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Abstract. Significant stochastic orders can be characterized by other stochastic orders when
probabilities are transformed by means of measurable mappings which fulfils certain conditions.
The main aim of this manuscript is to provide a unified approach of those orders. Our study
shows how to obtain important results of such orders by means of conditions on the underly-
ing stochastic orders. Those results are mainly in relation to maximal generators, to transition
kernels between ordered probabilities, and to probabilistic operators of kernels.

1. Introduction

Relevant stochastic orders share a common mathematical pattern. They can be
characterized by well-known stochastic orders when probabilities are transformed by
appropriatemappings. Basically, an order �1 of that class satisfies that P′ �1 P′′ when
P′ ◦m−1 �2 P′′ ◦m−1 , where �2 is a known stochastic order and m is a measurable
mapping which fulfils certain conditions. In this paper, we focus our attention on the
analysis of stochastic orders which can be characterized by means of other stochastic
orders when random elements are transformed adequately, giving a unified approach to
those orderings.

The structure of the paper is the following. Section 2 contains the concepts and
notation that we need for our analysis. The results and applications of the manuscript
are included in Section 3. Section 3.1 contains examples of stochastic orders given by
other orders when probabilities are transformed by some mappings. Among other ex-
amples, we see that the linear stochastic order can be characterized by a Scarsini’s order
when probabilities are transformed by a specific mapping and vice versa. Section 3.2
provides how to derive maximal generators of those orders when the corresponding un-
derlying orders are integral. Easy characterizations of the maximal generators of some
important orders are derived in Section 3.3. Section 3.4 approaches different questions

Mathematics subject classification (2020): 60E15.
Keywords and phrases: Kernel, maximal generator, probability operator, probability transformation,

stochastic order.
This research is supported by the Spanish Ministry of Science and Innovation (Grants MTM2015-63971-

P, MTM2017-83506-C2-2-P and MTM-PID2019-104486GB-I00) and Principado de Asturias (Grants FC-GRUPIN-
IDI/2018/000132 and FC-GRUPIN-IDI/2018/000193).

∗ Corresponding author.

c© � � , Zagreb
Paper MIA-25-59

925

http://dx.doi.org/10.7153/mia-2022-25-59
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about such stochastic orders in relation to transition kernels, kernels and probabilistic
operators of kernels. Namely, it is proved the existence of a transition kernel between
probabilities ordered in �1 under mild conditions on the maximal generator of �2 .
Moreover, such a kernel is obtained by means of a transition kernel between probabil-
ities ordered in �2 . It is shown that for the probabilistic operators associated with the
above kernels, the monotone condition with respect to the corresponding stochastic or-
der is equivalent. We also relate the property of being smaller with respect to the orders
�1 and �2 for probabilistic operators associated with kernels.

2. Preliminaries

A stochastic order is a pre-order on a set of probabilities associated with a mea-
surable space. A detailed and rigorous analysis of stochastic orders, from both applied
and theoretical approaches, can be found, for instance, in the books [10], [14] and [1].

Throughout the paper, S and S ′ will stand for Polish spaces, and BS and BS ′
for the corresponding Borel σ -algebras.

From now on, the term measurable mapping will refer to Borel σ -algebras (Borel
measurability).

A stochastic order � on a set of probabilities on the measurable space (S ,BS )
is said to be integral, when there exists a set F of measurable mappings from S to R

(R endowed with the usual Borel σ -algebra) such that

P � Q when
∫

S
f dP �

∫
S

f dQ (1)

for any f ∈ F such that the integrals exist. Any set of mappings F satisfying (1) is
said to be a generator of the order.

A key concept in the manuscript is the so-called maximal generator of an integral
stochastic order. Roughly speaking, the maximal generator is the largest generator of
that order inside an appropriate class of measurable mappings.

The maximal generator of an integral stochastic order depends on the weight func-
tion. A weight function is a measurable mapping b : S → [1,∞) . That mapping defines
the b -norm of a function f : S → R , denoted by ‖ f‖b , as

‖ f‖b = sup
x∈S

| f (x)|
b(x)

.

Given b a weight function, we will denote by Bb the set of measurable mappings
from S to R with bounded b -norm, and by Pb the set of probabilities on BS such
that ∫

S
bdP < ∞.

If � is an integral stochastic order on Pb , the maximal generator of � is the set of all
functions f ∈ Bb such that

P � Q implies
∫

S
f dP �

∫
S

f dQ.
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Note that since f ∈ Bb and P,Q ∈ Pb, the integrals exist.
The reader is referred to [9] and Chapter 2 of [10] for a rigorous and detailed

analysis of integral stochastic orders.
Let m : S → S ′ be a measurable mapping. Let P be a probability on BS ,

P ◦m−1 will stand for the probability defined as P ◦m−1(B) = P(m−1(B)) for any
B ∈ BS ′ .

It is worth mentioning that the inverse of a bijective (Borel) measurable mapping
is also (Borel) measurable (see, for instance, [5] or [15]). Thus, if m : S → S ′ is a
bijective measurable mapping and P is a probability on BS ′ , P◦m is a probability on
BS . Observe that this is not true in general if we consider other σ -algebras.

Given � a partial order on S , a mapping f : S → R is said to be � -preserving
if for any x,y ∈ S with x � y , we have that f (x) � f (y) (see, for instance, [11] or
[13]).

Briefly, we summarize the concepts of kernel and transition kernel (see, for in-
stance, [4]).

Let (Ω1,A1) and (Ω2,A2) be measurable spaces. A kernel Q from Ω1 to Ω2 is
a mapping Q : Ω1×A2 → R satisfying

i) Q(ω1, ·) : A2 → R is a probability on (Ω2,A2) for all ω1 ∈ Ω1 ,
ii) Q(·,E) : Ω1 → R is measurable (with respect to A1 and the usual Borel σ -

algebra on R) for any E ∈ A2.

If Q is a kernel from Ω1 to Ω2 and P1 is a probability on (Ω1,A1) , Q “trans-
forms” the probability P1 into a probability on (Ω2,A2) . That probability, denoted by
QP1 , is given by

QP1(E) =
∫

Ω1

Q(ω1,E)dP1

for any E ∈ A2 .
If P2 is a probability on (Ω2,A2) and there exists Q , a kernel from Ω1 to Ω2 ,

such that QP1 = P2 , then Q is said to be a transition kernel between P1 and P2 .
Let T be an operator on the set of probabilities associated with the measurable

space (S ,BS ) , that is, a mapping from such a set to itself. Let � be a stochastic
order on that set of probabilities.

The operator T is said to be � -monotone if TP1 � TP2 for any probabilities P1

and P2 with P1 � P2.

Given the operators T1 and T2 , T1 is said to be smaller than T2 for the stochastic
order � , if T1P � T2P for any probability P . It will be denoted by T1 � T2 .

Given Q a kernel from S to S , we will denote by TQ the associated probabilistic
operator, that is, TQP = QP .

If A is a subset of R
n , IA will stand for the indicator mapping of the set A .

From now on, ei will stand for the ith unit vector of R
n , 1 � i � n .

To conclude this section, we include some stochastic orders which will appear in
the manuscript. Those orders are for probabilities associated with the measurable space
(Rn,BRn) , where BRn stands for the usual Borel σ -algebra on R

n .
Let X and Y be random vectors, X is said to be smaller than Y in the
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i) usual stochastic order, denoted by X �st Y , if E( f (X)) � E( f (Y )) for all in-
creasing mappings f : R

n →R such that the expectations exist, that is, for all mappings
f : R

n → R with f (x) � f (y) when x � y ,
ii) upper orthant order, denoted by X �uo Y , if FX (z) � FY (z) for all z ∈ R

n ,
where FW stands for the multivariate survival function of the random vector W ,

iii) extremality stochastic order in the direction u ∈ Sn−1 , denoted by X �Eu Y ,
when P(Ru(X − t) � 0) � P(Ru(Y − t) � 0) for all t ∈ R

n, where Ru is a rotation
matrix such that Ruu = 1√

n1, with 1 = (1, . . . ,1)t ∈ R
n (see [6]),

iv) strong extremality stochastic order in the direction u ∈ Sn−1 , denoted by
X �SEu Y , when E( f (X)) � E( f (Y )) for any �u -preserving mapping f : R

n → R

such that the expectations exist, where the partial order �u on R
n is given by x �u y

when f (x) � f (y) for all f ∈ G u, with x,y ∈ R
n , G u = {ICu

t
| t ∈ R

n} and Cu
t = {x ∈

R
n | Ru(x− t) � 0} (see [7]),

v) time value of money stochastic ordering, denoted by X �tvm Y , if E( f (X)) �
E( f (Y )) for any f ∈ F such that the expectations exist, where F = { f : R

n → R |
f (x + εiei) � f (x + εi+1ei+1) for all x ∈ R

n, 0 � εi+1 � εi,1 � i � n− 1, and f (x +
εnen) � f (x) for all x ∈ R

n and 0 � εn } (see [8]),
vi) order �1 , denoted by X �1 Y , if atX �st atY for any a ∈ R

n with 1 � a1 �
a2 � . . . � an � 0 (finite dimensional version, see [12]),

vii) linear stochastic order, when stX �st stY for any s ∈ R
n such that 0 � s . It is

denoted as X �l−st Y (see [2]).

3. Main results

From now on, X and Y will denote random elements (measurable mappings)
defined on a certain probability space, which take values on S , PX and PY will stand
for the corresponding induced probabilities on BS and m : S →S ′ will be a bijective
measurable mapping.

Let �2 be a stochastic order on the set of probabilities associated with the mea-
surable space (S ′,BS ′) . Let �1 be the stochastic order on the set of probabilities
associated with the measurable space (S ,BS ) , given by P′ �1 P′′ when P′ ◦m−1 �2

P′′ ◦m−1 , or in terms of random elements, X �1 Y (PX �1 PY ) when m(X) �2 m(Y )
(Pm(X) �2 Pm(Y ) ).

Observe that the relation �1 inherits the reflexivity and transitivity of �2 . More-
over, if �2 is antisymmetric, so is �1 .

3.1. Some examples of stochastic orders characterized by other stochastic orders

Firstly, we include some examples of stochastic orders which can be characterized
by means of other stochastic orders when probabilities are transformed adequately.

The following result relates the linear stochastic order �l−st and the Scarsini’s
order �1 . Basically, it says that the linear stochastic order �l−st can be characterized
by means of the order �1 and an appropriate transformation of random vectors, and
vice versa.
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PROPOSITION 3.1. There exists a bijective mapping h : R
n → R

n such that for
any random vectors X and Y , X �l−st Y is the same as h(X) �1 h(Y ) .

Proof. Note that X �l−st Y when stX �st stY for any s ∈ R
n such that 0 � s .

Observe that this is ∑n
i=1 siXi �st ∑n

i=1 siYi for any 0 � si , with 1 � i � n. On the other
hand, X �1 Y when atX �st atY for any a ∈ R

n with 1 � a1 � a2 � . . . � an � 0. The
condition 1 � a1 is irrelevant for the definition of the order, since the usual stochastic
order is preserved under the product by positive scalars. So, it is sufficient to consider
a1 � a2 � . . . � an � 0.

Note that ∑n
i=1 aiXi = (a1−a2)X1+(a2−a3)(X1+X2)+(a3−a4)(X1 +X2+X3)+

. . .+(an−1−an)(X1 +X2 + . . .+Xn−1)+an(X1 +X2 + . . .+Xn) . As a consequence, it
holds that X �1 Y if and only if ∑n

i=1 si(X1 +X2+ . . .+Xi)�st ∑n
i=1 si(Y1 +Y2 + . . .+Yi)

for any s ∈ R
n with 0 � s .

That is, X �1 Y is the same as h−1(X) �l−st h−1(Y ) , where h : R
n → R

n is the
bijective linear map such that h(ei) = ei − ei+1 for all 1 � i � n− 1 and h(en) = en .
Alternatively, X �l−st Y is equivalent to h(X) �1 h(Y ) . �

A statistical test for the order �l−st can be found in [2]. The relation between the
linear stochastic order �l−st and the Scarsini’s order �1 stated in the present manu-
script, permits to test on the order �1 by means of the test on �l−st .

EXAMPLE 3.2. The family of extremality stochastic orders allows the comparison
of random vectors in different directions determined by unit vectors. This family of
orders is motivated by important applications in the research of optimal allocations of
wealth among risks in single period portfolio problems (see [6]). In that reference, it is
proved that such an order can be characterized as follows, for any u ∈ Sn−1 , X �Eu Y
when RuX �uo RuY .

EXAMPLE 3.3. A stronger family of stochastic orders, the so-called strong ex-
tremality orders, denoted by �SEu for each u ∈ Sn−1 , is introduced in [7]. In that
manuscript, it is proved that two random vectors X and Y satisfy X �SEu Y when
RuX �st RuY .

EXAMPLE 3.4. Motivated by another problem in relation to financial mathemat-
ics, the so-called time value of money stochastic order, denoted by �tvm , is introduced
in [8]. That order permits to compare long-term investments affected by the time value
of money issue. After a detailed analysis of the order, the following characterization is
obtained, given two random vectors X and Y , X �tvm Y when h−1(X) �st h−1(Y ) ,
where h : R

n → R
n is the bijective linear map such that h(ei) = ei − ei+1 for all

1 � i � n−1 and h(en) = en .

The manuscript [2] also contains a test for the order �st . Than can be used to test
on the orders �tvm and �SEu .
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3.2. On the maximal generator of �1

Now, we study how to derive a maximal generator of the stochastic order �1 by
means of a maximal generator of the stochastic order �2 , when �2 is integral.

PROPOSITION 3.5. Let �2 be an integral stochastic order and let F2 be a gen-
erator of such an order. Then, �1 is an integral stochastic order and the class of
mappings F2(m) = { f ◦m | f ∈ F2} is a generator of the order �1 .

Proof. By definition, X �1 Y when m(X) �2 m(Y ) , thus X �1 Y when

∫
S ′

f dPm(X) �
∫

S ′
f dPm(Y )

for any f ∈ F2 such that the integrals exist. Note that for any B ∈ BS ′ , we have that
Pm(X)(B) = PX ◦m−1(B). By a change of variable (see, for instance, [3]), we obtain that

∫
S ′

f dPm(X) =
∫

S
f ◦mdPX .

Therefore, X �1 Y when
∫

S
f ◦mdPX �

∫
S

f ◦mdPY

for any f ∈ F2 such that the integrals exist. �

PROPOSITION 3.6. Let b : S ′ → [1,∞) be a weight function and let f ∈ Bb.
Then, b ◦m : S → [1,∞) is a weight function and f ◦m ∈ Bb◦m.

Proof. Note that b ◦m : S → [1,∞) is measurable, hence b ◦m is a weight func-
tion. On the other hand,

‖ f ◦m‖b◦m = sup
x∈S

| f ◦m(x)|
b ◦m(x)

= sup
y∈S ′

| f (y)|
b(y)

= ‖ f‖b,

which proves the result. �

PROPOSITION 3.7. Let MG 2 be the maximal generator of the integral stochas-
tic order �2 for the weight function b. Then, the maximal generator of the integral
stochastic order �1 for the weight function b ◦m, denoted by MG 1, is MG 1 =
{ f ◦m | f ∈ MG 2}.

Proof. By Proposition 3.5, MG 2(m) = { f ◦m | f ∈MG 2} is a generator of �1 .
By Proposition 3.6, the mappings in MG 2(m) are of bounded b◦m-norm. Therefore,
MG 2(m) ⊂ MG 1 .
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Let g : S → R belong to MG 1. Let W and Z be random elements with values
in S ′ such that W �2 Z . This is the same as m(m−1(W )) �2 m(m−1(Z)) , that is,
m−1(W ) �1 m−1(Z). As a consequence,

∫
S

gdPm−1(W ) �
∫

S
gdPm−1(Z),

equivalently, ∫
S ′

g ◦m−1dPW �
∫

S ′
g ◦m−1dPZ.

Note that g ◦m−1 ∈ Bb since

‖g ◦m−1‖b = sup
s′∈S′

|g ◦m−1(s′)|
b(s′)

= sup
s∈S

|g(s)|
b ◦m(s)

= ‖g‖b◦m,

and this value is finite because g ∈ MG 1. Therefore, g ◦m−1 ∈ MG 2 , and so g ∈
MG 2(m). Thus, MG 1 = MG 2(m) . �

3.3. Maximal generators of some stochastic orders

In this section, we obtain easy expressions of the maximal generators of some
well-known multivariate stochastic orders.

EXAMPLE 3.8. On the maximal generator of the strong extremality order in the
direction u ∈ Sn−1 .

Consider �SEu , the strong extremality order in the direction u ∈ Sn−1. In [7], it is
proved that two random vectors X and Y satisfy X �SEu Y when RuX �st RuY . Note
that Ru is a regular matrix and so the map m : R

n → R
n , given by m(x) = Rux for any

x ∈ R
n , is bijective and measurable.
For the weight function b = 1, the maximal generator of the stochastic order �st

is the set { f : R
n → R | f is bounded and increasing}.

Proposition 3.7 proves that for the weight function b ◦m = 1, the maximal gener-
ator of the stochastic order �SEu is given by

{ f (Ru(·)) : R
n → R | f is bounded and increasing}.

We should note that in [7], such a maximal generator was obtained involving a
mathematical formulation which is difficult to use and apply. Namely, given u ∈ Sn−1,
the class of bounded measurable �u -preserving mappings is the maximal generator of
�SEu , where the binary relation �u on R

n is given by x �u y when f (x) � f (y) for
all f ∈ G u, with x,y ∈ R

n , G u = {ICu
t
| t ∈ R

n} and Cu
t = {x ∈ R

n | Ru(x− t) � 0},
where t ∈ R

n .
Observe that with the new characterization, no partial orders on R

n and preserv-
ing mappings of those partial orders are needed for the formulation of the maximal
generator.
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EXAMPLE 3.9. On the maximal generator of the extremality order in the direction
u ∈ Sn−1 .

In the case of �Eu , the extremality order in the direction u ∈ Sn−1, it holds that
X �Eu Y when RuX �uo RuY (see [6]).

A map f : R
n → R is called Δ-monotone if for every subset J = {i1, i2, . . . , ik} ⊂

{1,2, . . . ,n} and for every ε1,ε2, . . . ,εk > 0, it holds that Δε1
i1

Δε2
i2

. . .Δεk
ik

f (x) � 0 for all
x ∈ R

n , where Δε
i f (x) = f (x+ εei)− f (x) .

It is known that for the weight function b = 1, the maximal generator of the upper
orthant order �uo is given by the class { f : R

n →R | f is bounded and Δ-monotone}.
By means of Proposition 3.7, we obtain that for the weight function b ◦m = 1,

where m is the mapping in Example 3.8, the maximal generator of the stochastic order
�Eu is given by

{ f (Ru(·)) : R
n → R | f is bounded and Δ-monotone}.

It is interesting to point out that in [7], that maximal generator of �EU was ob-
tained in a harder way.

EXAMPLE 3.10. On the maximal generator of the time value of money stochastic
order.

The time value of money stochastic order satisfies that X �tvm Y when h−1(X)�st

h−1(Y ) , where h : R
n → R

n is the linear map such that h(ei) = ei−ei+1 for all 1 � i �
n−1 and h(en) = en .

The maximal generator of this order when the weight function is b ◦ h−1 = 1, can
be obtained by means of Proposition 3.7. Thus, the set of mappings

{ f (h−1(·)) : R
n → R | f is bounded and increasing}

is that maximal generator.
We should indicate that the maximal generator of this order was obtained in [8]

more laboriously. In such a paper, it was proved that the class Fb , where Fb = { f :
R

n → R | f ∈ F and f is bounded} and
F = { f : R

n → R |
i) f (x+ εiei) � f (x+ εi+1ei+1) for all x ∈ R

n, 0 � εi+1 � εi,1 � i � n−1,

ii) f (x+ εnen) � f (x) for all x ∈ R
n and 0 � εn },

is the maximal generator of the stochastic order �tvm .

It is worth noting that the new characterizations of the above maximal genera-
tors permits to check if a mapping belongs to those generators very easily. Previous
characterizations were not so appropriate for such a purpose.

It is not hard to see that the linear stochastic order �l−st and the Scarsini’s order
�1 are integral. To the best of the authors’ knowledge, the problems of finding easy
characterizations of the maximal generators of those orders remain unsolved. The re-
sults of this section imply that the solution of one of them provides the solution of the
remaining maximal generator.
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3.4. Applications to kernels

In this section, we obtain conditions on the maximal generator of �2 to guarantee
the existence of a transition kernel between probabilities ordered in �1 . That kernel
is characterized by means of a transition kernel between probabilities ordered in �2 .
Moreover, we study relations between probabilistic operators given by kernels, with
respect to the order �1 and to the order �2 .

LEMMA 3.11. If MG 2 is closed under maximization, so is MG 1 .

Proof. Let g1,g2 ∈MG 1. By Proposition 3.7, there exist f1, f2 ∈MG 2 such that
g1 = f1◦m and g2 = f2 ◦m . Thus, max{g1,g2}= max{ f1◦m, f2◦m}= max{ f1, f2}◦
m. We have that MG 2 is closed under maximization, max{ f1, f2} ∈ MG 2 , and so
max{g1,g2} ∈ MG 1. �

The following result provides a condition on MG 2 to guarantee the existence of
transition kernels between probabilities ordered in �1 .

PROPOSITION 3.12. If MG 2 is closed under maximization, then conditions i)
and ii) are equivalent,

i) P′ �1 P′′ , with P′ and P′′ probabilities on (S ,BS ) ,

ii) there exists a transition kernel Q1 from S to S such that Q1P′ = P′′ , and for
any x ∈ S , ∫

S
f dQ1(x, ·) � f (x)

for any f ∈ MG 1.

Proof. It follows from Theorem 2.6.1 in [10], and Lemma 3.11. �

As a consequence, we obtain the following results about the strong extremality
order in any direction and the time value of money order.

PROPOSITION 3.13. Let X and Y be random vectors and u ∈ Sn−1 . The follow-
ing conditions are equivalent,

i) PX �SEu PY ,

ii) there exists a transition kernel QSEu from R
n to R

n such that QSEuPX = PY , and
for any x ∈ R

n , it holds that
∫

Rn
f (Ruz)dQSEu(x, ·) � f (Rux)

for any increasing and bounded mapping f : R
n → R.
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Proof. It is a consequence of Proposition 3.12 and Example 3.8. Observe that
the maximal generator of the usual stochastic order (b = 1) is closed under maximiza-
tion. �

PROPOSITION 3.14. Let X and Y be random vectors. Conditions i) and ii) are
equivalent,

i) PX �tvm PY ,

ii) there exists a transition kernel Qtvm from R
n to R

n such that QtvmPX = PY , and
for any x ∈ R

n , it holds that
∫

Rn
f (h−1(z))dQtvm(x, ·) � f (h−1(x))

for any increasing and bounded mapping f : R
n → R, where h : R

n → R
n is the

linear map such that h(ei) = ei− ei+1 for all 1 � i � n−1 and h(en) = en .

Proof. The result follows from Proposition 3.12 and Example 3.10. �
Note that Proposition 3.12 cannot be applied to the family of extremality orders

since the class of bounded and Δ-monotone functions is not closed under maximization.
Observe that when MG 2 is closed under maximization, Theorem 2.6.1 in [10]

reads that the following conditions are equivalent

1.− P′ �2 P′′ , with P′ and P′′ probabilities on (S ′,BS ′)

2.− there exists a transition kernel Q2 from S ′ to S ′ such that Q2P′ = P′′ , and for
any x ∈ S ′ , ∫

S ′
f dQ2(x, ·) � f (x)

for any f ∈ MG 2.

Under the conditions of Proposition 3.12, we aim to obtain a kernel Q1 satisfying
ii) in that proposition, by means of the above kernel Q2 . For such a purpose, we state
the following result.

PROPOSITION 3.15. Let Q be a kernel from S ′ to S ′ . Then, Qm : S ×BS →
R , defined by Qm(x,B) = Q(m(x),m(B)) for any x ∈ S and any B ∈ BS , is a kernel
from S to S .

Proof. Note that since m is bijective and measurable, so is m−1 , and thus, m(B)∈
BS ′ for any B ∈ BS . Therefore, Qm is well defined.

Observe that for any x ∈ S , it holds that Qm(x, ·) = Q(m(x),m(·)) : BS → R is
a probability since m is bijective and measurable.

On the other hand, if B ∈ BS , then Qm(·,B) = Q(m(·),m(B)) : S → R is mea-
surable since it is a composition of measurable mappings. �
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PROPOSITION 3.16. Let X and Y be random elements with values in S . Let
Q be a transition kernel from S ′ to S ′ between Pm(X) and Pm(Y ) , such that for any
x ∈ S ′ , it holds that ∫

S ′
f dQ(x, ·) � f (x)

for any f ∈ MG 2 . Then Qm : S ×BS → R , defined by Qm(x,B) = Q(m(x),m(B))
for any x ∈S and any B∈ BS , is a transition kernel from S to S between PX and
PY , such that for any x ∈ S , it holds that

∫
S

gdQm(x, ·) � g(x)

for any g ∈ MG 1 .

Proof. Proposition 3.15 reads that Qm is a kernel from S to S . Let us see that
Qm is a transition kernel between PX and PY .

For any B ∈ BS , we have that

PY (B) = Pm(Y)(m(B)) =
∫

S ′
Q(x,m(B))dPm(X)

=
∫

S ′
Q(x,m(B))dPX ◦m−1 =

∫
S

Q(m(x),m(B))dPX =
∫

S
Qm(x,B)dPX ,

which proves that Qm is a transition kernel between PX and PY .
Now, let us prove that for any x ∈ S ,

∫
S

g(s)dQm(x, ·) � g(x) (2)

for any g ∈ MG 1.
In accordance with Proposition 3.7, MG 1 = MG 2(m). Thus, condition (2) is

equivalent to: for any x ∈ S ,
∫

S
f ◦m(s)dQm(x, ·) � f ◦m(x) (3)

for any f ∈ MG 2. We should observe that
∫

S
f ◦m(s)dQm(x, ·) =

∫
S ′

f (s)dQm(x, ·)◦m−1,

and for any B∈BS ′ , Qm(x, ·)◦m−1(B)= Qm(x,m−1(B))= Q(m(x),B)= Q(m(x), ·)(B).
Therefore, condition (3) is the same as: for any x ∈ S ,

∫
S ′

f (s)dQ(m(x), ·) � f ◦m(x)

for any f ∈ MG 2.
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Since the map m is bijective, this is the same as: for any y ∈ S ′ , it holds that
∫

S ′
f (s)dQ(y, ·) � f (y)

for any f ∈ MG 2 , which proves the result. �
Now, we analyze some results in relation to operators of probability associated

with kernels and the orders �1 and �2 . The following result connects those operators
with the monotone property.

PROPOSITION 3.17. Let Q be a kernel from S ′ to S ′ , and TQ the associated
operator. Then, TQ is �2 -monotone if and only if TQm is �1 -monotone.

Proof. Assume that TQ is �2 -monotone. Theorem 5.2.3 in [10] assures that TQ

is �2 -monotone if and only if for any f ∈ MG 2 , the mapping fTQ : S ′ → R , with

fTQ (y) =
∫

S ′
f (t)dQ(y, ·)

for any y ∈ S ′ , belongs to MG 2 .
Let f ∈ MG 2 . Take fTQ ◦m : S → R, which is given by

fTQ ◦m(x) =
∫

S ′
f (t)dQ(m(x), ·)

for any x ∈ S .
In accordance with Proposition 3.7, the family of mappings { f ◦m | f ∈ MG 2}

is the set MG 1. Therefore, fTQ ◦m belongs to MG 1 .
By a change of variable,

fTQ ◦m(x) =
∫

S
f ◦m(t)dQ(m(x),m(·)) =

∫
S

f ◦m(t)dQm(x, ·).

Thus, the mapping

x →
∫

S
g(t)dQm(x, ·)

belongs to MG 1 for any g ∈ MG 1 . Applying again Theorem 5.2.3 in [10], we obtain
that the operator TQm is �1 -monotone.

The converse is a consequence of the proven part. �

COROLLARY 3.18. Let TQ be an operator associated with a kernel Q from R
n

to R
n . Then,

i) TQ is �st -monotone if and only if TQm is �SEu -monotone, with m : R
n → R

n

given by m(x) = Rux for any x ∈ R
n ,

ii) TQ is �uo -monotone if and only if TQm is �Eu -monotone, with m : R
n → R

n

given by m(x) = Rux for any x ∈ R
n ,
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iii) TQ is �st -monotone if and only if TQm is �tvm -monotone, with m : R
n → R

n

given by m(x) = h−1(x) for any x ∈ R
n , where h : R

n → R
n is the linear map

such that h(ei) = ei− ei+1 for all 1 � i � n−1 and h(en) = en ,

iv) TQ is �1 -monotone if and only if TQm is �l−st -monotone, with m : R
n → R

n

given by m(x) = h(x) for any x ∈ R
n , where h is the mapping described in point

iii) .

PROPOSITION 3.19. Let TQ be an operator associated with a kernel Q from R
n

to R
n . Then,

i) TQ is �SEu -monotone if and only the mapping x �→ Q(R−1
u x,R−1

u (B)) is in-
creasing for any closed upper set (with respect to the usual componentwise order)
B ⊂ R

n ,

ii) TQ is �Eu -monotone if and only the mapping x �→ Q(R−1
u x,R−1

u (By)) is Δ-
monotone for any y ∈ R

n , where By = {z ∈ R
n | yi < zi, 1 � i � n},

iii) TQ is �tvm -monotone if and only the mapping x �→ Q(h(x),h(B)) is increasing
for any closed upper set (with respect to the usual componentwise order) B⊂R

n .

Proof. By Corollary 3.18, TQ is �SEu -monotone if and only TQm−1 is �st -mono-
tone. Theorem 5.2.3 in [10] reads that TQm−1 is �st -monotone if and only if for any f
of a generator of the order �st , the mapping

x �→
∫

Rn
f (t)dQm−1(x, ·)

belongs to the maximal generator of the order �st . It is sufficient to take as a generator
of �st the class of mappings {IB | B ⊂ R

n is an upper closed set} , to derive i) .
The cases ii) and iii) are analogous. For the case ii) , it is sufficient to take as a

generator of the order �uo the class {IBy | y ∈ R
n}. �

Now we analyze relations between the properties of being smaller for the order
�1 and being smaller for the order �2 , for operators associated with kernels.

PROPOSITION 3.20. Let TQa and TQb be the probabilistic operators associated

with kernels Qa and Qb from S ′ to S ′ , respectively. It holds that

TQa �2 TQb if and only if TQa
m
�1 TQb

m
.

Proof. In accordance with Theorem 5.2.5 of [10], TQa �2 TQb if and only if

Qa(y, ·) �2 Qb(y, ·) for any y ∈ S ′.

Since m is bijective, this is the same as

Qa(m(x), ·) �2 Qb(m(x), ·) for any x ∈ S ,
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equivalently,

Qa(m(x),m◦m−1(·)) �2 Qb(m(x),m◦m−1(·)) for any x ∈ S ,

or,
Qa(m(x),m(·))◦m−1(·) �2 Qb(m(x),m(·))◦m−1(·) for any x ∈ S .

By the definition of �1 , this is the same as

Qa(m(x),m(·)) �1 Qb(m(x),m(·)) for any x ∈ S ,

that is,
Qa

m(x, ·) �1 Qb
m(x, ·) for any x ∈ S ,

equivalently, TQa
m
�1 TQb

m
. �

COROLLARY 3.21. Let TQa and TQb be operators with kernels Qa and Qb from
R

n to R
n , respectively. It holds that

i) TQa �st TQb if and only if TQa
m
�SEu TQb

m
, with m : R

n →R
n given by m(x) = Rux

for any x ∈ R
n ,

ii) TQa �uo TQb if and only if TQa
m
�Eu TQb

m
, with m : R

n →R
n given by m(x) = Rux

for any x ∈ R
n ,

iii) TQa �st TQb if and only if TQa
m
�tvm TQb

m
, with m : R

n → R
n given by m(x) =

h−1(x) for any x ∈ R
n , where h : R

n → R
n is the linear map such that h(ei) =

ei − ei+1 for all 1 � i � n−1 and h(en) = en ,

iv) TQa �1 TQb if and only if TQa
m
�l−st TQb

m
, with m : R

n →R
n given by m(x) = h(x)

for any x ∈ R
n , where h is the mapping described in point iii) .

PROPOSITION 3.22. Let Qa and Qb be kernels from R
n to R

n . It holds that

i) TQa �SEu TQb , if and only if Qa(x,R−1
u (B)) � Qb(x,R−1

u (B)) for any x ∈ R
n

and for any closed upper set (with respect to the usual componentwise order)
B ⊂ R

n ,

ii) TQa �Eu TQb , if and only if Qa(x,R−1
u (By)) � Qb(x,R−1

u (By)) for any x ∈ R
n

and for any y ∈ R
n , where By = {z ∈ R

n | yi < zi, 1 � i � n}.
iii) TQa �tvm TQb , if and only if Qa(x,h(B)) � Qb(x,h(B)) for any x ∈ R

n and for
any closed upper set (with respect to the usual componentwise order) B ⊂ R

n .

Proof. By Corollary 3.21, TQa �SEu TQb if and only if TQa
m−1

�st TQb
m−1

. Theorem

5.2.5 in [10] reads that TQa
m−1

�st TQb
m−1

if and only if Qa
m−1(x, ·) �st Qb

m−1(x, ·) for any

x ∈ R
n , which is the same as Qa(x,R−1

u (B)) � Qb(x,R−1
u (B)) for any x ∈ R

n and for
any closed upper set (with respect to the usual componentwise order) B ⊂ R

n .
The cases ii) and iii) are analogous. �
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