]). For the Holmes-Thompson measure this question is equivalent to asking whether
B must be an ellipsoid if B and the projection body of its polar ΠB◦ are homothetic
(or B◦ and ΠB are homothetic). With Busemann’s definition of measure the question
becomes whether B and the polar body of its intersection body (IB)◦ are homothetic
(or B◦ and IB are homothetic). For d = 2, the unit ball B has this property if and only
if ∂B is a Radon curve. These curves were introduced by Radon [15] (see [14] and the
references therein for more about Radon curves). In M

2 the following statement holds:
if the unit circle ∂B is a Radon curve, then B is a solution of the isoperimetric problem.

The purpose of this manuscript is to establish some minmax and maxmin inequal-
ities for centered convex bodies. We also show that if the unit ball B satisfies a certain
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property, then B and ΠB◦ cannot be homothetic unless B is an ellipsoid. To derive the
results conveniently, the inner radius and outer radius of the unit ball with respect to its
isoperimetrix (for Holmes-Thompson and Busemann measures) will be represented in
terms of cross-section measures.

2. Notations and background materials

A convex body K in R
d , d � 2, is a compact, convex set with nonempty interior.

K is said to be centered if it is symmetric with respect to the origin o of R
d . Sd−1 will

denote the standard Euclidean unit sphere in R
d . We write λi(·) for the i -dimensional

Lebesgue measure (volume) in R
d , where 1 � i � d , and when i = d we omit the

subscript. For a given direction u∈ Sd−1 , we use u⊥ to denote the (d−1)-dimensional
hyperplane (passing through the origin) orthogonal to u , and by lu the 1-subspace
parallel to u . Furthermore, λ1(K|lu) denotes the width of K at u , and λd−1(K|u⊥)
the (d − 1)-dimensional outer cross-section measure or brightness of K at u ∈ Sd−1 ,
where K|u⊥ is the orthogonal projection of K onto u⊥ (see [4] for these notations).

For a convex body K in R
d , the polar body K◦ of K is defined by

K◦ = {y ∈ R
d : 〈x,y〉 � 1,x ∈ K},

where 〈·, ·〉 denotes the standard scalar product in R
d .

The following properties of the centered convex bodies will be used here: (K◦)◦ =
K , (αK)◦ = (1/α)K◦ for α > 0, and if K1 ⊆ K2 , then K◦

2 ⊆ K◦
1 .

We will use the standard basis to identify R
d and its dual space R

d∗ . In that case,
λi(·) and λ ∗

i (·) coincide in R
d . For the i-dimensional volume of the unit ball in R

i ,
we write εi .

The support function hK : Sd−1 → R of a convex body K is defined as hK(u) =
sup{〈u,y〉 : y ∈ K} . It is well known that hK is monotone with respect to inclusion (i.e.
if K ⊆ L , then hK � hL ), and positive homogeneous (i.e. hαK(u) = hK(αu) = αhK for
all α > 0). Furthermore, if 0 ∈ K , then hK(u) is the distance from the origin to the
supporting hyperplane of K with outer unit normal vector u (see [19] for more about
support functions). When the origin is an interior point of K its radial function ρK(u)
is defined by ρK(u) = max{α � 0 : αu∈K}. The following relation between these two
functions is well known:

ρK◦(u) =
1

hK(u)
, u ∈ Sd−1 . (1)

Note that if K is a centered convex body, then 2ρK(u) = λ1(K∩ lu) , and 2hK(u) =
λ1(K|lu) for any u ∈ Sd−1 .

For a given convex body K in R
d , the projection body ΠK of K is defined as

the convex body whose supporting hyperplane in a given direction u has a distance
λd−1(K|u⊥) from the origin, i.e., hΠK(u) = λd−1(K|u⊥) for each u ∈ Sd−1 (see [4,
Chapter 4]). Note that any projection body is a zonoid (i.e., a limit of vector sums of
segments) centered at the origin (see [20] and [5] for properties and applications of
zonoids). The intersection body IK of a convex body K ⊂ R

d is defined by its radial
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function ρIK(u) = λd−1(K∩u⊥) for each u ∈ Sd−1 (cf. [7] and [4, Chapter 8]). If K is
a symmetric convex body, then the result of Busemann (see [2]) states that IK is also
convex and symmetric.

A Minkowski space M
d with unit ball B possesses a Haar measure μB , and this

measure is unique up to multiplication of the Lebesgue measure by a constant, i.e.,
μB(·) = σBλ (·). These two measures μB and λ must also agree in the standard Eu-
clidean space. For a given convex body K in M

d , its d -dimensional Busemann volume
is defined by

μBus
B (K) =

εd

λ (B)
λ (K), i.e. , σB =

εd

λ (B)
,

and its d -dimensional Holmes-Thompson volume is defined by

μHT
B (K) =

λ (K)λ (B◦)
εd

, i.e., σB =
λ (B◦)

εd
,

see [22, Chapter 5]. In order to define the Minkowski surface area of a convex body
K in M

d , μB(∂K) , one has to define σB similarly in M
d−1 . This area generating

function σB(u) is invariant under linear transformations of R
d , continuous with respect

to Hausdorff metric, and normalized by σ(E) = εd−1 if E is an (d − 1)-dimensional
ellipsoid. For the Holmes-Thompson measure, this function is defined to be σB(u) =
λd−1((B∩u⊥)◦)/εd−1 , and for the Busemann measure it is σB(u) = εd−1/λd−1(B∩u⊥)
(see [22, pp. 150–151]).

σB(u) is the support function of a convex body IB which is related to isoperimetric
problems in Minkowski spaces. Namely, among all convex bodies of a given volume
(area), a homothetical copy of IB has minimal surface area (perimeter). In a Minkowski
plane, IB is the polar body of the unit disc B , rotated by an angle of 90◦ .

For the Holmes-Thompson measure, IB is given by IHT
B = ΠB◦/εd−1 (cf. [22,

p. 150 and p. 157] for detailed explanation), and therefore it is a centered zonoid. For
the Busemann measure, IB is defined by IBus

B = εd−1(IB)◦ (see again [22, pp. 150-
151]).

For a given Minkowski space M
d with unit ball B , ÎB = σ−1

B IB is called the
isoperimetrix of the space. This body has the property of μB(∂ ÎB) = dμB(ÎB) . Thus,
for the Holmes-Thompson measure, we have

ÎHT
B =

εd

λ (B◦)
IHT
B =

εd

εd−1

1
λ (B◦)

ΠB◦ , (2)

and for the Busemann measur, we have

ÎBus
B =

λ (B)
εd

IBus
B =

εd−1

εd
λ (B)(IB)◦. (3)

For convex bodies K and L , we define the (relative) inner radius of K with respect
to L to be the largest value of α � 0 such that a translate of K contains αL , i.e.

r(K,L) := max{α : ∃x ∈ M
d with αL ⊆ K + x},
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and the (relative) outer radius of K with respect to L to be the smallest value of α � 0
such that a translate of K is contained in αL , i.e.

R(K,L) := min{α : ∃x ∈ M
d with αL ⊇ K + x}.

When K and L are centered convex bodies, the quantities r(K,L) and R(K,L) can
also be defined in terms of the support functions of the involved sets. That is r(K,L)
is the maximum value of α such that α � hK(u)/hL(u) for all u ∈ Sd−1 . Similarly,
R(K,L) is the minimum value of α such that α � hK(u)/hL(u) for all u ∈ Sd−1 (cf.
[18] and [23]).

3. Representations of radii using cross-section measures

For a convex body K in M
d , let wB(K) and DB(K) be the Minkowskian width

(i.e., wB(K) = min
u∈Sd−1

2w(K,u)
w(B,u)

, where w(K,u) is the Euclidean width of K in the direc-

tion u ) and the respective maximum, namely the Minkowskian diameter, respectively.
One can easily see that r(ÎB,B) = R(B, ÎB)−1 and R(ÎB,B) = r(B, ÎB)−1 hold for the
Holmes-Thompon and also for the Busemann measures. Also, it is easy to establish that
if K is a centered convex body in M

d , then 2r(K,B) = wB(K) and 2R(K,B) = DB(K) .
Some sharp bounds for r(B, ÎHT

B ) , R(B, ÎHT
B ) , r(B, ÎBus

B ) , and R(B, ÎBus
B ) have been

already established (see [10], [22]). It turns out that the inner and outer radii of the
unit ball with respect to its isoperimetrix can also be represented in terms of cross-
section measures in Minkowski spaces. These representations are given below, and the
confirmation of them presented here is different (and simpler) than the one given in [12]
and [13].

PROPOSITION 3.1. Let B be the unit ball of M
d . Then

r(B, ÎHT
B ) =

2εd−1

εd
min

u∈Sd−1

λ (B◦)
λd−1(B◦|u⊥)λ1(B◦ ∩ lu)

,

R(B, ÎHT
B ) =

2εd−1

εd
max

u∈Sd−1

λ (B◦)
λd−1(B◦|u⊥)λ1(B◦ ∩ lu)

.

Proof. As mentioned above,

r(B, ÎHT
B ) = min

u∈Sd−1

hB(u)
hÎHT

B

.

Using (1) and (2), the right side can be written as

r(B, ÎHT
B ) =

λ (B◦)εd−1

εd
min

u∈Sd−1

hB(u)
hΠB◦

=
2εd−1

εd
min

u∈Sd−1

λ (B◦)
λd−1(B◦|u⊥)λ1(B◦ ∩ lu)

.

For R(B, ÎHT
B ) , we use

R(B, ÎHT
B ) = max

u∈Sd−1

hB(u)
hÎHT

B

.
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Hence,

R(B, ÎHT
B ) =

λ (B◦)εd−1

εd
max

u∈Sd−1

hB(u)
hΠB◦

=
2εd−1

εd
max

u∈Sd−1

λ (B◦)
λd−1(B◦|u⊥)λ1(B◦ ∩ lu)

. �

PROPOSITION 3.2. Let B be the unit ball of M
d . Then

r(B, ÎBus
B ) =

εd

2εd−1
min

u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

,

R(B, ÎBus
B ) =

εd

2εd−1
max

u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

.

Proof. From the definition of the inner radius, we have

r(B, ÎBus
B ) = min

u∈Sd−1

hB(u)
hÎBus

B

.

Applying (1) and (3), we get

r(B, ÎBus
B ) =

εd

λ (B)εd−1
min

u∈Sd−1

hB(u)
h(IB)◦

=
εd

εd−1
min

u∈Sd−1

hB(u)ρIB(u)
λ (B)

=
εd

2εd−1
min

u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

.

For R(B, ÎBus
B ) , we have

R(B, ÎBus
B ) = max

u∈Sd−1

hB(u)
hÎBus

B

.

The result is obtained by expanding the right side of this identity similar to r(B, ÎBus
B ) .

�
We mention the following well-known sharp inequalities for centered convex bod-

ies in R
d (see [16], [21], and [9] for general results).

1 � λd−1(B|u⊥)λ1(B∩ lu)
λ (B)

� d,

1 � λd−1(B∩u⊥)λ1(B|lu)
λ (B)

� d.

Using these inequalities and Propositions 3.1 and 3.2, one can easily establish
some sharp bounds for the inner and outer radii of the unit ball B with respect to its
isoperimetrix. Establishing some other exact bounds are challenging minmax/maxmin
problems. For example, for centered convex bodies of B in R

d , the minimum value of

max
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu)
λ (B)

is still unknown.
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4. Inequalities for cross-section measures and radii

If B and ΠB◦ are homothetic, then r(B, ÎHT
B ) = R(B, ÎHT

B ) . Due to Proposition
3.1, it is equivalent to the fact that λd−1(B|u⊥)λ1(B∩ lu)/λ (B) is a constant for all
u∈ Sd−1 . The quantity λd−1(B|u⊥)λ1(B∩ lu) is the volume of a cylinder circumscribed
about B with generators parallel to u and bounded by the two parallel hyperplanes that
support B at ∂B∩ lu .

THEOREM 4.1. If B is a centered convex body in R
d , d � 3 , satisfying

min
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu)
λ (B)

� 2εd−1

εd
,

then B and ΠB◦ are homothetic if and only if B is an ellipsoid.

Proof. It is well known that r(B, ÎHT
B ) � 1 with equality if and only if B is an

ellipsoid. Using Proposition 3.1, we get

max
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu)
λ (B)

� 2εd−1

εd
,

with equality if and only if B is an ellipsoid (see also [10], [6], and [17] for all convex
bodies). By Proposition 3.1, the property

min
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu)
λ (B)

� 2εd−1

εd

is equvalent to R(B, ÎHT
B ) � 1. Therefore r(B, ÎHT

B ) = R(B, ÎHT
B ) if and only if

λd−1(B|u⊥)λ1(B∩ lu)
λ (B)

=
2εd−1

εd

for all u ∈ Sd−1 . This is the true if and only if B is an ellipsoid. �
The quantity (1/d)λd−1(B∩ u⊥)λ1(B|lu) is the maximum volume of a double-

cone inscribed in B with base B∩ u⊥ . We mention that in their paper [3], Buse-
mann and Petty posed ten problems about centrally symmetric convex bodies. So far
only Problem 1 from there (called the Busemann-Petty problem) has been solved com-
pletely (see [4] and the references therein). Problem 5 of that paper asks the following:
For a given unit vector u we construct the cone of maximal volume C(u) with base
λd−1(B∩u⊥) and apex in B . The apex of such a cone is any point of B on a supporting
hyperplane parallel to u⊥ . Are the ellipsoids characterized by the property that C(u) is
constant when d � 3? In [1], the authors proved that if B is sufficiently close to the Eu-
clidean ball in the Banach-Mazur metric, then B is an ellipsoid. In [8], Lutwak proved
the following result for the volume of double-cones inscribed in a centered convex body
B in R

d with d � 3:

min
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu) � 2εdεd−1

λ (B◦)
,
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with equality if and only if B is an ellipsoid.
One can also see that the quantities λd−1(B∩u⊥)λ1(B|lu)/λ (B) and λd−1(B|u⊥)

λ1(B∩ lu)/λ (B) are invariant under a dilatation. Therefore, one could set λ (B) = εd .
In [11], it was proved that if B is a centered convex body in R

d with λ (B) = εd , then

min
u∈Sd−1

λd−1(B∩u⊥)λ1(B◦|lu) � 2εd−1, (4)

with equality if and only if B is an ellipsoid.
We also mention that λd−1(B∩u⊥) � λd−1(B|u⊥) and λ1(B∩ lu) � λ1(B|lu) for

all u ∈ Sd−1 . Furthermore, min
u∈Sd−1

λ1(B∩ lu) = min
u∈Sd−1

(B|lu) .
We present here the proof of the following exact inequalities (see also [12]).

THEOREM 4.2. If B is the unit ball of M
d , d � 2 , then

R(B, ÎHT
B )r(B◦, ÎBus

B◦ ) � 1,

R(B, ÎBus
B )r(B◦, ÎHT

B◦ ) � 1.

Proof. It is well known that IB◦ ⊆ ΠB◦ , with equality for d � 3 if and only if B
is an ellipsoid (see [4]). Using (2) and (3), this inclusion can be written as

(ÎBus
B◦ )◦ ⊆ ÎHT

B (5)

with equality for d � 3 if and only if B is an ellipsoid. From the definition of inner and
outer radii of the polar of B for the Busemann measure, we have

r(B◦, ÎBus
B◦ )ÎBus

B◦ ⊆ B◦ ⊆ R(B◦, ÎBus
B◦ )ÎBus

B◦ .

Thus,
1

R(B◦, ÎBus
B◦ )

(ÎBus
B◦ )◦ ⊆ B ⊆ 1

r(B◦, ÎBus
B◦ )

(ÎBus
B◦ )◦ ⊆ 1

r(B◦, ÎBus
B◦ )

ÎHT
B .

Hence

R(B, ÎHT ) � 1

r(B◦, ÎBus
B◦ )

.

To obtain the second inequality one needs to use the inner and outer radii of B◦ for the
Holmes-Thompson measure and the dual of (5). One can easily establish that equality
holds for both cases when B is a centered Euclidean ball. �

COROLLARY 4.3. If B is a centered convex body in R
d , then

min
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu) � min
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu),

max
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu) � max
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu).
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Proof. The results follow from Theorem 4.2, Propositions 3.1 and 3.2. �
The significance of Corollary 4.3 is given by the fact that if

min
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu)/λ (B) � 2εd−1/εd ,

then
min

u∈Sd−1
λd−1(B∩u⊥)λ1(B|lu)/λ (B) � 2εd−1/εd .

In [13], it was proved that for a Minkowski plane with unit ball B

r(B, ÎHT
B )r(B◦, ÎBus

B◦ ) = 1,

(B, ÎBus
B )r(B◦, ÎHT

B◦ ) = 1

if and only if ∂B is a Radon curve.
One might conjecture that for d � 3, r(B, ÎHT

B )r(B◦, ÎBus
B◦ )= 1 and r(B, ÎBus

B )r(B◦, ÎHT
B◦ )

= 1 if and only if B is a centered ellipsoid.

QUESTION. Is it true that in M
d , d � 3,

R(B, ÎBus
B )R(B◦, ÎHT

B◦ ) � 1

with equality if and only if B is an ellipsoid? This question is equivalent to asking
whether

max
u∈Sd−1

λd−1(B∩u⊥)λ1(B|lu) � min
u∈Sd−1

λd−1(B|u⊥)λ1(B∩ lu)

with equality if and only if B is an ellipsoid?
Establishing the exact upper bound of r(B, ÎBus

B ) is a challenging open maxmin
problem (cf. Problem 6 in [3]). We prove the following related inequality.

THEOREM 4.4. Let B be the unit ball of M
d with λ (B) = εd . Then

r(B◦, ÎBus
B ) � 1,

with equality if and only if B is an ellipsoid.

Proof. From the definition of the inner radius, we have

r(B◦, ÎBus
B ) = min

u∈Sd−1

hB◦(u)
hÎBus

B
(u)

.

The right side of this identity can be expanded as

min
u∈Sd−1

hB◦(u)
hÎBus

B
(u)

=
λ (B)

εdεd−1
min

u∈Sd−1

hB◦(u)
h(IB)◦(u)

=
λ (B)

εdεd−1
min

u∈Sd−1
hB◦(u)ρIB(u).

The result follows from λ (B) = εd , (4), and Proposition 3.2. �
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