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INEQUALITIES FOR MEROMORPHIC

UNIVALENT FUNCTIONS WITH NONZERO POLE
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(Communicated by I. Perić)

Abstract. In this article, we obtain the Grunsky inequality and its several consequences for mero-
morphic univalent functions defined on the unit disk with a nonzero pole p ∈ (0,1) . As byprod-
ucts, we obtain the Goluzin and the Lebedev inequalities for these functions. We also obtain the
Grunsky inequality for a subclass of aforesaid functions that have k -quasiconformal extensions
onto the extended complex plane.

1. Introduction

Let C be the finite complex plane, Ĉ be the extended complex plane C∪{∞} and
S be the class of analytic univalent functions f defined on the unit disk D := {z ∈ C :
|z| < 1} satisfying f (0) = 0 = f ′(0)− 1. Thus each f ∈ S has the following Taylor
series expansion about the origin

f (z) = z+
∞

∑
n=2

anz
n, z ∈ D. (1)

In 1916, Bieberbach proved that if f ∈ S having the Taylor series expansion of the
form (1), then |a2|� 2, where equality holds only for the Koebe function k(z) = z/(1−
z)2 , z ∈ D and at the same time he conjectured that |an|� n for n � 3. This conjecture
remains unsolved for the whole class S until L. de Branges settled it in 1985. We
now introduce another class of functions Σ which is related to the class S . The class
Σ consists of meromorphic univalent functions defined on D , such that each function
g ∈ Σ is analytic in D except for a simple pole at the origin with residue 1, satisfying
zg(z)

∣∣
z=0 = 1. The functions in Σ naturally have the following Laurent series expansion

g(z) =
1
z

+
∞

∑
n=0

bnz
n, z ∈ D\ {0}. (2)

The Gronwall area theorem states that if f ∈Σ with expansion (2), then ∑∞
n=1 n|bn|2 � 1.

The generalization of the proof of this theorem leads to a system of inequalities called
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the Grunsky inequalities which are both necessary and sufficient for univalence of the
associated function. These inequalities were discovered by H. Grunsky in 1939 and
later it was generalized and applied by Milin, FitzGerald, Garabedian, Schiffer and
many others to varieties of problems. We urge the readers to go through the Chapters 3
and 4 of [17] and Chapters 4 and 5 of [7] for a detailed study on this area of research.
The Grunsky inequalities also played an important role to prove the Bieberbach con-
jecture for some initial coefficients of functions belonging to S . Besides that, these
inequalities have useful applications to prove many results such as growth and distor-
tion results, estimates for the logarithmic coefficients for the functions belonging to the
classes S and Σ .

For a function g ∈ Σ with an expansion of the form (2), we see that

log
g(z)−g(ξ )
1/z−1/ξ

= −
∞

∑
m,n=1

bmnz
mξ n,

is analytic in (z,ξ ) ∈ D×D . The coefficients bmn are called Grunsky coefficients of g .
Now, if g ∈ Σ and λ = (λ1,λ2, · · ·) ∈ l2 , where l2 is the space of all square summable
sequences on C with finite l2 -norm denoted by ‖ ·‖2 , then the Grunsky coefficients of
g satisfy the following inequality∣∣ ∞

∑
m,n=1

√
mnbmnλmλn

∣∣� ‖λ‖2
2, (3)

which is popularly known as the Grunsky inequality (cf. [9]).
We now move on to describe our work in this article. To this end, we need to

discuss about few classes of functions and some new definitions. Let M (p) be the class
of all meromorphic functions defined on D with nonzero pole at the point p ∈ (0,1)
of residue 1 and Σ(p) be set of all univalent functions in M (p) . We emphasise here
that, considering pole at some nonzero point p ∈ (0,1) of a meromorphic univalent
function does not only change its normalization but provides us with a Taylor series
expansion of the same function inside the disk {z ∈ C : |z| < p} along with its other
possible Laurent expansions inside the unit disk D , namely, in the annulli 0 < |z| < 1
and 0 < |z− p| < 1− p . Another reason to study such functions is that the presence of
nonzero poles force non trivial lower bounds for the Taylor coefficients of a subclass
of Σ(p) , namely the class of concave univalent functions. This phenomenon is very
uncommon for univalent functions. We refer the articles [1, 2, 15, 16] and the references
therein for more details. Inspired by these reasons, we intend to further study such
functions. Let g ∈ Σ(p) and g has the Laurent expansion of the form

g(z) =
1

z− p
+

∞

∑
n=0

bn(z− p)n, z ∈ Dp,1−p \ {p}, (4)

where Dp,1−p := {z∈C : |z− p|< 1− p} . One can deduce that for a function g∈Σ(p) ,
with the above expansion, the analog of the Gronwall’s area theorem for functions in
the class Σ(p) can be derived as

∞

∑
n=1

(1− p)2nn|bn|2 � (1− p)−2. (5)
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We mention here that, the above inequality yields from the following computation

Area(Ĉ\ g(Dp,1−p)) = π

(
(1− p)−2−

∞

∑
n=1

n|bn|2(1− p)2n

)
,

and noticing that the area of a region in the complex plane is always nonnegative. Like-
wise the generalizations of the proof of the Gronwall’s Area theorem for the class Σ ,
we wish to generalize the proof of (5) to establish the Grunsky inequality for functions
in the class Σ(p) . This result subsequently also yields the Goluzin and the Lebedev
inequalities and some of their important consequences.

To describe our next problem, we first need to prepare a little background. To
this end, we first start with the definition of a quasiconformal mapping. A sense
preserving homeomorphism f : C → C is called k -quasiconformal mapping (or, K -
quasiconformal, where K = (1+k)/(1−k)) if it belongs to the Sobolev space W 1,2

loc (C)
and satisfies the inequality

| fz | � k| fz|, a.e. on C,

for some k ∈ [0,1) (or, K � 1), where fz := ∂ f/∂ z and fz := ∂ f/∂ z . We can ex-
tend the above definition for a quasiconformal map f : Ĉ → Ĉ , where it satisfies the
inequality | fz | � k| fz| , a.e. on C \ { f−1(∞)} . Next, we discuss about the concept
of quasiconformal extension of a conformal map. Let f be a conformal map defined
on a domain Ω ⊂ C . We say that f : Ω → C has a k -quasiconformal extension onto
C or onto Ĉ , if there exists a k -quasiconformal mapping F : C → C , or F : Ĉ → Ĉ

respectively, such that F |Ω = f . Normalized holomorphic maps defined on D hav-
ing quasiconformal extension onto Ĉ play an important role in the Teichmüller space
theory as they can be identified with the elements of the universal Teichmüller space
(compare [14, chap. III]) and so it is important to study the conformal maps defined on
D or its exterior D∗ := {z ∈ C : |z| > 1} which have quasiconformal extensions onto
Ĉ .

Let Sk be the class of functions in S which have k -quasiconformal extension
onto Ĉ . Similarly, let Σk be the class of functions in Σ which have k -quasiconformal
extensions onto Ĉ . The function classes Sk and Σk are well studied by the authors
Kühnau ([11, 12]), Krushkal ([8]), Krzyż ([10]), Lehto ([13]) and others. Getting mo-
tivated by the works of these authors, T. Sugawa along with the authors of the present
article, have defined (cf. [3]) a class of meromorphic univalent functions defined on the
unit disk D with a nonzero pole at the point p∈ (0,1) having k -quasiconformal exten-
sion onto the extended complex plane Ĉ . We denote this class of functions by Σk(p) .
We further have studied area theorem, coefficient estimates, area distortion inequalities,
distortion estimate for functions in this class. Interested readers are urged to look into
the articles [3, 4, 5] for the said results. We observe that if g ∈ Σk , then the Grunsky
inequality takes the form ∣∣ ∞

∑
m,n=1

√
mnbmnλmλn

∣∣� k‖λ‖2
2.

We refer [17, Chap. 9.4] for more details about this inequality.
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We organize the obtained results in this article as follows. In the next section, we
first prove an inequality involving the Grunsky coefficients (content of the Theorem1)
which will essentially lead us in establishing the Grunsky inequality (content of the
Theorem2) for functions in Σ(p) . In Theorem3 and Theorem4, we obtain the Goluzin
and the Lebedev inequalities for functions in Σ(p) respectively, and derive some con-
sequences of the obtained results as corollaries. Lastly, we find the Grunsky inequality
for functions in the class Σk(p) . This is the content of the Theorem5.

2. Main results

Firstly, we prove an inequality for Σ(p) which will lead us to get the Grunsky
inequality for functions belonging in this class.

THEOREM 1. Let g∈Σ(p) having an expansion of the form (4) . Let λ1,λ2, · · · ,λl

are arbitrary complex numbers, then

∞

∑
m=1

m
∣∣∣ l

∑
n=1

λnbmn

∣∣∣2(1− p)2m �
l

∑
m=1

(|λm|2/m)(1− p)−2m, (6)

where bmn ’s are the Grunsky coefficients of g that are defined by

F(z,ξ ) := log

(
g(z)−g(ξ )

1/(z− p)−1/(ξ − p)

)
= −

∞

∑
m,n=1

bmn(z− p)m(ξ − p)n, (7)

where z,ξ ∈ Dp,1−p \ {p} .

Proof. Since g ∈ Σ(p) , we have g(p) = ∞ and (z− p)g(z)
∣∣
z=p = 1. For a fixed

w ∈ C , we define the function

F(z) := log[(z− p)(g(z)−w)], z ∈ D. (8)

Here, we choose a suitable branch of logarithm for which F(p) = 0, so that F becomes
analytic on D for a fixed w 
= g(z) and |F ′(p)| < ∞ . Thus we can consider the Taylor
series expansion of F about the point p of the following form

F(z) = log[(z− p)(g(z)−w)] =
∞

∑
m=1

φm(w)
m

(z− p)m, z ∈ D.

Differentiating both sides of the above equation w.r.t. z , we get

g′(z)
g(z)−w

+
1

z− p
=

∞

∑
m=1

φm(w)(z− p)m−1, which gives

(z− p)g′(z) = (g(z)−w)

(
∞

∑
m=0

φm(w)(z− p)m

)
, where φ0(w) = −1.
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Now, putting the expansion of g from (4) into the above equation, we have

1
z− p

+
∞

∑
m=1

mbm(z− p)m =
(

1
z− p

+b0−w+
∞

∑
m=1

bm(z− p)m
)( ∞

∑
m=0

φm(w)(z− p)m
)

.

Equating the coefficients of (z− p)m in both sides of the above equation, we get

φm+1(w) = −(b0−w)φm(w)− (b1φm−1(w)+b2φm−2(w)+ · · ·+bm−1φ1(w)
)

+(m+1)bm, m = 1,2, · · ·, which implies

φ1(w) = b0−w, φ2(w) = −(b0−w)2 +2b1, φ3(w) = (b0−w)3−3b1(b0−w)+3b2,

φ4(w) = −(b0−w)4 +4b1(b0−w)2−4b2(b0−w)+4b3−2b2
1, and so on.

Thus φm is a polynomial in w of degree m , and we call it as the Faber Polynomial of a
function g ∈ Σ(p) . For g ∈ Σ(p) and z 
= ξ , we define an analytic function F(z,ξ ) of
two variables (z,ξ ) ∈ D×D as below

F(z,ξ ) := log

(
g(z)−g(ξ )

1/(z− p)−1/(ξ − p)

)
.

Here, we note that due to the normalization of g , F(z,ξ ) = 0 when z = ξ . Since g
is of the form (4), F(z,ξ ) has an expansion as (7). The Grunsky coefficients bmn can
be expressed in terms of the coefficients bn ’s of g . In particular, we have bm1 = bm ,
b1n = bn and bmn = bnm for all m,n = 1,2, · · · . Now putting w = g(ξ ) , ξ 
= z , in (8),
we get

log

(
g(z)−g(ξ )

1/(z− p)−1/(ξ − p)

)
+ log

(
1− z− p

ξ − p

)
=

∞

∑
m=1

φm(g(ξ ))
m

(z− p)m,

which implies

log

(
g(z)−g(ξ )

1/(z− p)−1/(ξ − p)

)
=

∞

∑
m=1

(1/m)[φm(g(ξ ))+ (ξ − p)−m](z− p)m.

Hence from (7), for z,ξ ∈ Dp,1−p \ {p} , we have

−
∞

∑
m,n=1

bmn(z− p)m(ξ − p)n =
∞

∑
m=1

(1/m)[φm(g(ξ ))+ (ξ − p)−m](z− p)m.

Equating the coefficients of (z− p)m in the both sides of the above equation, we have

−
∞

∑
n=1

bmn(ξ − p)n = (1/m)[φm(g(ξ ))+ (ξ − p)−m].

Thus

φm(g(ξ )) = −(ξ − p)−m−m
∞

∑
n=1

bmn(ξ − p)n. (9)
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We now consider a function

h(w) :=
l

∑
m=1

(λm/m)φm(w), w ∈ C. (10)

Since φm ’s are polynomial in w , h is an analytic function of w . Let us also consider
the function φ(z) := h(g(z)) , z ∈ Dp,1−p \ {p} , where we change the variable ξ to z .
Now, from (9) and using the fact that bmn = bnm , we have

φ(z) =
l

∑
m=1

(λm/m)
(
− (z− p)−m−m

∞

∑
n=1

bmn(z− p)n
)

= −
l

∑
m=1

(λm/m)(z− p)−m−
l

∑
m=1

λm

∞

∑
n=1

bmn(z− p)n

= −
l

∑
m=1

(λm/m)(z− p)−m−
l

∑
n=1

λn

∞

∑
m=1

bnm(z− p)m (interchanging m and n)

= −
l

∑
m=1

(λm/m)(z− p)−m−
∞

∑
m=1

dm(z− p)m, where dm :=
l

∑
n=1

λnbmn. (11)

Next we find the area of the domain Ĉ \ φ(Dp,1−p) . To do so, we first derive area of
the domain Ĉ \ φ(Dp,r) , where Dp,r := {z : |z− p| < r} (0 < r < 1), and then take
r → (1− p)− . Also let C(p,r) := g({z : |z− p| = r}) and H(p,r) be the domain
bounded by C(p,r) with finite area. By the symbols ‘�’ and ‘�’, we respectively
denote orientation of a curve along anticlockwise and clockwise directions. Using the
Green’s formula for the plane, we have

Area(Ĉ\φ(Dp,r)) =
∫∫

H(p,r)
|h′(w)|2dudv, where w = g(z) = u+ iv

= (1/2i)
∫
Cp,r�

h(w)h′(w)dw

= −(1/2i)
∫
|z−p|=r�

φ(z)φ ′(z)dz

= (1/2i)
∫
|z−p|=r�

( l

∑
m=1

(λm/m)(z− p)−m +
∞

∑
m=1

dm(z− p)m
)

×
( l

∑
m=1

λm(z− p)−m−1−
∞

∑
m=1

mdm(z− p)m−1
)

dz

= (1/2i)
∫
|t|=r�

( l

∑
m=1

(λm/m)(t)−m +
∞

∑
m=1

dm(t)m
)

×
( l

∑
m=1

λmt−m−1−
∞

∑
m=1

mdmtm−1
)

dt, where t = z− p.
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Now using the following computation

∫
|t|=r

( t )−mt−n−1 dt =

{
2π ir−2n, m = n

0, m 
= n,
(12)

where m,n are integers, we get from above

Area(Ĉ\φ(Dp,r)) = π
[ l

∑
m=1

(|λm|2/m)r−2m−
∞

∑
m=1

m|dm|2r2m
]
.

Taking r → (1− p)− , we have

Area(Ĉ\φ(Dp,1−p)) = π
[ l

∑
m=1

(|λm|2/m)(1− p)−2m−
∞

∑
m=1

m|dm|2(1− p)2m
]
. (13)

Since area of a region is always nonnegative, we get

∞

∑
m=1

m|dm|2(1− p)2m �
l

∑
m=1

(|λm|2/m)(1− p)−2m.

Now putting the value of dm , we get (6). �

Next we deduce the Grunsky inequality for meromorphic functions with nonzero
pole.

THEOREM 2. If g∈ Σ(p) is of the form (4) and λm ∈C, m = 1,2, · · · be arbitrary
complex numbers, then

∞

∑
m=1

m
∣∣∣ ∞

∑
n=1

λnbmn

∣∣∣2(1− p)2m �
∞

∑
m=1

(|λm|2/m)(1− p)−2m, and (14)

∣∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmnλmλn

∣∣∣∣∣� ∞

∑
m=1

(|λm|2/m)(1− p)−2m, (15)

where bmn ’s are the Grunsky coefficients of g that are defined in (7), provided the series
in the right hand side of the above inequalities is convergent.

Proof. Taking l → ∞ in (6), we get (14). We only need to show that the series
∑∞

n=1 λnbmn is absolutely convergent, whenever the series at the right hand side of (14)
is convergent. Taking λ1 = λ2 = · · · = λl−1 = 0, and λl = 1, we get from (6) that

∞

∑
m=1

m|bml |2(1− p)2m � (1− p)−2l/l.
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Using the above inequality and the Cauchy-Schwarz inequality, and also noting that
bmn = bnm for all m,n = 1,2, · · · , we get

∞

∑
n=1

|λnbmn| =
∞

∑
n=1

|√nbmn(1− p)n| |(λn/
√

n)(1− p)−n|

�
(

∞

∑
n=1

n|bnm|2(1− p)2n

)1/2( ∞

∑
n=1

(|λn|2/n)(1− p)−2n

)1/2

� ((1− p)−m/
√

m)

(
∞

∑
n=1

(|λn|2/n)(1− p)−2n

)1/2

< ∞.

To prove (15), we again use the Cauchy-Schwarz inequality and note that∣∣∣∣∣ l

∑
m=1

q

∑
n=1

bmnλmλn

∣∣∣∣∣
2

=

∣∣∣∣∣ l

∑
m=1

(λm/
√

m)(1−p)−m)μm

∣∣∣∣∣
2

, where μm =
q

∑
n=1

√
mbmnλn(1−p)m

�
(

l

∑
m=1

(|λm|2/m)(1− p)−2m)

)(
l

∑
m=1

|μm|2
)

=

(
l

∑
m=1

(|λm|2/m)(1− p)−2m

)(
l

∑
m=1

m

∣∣∣∣ q

∑
n=1

bmnλn

∣∣∣∣2(1− p)2m

)
.

Now taking l,q → ∞ and using (14), we have∣∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmnλmλn

∣∣∣∣∣
2

�
(

∞

∑
m=1

(|λm|2/m)(1− p)−2m

)(
∞

∑
m=1

m

∣∣∣∣ ∞

∑
n=1

bmnλn

∣∣∣∣2(1− p)2m

)

�
(

∞

∑
m=1

(|λm|2/m)(1− p)−2m

)2

, (16)

which proves (15). �

REMARK 1. (i) We observe that equality occurs in (15) for m = 1 and n = 1 (i.e.
choosing λ1 = 1 and λm = 0 for all m > 1) for the function

g(z) =
1

z− p
+

z− p
(1− p)2 , z ∈ D. (17)

It is easy to see that the above function belongs to M (p) and is univalent on the disk
Dp,1−p .

(ii) Inequality (15) can be called as the Grunsky inequality for the class Σ(p) .
Putting p = 0 in (15) and considering the arbitrary constants as

√
mλm , we get the

Grunsky inequality for the class Σ , given in (3).
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Choosing λ1 = 1, λ2 = 0, · · · ,λl = 0, we get from (6) that any function g ∈ Σ(p)
satisfies ∑∞

m=1 m|bm|2 � (1− p)−4 , which gives an estimate of the first Laurent co-
efficient of g , when expressed in the form of (4). Precisely, we have the following
corollary.

COROLLARY 1. Let g ∈ Σ(p) having an expansion of the form (4), then |b1| �
(1− p)−2 .

REMARK 2. (i) Equality holds in the above corollary for the function g defined
in (17).

(ii) If g ∈ Σ (when p → 0+ ) having an expansion of the form (2), then |b1| � 1,
where equality holds for the function 1/z+ z, z ∈ D (see [7, p. 134]). This result easily
follows from the Corollary 1.

Next we prove the Goluzin inequality for functions in Σ(p) .

THEOREM 3. Let g∈ Σ(p) and z1,z2, · · · ,zr ∈ Dp,1−p and γ1,γ2, · · · ,γr ∈C , then∣∣∣∣∣ r

∑
i=1

r

∑
j=1

γiγ j log

(
g(zi)−g(z j)

1/(zi− p)−1/(z j− p)

)∣∣∣∣∣
� −

r

∑
i=1

r

∑
j=1

γiγ j log
(
1− (zi− p)(z j − p)(1− p)−2) . (18)

Proof. Using (15), we get from (7) that

l.h.s. of (18) =

∣∣∣∣∣ r

∑
i=1

r

∑
j=1

(
∞

∑
m=1

∞

∑
n=1

bmn(zi − p)m(z j − p)n

)
γiγ j

∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmn

(
r

∑
i=1

γi

( r

∑
j=1

γ j(z j − p)n
)

(zi − p)m

)∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmn

(
r

∑
i=1

γi(zi − p)m

)
λn

∣∣∣∣∣ , where λn =
r

∑
j=1

γ j(z j − p)n

=

∣∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmnλmλn

∣∣∣∣∣
�

∞

∑
m=1

(|λm|2/m)(1− p)−2m

=
∞

∑
m=1

(1/m)

(
r

∑
i=1

γi(zi − p)m

)(
r

∑
j=1

γ j(z j − p)m

)
(1− p)−2m



950 B. BHOWMIK AND G. SATPATI

=
r

∑
i=1

r

∑
j=1

γiγ j

(
∞

∑
m=1

(zi − p)m(z j − p)m(1− p)−2m/m

)

= −
r

∑
i=1

r

∑
j=1

γiγ j log
(
1− (zi− p)(z j − p)(1− p)−2) . �

Next we derive some important corollaries of Theorem 3. First one is the distortion
estimate of a function in Σ(p) .

COROLLARY 2. If g ∈ Σ(p) and z ∈ Dp,1−p , then

(1− (1− p)−2|z− p|2) � |(z− p)2g′(z)| � (1− (1− p)−2|z− p|2)−1. (19)

Proof. Taking r = 1,γ1 = 1 in (18), we get for z,ξ ∈ Dp,1−p that

lim
ξ→z

∣∣∣∣log

(
g(z)−g(ξ )

1/(z− p)− (ξ − p)

)∣∣∣∣� − log(1− (1− p)−2|z− p|2),

which implies

| log(−(z− p)2g′(z))| � − log(1− (1− p)−2|z− p|2).
Now using the fact that | logw| � | log |w|| , we get

| log |(z− p)2g′(z)|| � | log(−(z− p)2)g′(z)| � − log(1− (1− p)−2|z− p|2).
Thus

log(1− (1− p)−2|z− p|2) � log |(z− p)2g′(z)| � − log(1− (1− p)−2|z− p|2),
which yields (19) after exponentiating. �

REMARK 3. (i) Equality holds for the first inequality in (19) at the point z = z0 ,
for the function

g(z) =
(

1
z− p

− 1
z0 − p

)(
1− (z0 − p)(z− p)

(1− p)2

)
,

where z,z0 ∈ Dp,1−p and z0 is fixed. We note that g ∈ M (p) and it is univalent in
Dp,1−p . Similarly equality occurs in the second inequality of (19) at the point z = z0 ,
for the function

h(z) =
(

1
z− p

− 1
z0 − p

)(
1− (z0 − p)(z− p)

(1− p)2

)−1

.

It is easy to see that h is also univalent in Dp,1−p . Here we observe that

h′(z) =
−(z− p)−2 +2(1− p)−2(z0 − p)(z− p)−1− (1− p)−2(z0 − p)(z0− p)−1

(1− (1− p)−2(z0 − p)(z− p))2 .
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Hence,

h′(z0) =
−(z0 − p)−2 +(1− p)−2(z0 − p)(z0− p)−1

(1− (1− p)−2|z0− p|2)2 .

Therefore,

|(z0 − p)2h′(z0)| = 1− (1− p)−2|z0 − p|2
(1− (1− p)−2|z0− p|2)2 =

1
1− (1− p)−2|z0 − p|2 .

(ii) When p → 0+ , Corollary 2 yields a well known result for functions in Σ ,
which states that if g ∈ Σ , then

1−|z|2 � |z2g′(z)| � (1−|z|2)−1, z ∈ D

(see f.i. [7, Corollary 6, p. 127]).

We can also obtain a two point distortion estimate for functions in Σ(p) .

COROLLARY 3. For g ∈ Σ(p) and z,ξ ∈ Dp,1−p , we have∣∣∣∣log

(
g′(z)g′(ξ )(z− ξ )2

(g(z)−g(ξ ))2

)∣∣∣∣� log

(
|1− (1− p)−2(z− p)(ξ − p)|2

(1− (1− p)−2|z− p|2)(1− (1− p)−2|ξ − p|2)

)
.

(20)

Proof. For r = 2, choosing z1 = z , z2 = ξ , γ1 = 1, γ2 = −1, we get l.h.s. of (18)
as ∣∣∣∣log(−(z− p)2g′(z))+ log(−(ξ − p)2g′(ξ ))−2log

(
g(z)−g(ξ )

1/(z− p)−1/(ξ − p)

)∣∣∣∣
=
∣∣∣∣log

(
g′(z)g′(ξ )(z− ξ )2

(g(z)−g(ξ ))2

)∣∣∣∣ .
Again, for the particular values of z1,z2,γ1 and γ2 chosen above, r.h.s. of (18) is less
than or equals to

log

(
|1− (z− p)(ξ − p)(1− p)−2|2

(1−|z− p|2(1− p)−2)(1−|ξ − p|2(1− p)−2)

)
.

Now from (18), we get (20). �

REMARK 4. Equality occurs in (20) for the function g defined in (17), since for
this function, we have

log

(
g′(z)g′(ξ )(z− ξ )2

(g(z)−g(ξ ))2

)
= log

(
(1− (1− p)−2(z− p)2)(1− (1− p)−2(ξ − p)−2)

(1− (1− p)−2(z− p)(ξ − p))2

)
.

Now, we choose z = r1(1− p)+ p and ξ = r2(1− p)+ p , where r1,r2 < 1 so that z,ξ
lies on the real line and belongs to the disk Dp,1−p . For this z and ξ , we see that l.h.s.
of (20) reduces to log[(1−r1r2)2(1−r2

1)
−1(1−r2

2)
−1] , which is the r.h.s. of (20), since

(1− r2
1)(1− r2

2)(1− r1r2)−2 < 1.
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Using the last result, we get the next corollary.

COROLLARY 4. Let g ∈ Σ(p) and z ∈ Dp,1−p such that g(2p− z) = −g(z) , then

1−|z− p|2(1− p)−2

1+ |z− p|2(1− p)−2 �
∣∣∣∣ (z− p)g′(z)

g(z)

∣∣∣∣� 1+ |z− p|2(1− p)−2

1−|z− p|2(1− p)−2 .

Proof. Taking ξ = 2p− z in (20) and using the relation g(2p− z) = −g(z) , we
get ∣∣∣∣log

(
− (z− p)g′(z)

g(z)

)∣∣∣∣� log

(
1+ |z− p|2(1− p)−2

1−|z− p|2(1− p)−2

)
, (21)

which proves the result since | log |w|| � | logw| . �

REMARK 5. (i) Equality holds in the first and second inequalities of the Corol-
lary 4 at the point z = z0 , for the functions g and h respectively, defined as

g(z) =
1

z− p
+

(z0 − p)(z− p)
(1− p)2(z0 − p)

,

and

h(z) =
1

z− p
− (z0 − p)(z− p)

(1− p)2(z0 − p)
,

where z,z0 ∈Dp,1−p and z0 is fixed. We note that both g and h are univalent in Dp,1−p .
(ii) For an odd function g ∈ Σ , if we allow p → 0+, then (21) gives

| log(−zg′(z)/g(z))| � log((1+ |z|2)/(1−|z|2)), z ∈ D

(compare [7, Corollary 2, p. 126]).

Considering the real part in (18) and choosing the constants as real numbers, we
have the following corollary.

COROLLARY 5. If g ∈ Σ(p) and zi ∈ Dp,1−p , γi ∈ R for i = 1, · · · ,r , then

r

∏
i=1

r

∏
j=1

|1− (1− p)−2(zi − p)(z j − p)|γiγ j �
r

∏
i=1

r

∏
j=1

∣∣∣∣ g(zi)−g(z j)
1/(zi− p)−1/(z j− p)

∣∣∣∣γiγ j

�
r

∏
i=1

r

∏
j=1

|1− (1− p)−2(zi − p)(z j − p)|−γiγ j .

Next, we derive the Lebedev inequality for functions in Σ(p) , which is a general-
ization of the Goluzin inequality.
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THEOREM 4. Let g ∈ Σ(p) and r be a positive integer such that (z1,z2, · · · ,zr)
and (ξ1,ξ2, · · · ,ξr) be two arbitrary r -tuples of distinct points in Dp,1−p , then∣∣∣∣∣ r

∑
i=1

r

∑
j=1

γiμ j log

(
g(zi)−g(ξ j)

1/(zi− p)−1/(ξ j− p)

)∣∣∣∣∣
2

�
(

r

∑
i=1

r

∑
j=1

γiγ j log(1− (zi− p)(z j − p)(1− p)−2)

)
×(

r

∑
i=1

r

∑
j=1

μiμ j log(1− (ξi− p)(ξ j − p)(1− p)−2)

)
, (22)

for all complex numbers γi and μ j .

Proof. From (7), we get

l.h.s. of (22) =
∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmnλmλn

∣∣∣∣2, where λm =
r

∑
i=1

γi(zi− p)m and λn =
r

∑
j=1

μ j(ξ j− p)n.

Now using (16), we have∣∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmnλmλn

∣∣∣∣∣
2

�
(

∞

∑
m=1

(|λm|2/m)(1− p)−2m

)(
∞

∑
n=1

(|λn|2/n)(1− p)−2n

)
. (23)

Now following the proof of the last part of Theorem 3, we obtain

∞

∑
m=1

(|λm|2/m)(1− p)−2m =
∞

∑
m=1

(1/m)

∣∣∣∣∣ r

∑
i=1

γi(zi − p)m

∣∣∣∣∣
2

(1− p)−2m

=
r

∑
i=1

r

∑
j=1

γiγ j

(
∞

∑
m=1

(1/m)(zi − p)m(z j − p)m(1− p)−2m

)

= −
r

∑
i=1

r

∑
j=1

γiγ j log(1− (zi− p)(z j − p)(1− p)−2).

Similarly, we get
∞

∑
n=1

(|λn|2/n)(1− p)−2n = −
r

∑
i=1

r

∑
j=1

μiμ j log(1− (ξi− p)(ξ j − p)(1− p)−2).

Using the last two relations, we get the desired result from (23). �
Next, we obtain some corollaries of the Lebedev inequality.

COROLLARY 6. If g ∈ Σ(p) and z,ξ ∈ Dp,1−p , then∣∣∣∣log

(
g(z)−g(ξ )

1/(z− p)−1/(ξ − p)

)∣∣∣∣2
� log(1−|z− p|2(1− p)−2)−1 log(1−|ξ − p|2(1− p)−2)−1. (24)
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Proof. In (22), we put r = 1, γ1 = μ1 = 1 and z1 = z , ξ1 = ξ to get (24) . If we
take ξ → z , then (24) gives

| log(−(z− p)2g′(z))| � log(1−|z− p|2(1− p)−2)−1,

that also implies (19). �

COROLLARY 7. For each g ∈ Σ(p) , we have∣∣∣∣log

(
g(z)−g(ξ )
g(z)+g(ξ )

)(
z+ ξ −2p

z− ξ

)∣∣∣∣2
� log

(
1+ |z− p|2(1− p)−2

1−|z− p|2(1− p)−2

)
log

(
1+ |ξ − p|2(1− p)−2

1−|ξ − p|2(1− p)−2

)
,

where z,ξ ∈ Dp,1−p such that g(2p− z) = −g(z) and g(2p− ξ ) = −g(ξ ) .

Proof. In (22), we put r = 2, γ1 = μ1 = 1, γ2 = μ2 = −1 and z1 = z , ξ1 = ξ ,
z2 = 2p− z , ξ2 = 2p−ξ . Now, using the relation g(2p− z) = −g(z) and g(2p−ξ ) =
−g(ξ ) , we get

l.h.s. of (22) =

∣∣∣∣∣log

(
g(z)−g(ξ )

1/(z− p)−1/(ξ − p)

)2

− log

(
g(z)+g(ξ )

1/(z− p)+1/(ξ − p)

)2
∣∣∣∣∣
2

=

∣∣∣∣∣log

(
g(z)−g(ξ )
g(z)+g(ξ )

.
z+ ξ −2p

z− ξ

)2
∣∣∣∣∣
2

.

Again, with the above values of the constants, r.h.s. of (22) reduces to

log

(
1+ |z− p|2(1− p)−2

1−|z− p|2(1− p)−2

)2

log

(
1+ |ξ − p|2(1− p)−2

1−|ξ − p|2(1− p)−2

)2

.

Comparing the left and right hand side, we get the result. �

Next, we prove the Grunsky inequality for meromorphic functions with non zero
pole having quasiconformal extension onto the extended complex plane. We will apply
the Dirichlet Principle (compare [17, Chap. 9, p. 289]), as stated below to prove our
result.

LEMMA 1. Let μ(z) be real harmonic and ν(z) be continuously differentiable
function in D and also let μ and ν are continuous in D . If μ(z) = ν(z) on the
boundary ∂D := {z : |z| = 1} , then

∫∫
D

∣∣∣∣∂ μ
∂ z

∣∣∣∣2 dxdy �
∫∫

D

∣∣∣∣∂ν
∂ z

∣∣∣∣2 dxdy, where z = x+ iy.
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THEOREM 5. Let g ∈ Σk(p) having expansion of the form (4). Let λm ∈ C , m =
1,2, · · · be arbitrary complex numbers, then∣∣∣∣∣ ∞

∑
m=1

∞

∑
n=1

bmnλmλn

∣∣∣∣∣� k
∞

∑
m=1

(|λm|2/m)(1− p)−2m, (25)

provided the series in the right hand side of (25) is convergent, where bmn ’s are the
Grunsky coefficients of g that are defined in (7).

Proof. We follow the technique developed by Pommerenke ([17, Theorem9.13,
p. 289]). Since g ∈ Σk(p) , g is analytic on D\ {p} and |gz | � k|gz| on D

∗ . Thus

|gz|+ |gz |
|gz|− |gz |

� 1+ k
1− k

, z ∈ D
∗. (26)

Let us consider s(w) := Re(h(w)) , w ∈ C , where h is an analytic function of w =
u+ iv , as defined in (10). Let us assume w = g(z) where z = x+ iy ∈ D∗ . Now using
the fact that (gz) = (g)z and (gz) = (g)z and also noting that s = s , we get

∂
∂ z

(s(g(z))) = swwz + sw(w)z = swgz + sw(g)z

= swgz +(sw) (gz) = swgz + swgz .

Therefore, using (26) we get∣∣∣ ∂
∂ z

(s(g(z)))
∣∣∣2 = |swgz + swgz |2 � |sw|2(|gz|+ |gz|)2

� 1+ k
1− k

|sw|2Jg(z), (27)

where Jg(z) := |gz|2 − |gz |2 denotes the Jacobian of the mapping g . Here we note
that the last inequality is valid for z ∈ D∗ , but since gz = 0 for z ∈ D \ {p} , we can
conclude that it is also valid for larger domain D∗

p,1−p := {z : |z− p| > 1− p} . Since
h is an analytic function of w and s(w) = Re (h(w)) , then sw = (1/2)(su− isv) , which
gives |h′(w)|2 = s2

u + s2
v = 4|sw|2 . Hence we have

|h′(w)| = 2|sw|. (28)

Using this fact and noting that g is univalent on Ĉ , we get from (27) that

1+ k
1− k

∫∫
Ĉ\g(Dp,1−p)

|h′(w)|2 dudv =
4(1+ k)
1− k

∫∫
g(D∗

p,1−p)
|sw|2 dudv

=
4(1+ k)
1− k

∫∫
D∗

p,1−p

|sw|2Jg(z)dxdy

� 4
∫∫

D∗
p,1−p

∣∣ ∂
∂ z

(s(g(z)))
∣∣2 dxdy. (29)
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Next we see that as g ∈ Σk(p) , it is continuous from Ĉ onto itself. If we now consider
the function (h ◦ g)(z) := h(g(z)) , z ∈ Ĉ , then it is also continuous from Ĉ onto itself,
as h is a polynomial (see (10)). From (11), we also see that h ◦ g has the following
expansion:

h(g(z)) = −
l

∑
m=1

(λm/m)(z− p)−m−
∞

∑
m=1

dm(z− p)m, z ∈ Dp,1−p \ {p}.

We now consider the function

ψ(z) := h

(
g

(
p+

(1− p)2

z− p

))
+

l

∑
m=1

(λm/m)(1− p)−2m(z− p)m

−
l

∑
m=1

(λm/m)(z− p)−m, z ∈ Ĉ.

It now follows that ψ : Ĉ → Ĉ is continuous and has the following form:

ψ(z) = −
l

∑
m=1

(λm/m)(z− p)−m−
∞

∑
m=1

dm(1− p)2m(z− p)−m, z ∈ D
∗
p,1−p. (30)

From (30), it also follows that ψ is analytic on D∗
p,1−p , which is symmetric w.r.t.

the real axis. Thus the function ρ(z) := ψ(z) is also analytic on that domain and
ρ ′(z) = ψ ′(z) . Therefore, μ(z) := Re (ρ(z)) = Re (ψ(z)) is harmonic on D∗

p,1−p . Let

us also denote ν(z) := s(g(z)) = Re (h(g(z))) , z ∈ Ĉ . Let us now make a change of
variable ζ = (1− p)/(z− p) , so that z = p+(1− p)/ζ . Hence the functions μ and ν
transform to

μ̃(ζ ) := μ(p+(1− p)/ζ ) and ν̃(ζ ) := ν(p+(1− p)/ζ ), ζ ∈ Ĉ.

From the constructions of μ̃ and ν̃ , it readily follows that they are continuous from Ĉ

onto itself. Moreover, μ̃ is harmonic on D , ν̃ has continuous partial derivatives on D

that are square-integrable. Also from the expressions of ψ (in (30)) and h◦g (in (11)),
we see that μ̃ and ν̃ respectively have the following forms:

μ̃(ζ ) = −Re

(
l

∑
m=1

(λm/m)(1− p)−mζ
m

+
∞

∑
m=1

dm(1− p)mζ
m

)
, ζ ∈ D,

ν̃(ζ ) = −Re

(
l

∑
m=1

(λm/m)(1− p)−mζm +
∞

∑
m=1

dm(1− p)mζ−m

)
, ζ ∈ D

∗.

Since μ̃ and ν̃ are continuous on Ĉ , it now follows that μ̃(ζ ) = ν̃(ζ ) on ∂D . Thus
μ̃ and ν̃ satisfy conditions of the Lemma1. Hence from the Lemma1, we get∫∫

D

∣∣∣∣ ∂
∂ζ

(μ̃(ζ ))
∣∣∣∣2 dτdη �

∫∫
D

∣∣∣∣ ∂
∂ζ

(ν̃(ζ ))
∣∣∣∣2 dτdη , where ζ = τ + iη . (31)
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By the chain rule of differentiation, we have

− (z− p)2

1− p
∂
∂ z

(μ(z)) =
∂

∂ζ
(μ̃(ζ )), and − (z− p)2

1− p
∂
∂ z

(ν(z)) =
∂

∂ζ
(ν̃(ζ )).

Again the Jacobian of the transformation from z-variable to ζ -variable is given by
Jζ (z) = (1− p)2|z− p|−4 . Hence returning back to the original variable z , we get from
(31) that ∫∫

D∗
p,1−p

∣∣∣∣ ∂
∂ z

(μ(z))
∣∣∣∣2 dxdy �

∫∫
D∗

p,1−p

∣∣∣∣ ∂
∂ z

(ν(z))
∣∣∣∣2 dxdy. (32)

Since ρ is analytic on D∗
p,1−p and μ(z) = Re(ψ(z)) = Re (ρ(z)) , therefore using a

similar method of computation as to derive (28), we have

|ρ ′(z)| = 2

∣∣∣∣ ∂
∂ z

(Re (ρ(z)))
∣∣∣∣ .

Using this fact and the inequality (32), we get from (29) that

1+ k
1− k

∫∫
Ĉ\g(Dp,1−p)

|h′(w)|2 dudv � 4
∫∫

D∗
p,1−p

∣∣ ∂
∂ z

(ν(z))
∣∣2 dxdy

� 4
∫∫

D∗
p,1−p

∣∣ ∂
∂ z

(μ(z))
∣∣2 dxdy

= 4
∫∫

D∗
p,1−p

∣∣ ∂
∂ z

(Re(ρ(z)))
∣∣2 dxdy

=
∫∫

D∗
p,1−p

|ρ ′(z)|2 dxdy. (33)

From (30), we have

ρ(z) = −
l

∑
m=1

(
(λm/m)+dm(1− p)2m

)
(z− p)−m−

∞

∑
m=l+1

dm(1− p)2m(z− p)−m,

where z ∈ D∗
p,1−p . Therefore, using (12) and the Green’s formula (see also proof of the

Theorem 1), we get∫∫
D∗

p,1−p

|ρ ′(z)|2dxdy

= − 1
2i

∫
|z−p|=1−p

ρ(z)ρ ′(z)dz

= − 1
2i

∫
|z−p|=1−p

(
−

l

∑
m=1

(
(λm/m)+dm(1− p)2m

)
(z− p)−m

−
∞

∑
m=l+1

dm(1− p)2m(z− p)−m
)( l

∑
m=1

m
(
(λm/m)+dm(1− p)2m

)
(z− p)−m−1

+
∞

∑
m=l+1

mdm(1− p)2m(z− p)−m−1
)

dz
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= π
l

∑
m=1

m
∣∣(λm/m)(1− p)−m +dm(1− p)m

∣∣2 + π
∞

∑
m=l+1

m|dm|2(1− p)2m

= π
l

∑
m=1

m
(
(λm/m)(1− p)−m +dm(1− p)m

)(
(λm/m)(1− p)−m +dm(1− p)m

)
+ π

∞

∑
m=l+1

m|dm|2(1− p)2m.

Hence from above, we have

∫∫
D∗

p,1−p

|ρ ′(z)|2dxdy = π

(
l

∑
m=1

(|λm|2/m)(1− p)−2m +
l

∑
m=1

m|dm|2(1− p)2m

+2Re

( l

∑
m=1

λmdm

)
+

∞

∑
m=l+1

m|dm|2(1− p)2m

)
. (34)

Combining (33) and (34), we get from (13) that

1+ k
1− k

(
l

∑
m=1

(|λm|2/m)(1− p)−2m−
∞

∑
m=1

m|dm|2(1− p)2m

)

=
1+ k

π(1− k)

∫∫
Ĉ\g(Dp,1−p)

|h′(w)|2 dudv

� 1
π

∫∫
D∗

p,1−p

|ρ ′(z)|2 dxdy

=
l

∑
m=1

(|λm|2/m)(1− p)−2m +
l

∑
m=1

m|dm|2(1− p)2m +2Re

( l

∑
m=1

λmdm

)
+

∞

∑
m=l+1

m|dm|2(1− p)2m,

which implies

2k
l

∑
m=1

(|λm|2/m)(1− p)−2m−2
∞

∑
m=1

m|dm|2(1− p)2m � 2(1− k)Re

( l

∑
m=1

λmdm

)
.

Therefore,

1− k
1+ k

Re

( l

∑
m=1

λmdm

)
� k

1+ k

l

∑
m=1

(|λm|2/m)(1− p)−2m

− 1
1+ k

∞

∑
m=1

m|dm|2(1− p)2m,
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which again implies

Re
( l

∑
m=1

λmdm

)
� k

1+ k

l

∑
m=1

(|λm|2/m)(1− p)−2m− 1
1+ k

∞

∑
m=1

m|dm|2(1− p)2m

+
2k

1+ k
Re

( l

∑
m=1

λmdm

)
= k

l

∑
m=1

(|λm|2/m)(1− p)−2m− k2

1+ k

l

∑
m=1

(|λm|2/m)(1− p)−2m

− 1
1+ k

∞

∑
m=1

m|dm|2(1− p)2m +
k

1+ k

l

∑
m=1

(λmdm + λmdm)

= k
l

∑
m=1

(|λm|2/m)(1− p)−2m− 1
1+ k

l

∑
m=1

[
(k2|λm|2/m)(1− p)−2m

+m|dm|2(1− p)2m− k(λmdm + λmdm)
]

− 1
1+ k

∞

∑
m=l+1

m|dm|2(1− p)2m

= k
l

∑
m=1

(|λm|2/m)(1− p)−2m− 1
1+ k

∞

∑
m=l+1

m|dm|2(1− p)2m

− 1
1+ k

l

∑
m=1

m

∣∣∣∣∣kλm(1− p)−m

m
−dm(1− p)m

∣∣∣∣∣
2

.

Thus we get from the above inequality that

Re

(
l

∑
m=1

λmdm

)
� k

l

∑
m=1

(|λm|2/m)(1− p)−2m.

Since the constants λm ’s are chosen arbitrarily, it follows that∣∣∣∣∣ l

∑
m=1

λmdm

∣∣∣∣∣� k
l

∑
m=1

(|λm|2/m)(1− p)−2m.

Now putting dm = ∑l
n=1 λnbmn and taking l → ∞ , we get (25). �

Next we state some important corollaries which follows from Theorem 5. Choos-
ing m = n = 1 and λ1 = 1 in (25), we easily get the following corollary.

COROLLARY 8. Let g ∈ Σk(p) having an expansion of the form (4), then |b1| �
k(1− p)−2 .
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If g ∈ Σk(p) and z1,z2, · · · ,zr ∈ Dp,1−p and γ1,γ2, · · · ,γr ∈ C , then the Goluzin
inequality takes the following form:∣∣∣∣∣ r

∑
i=1

r

∑
j=1

γiγ j log

(
g(zi)−g(z j)

1/(zi− p)−1/(z j− p)

)∣∣∣∣∣
� −k

r

∑
i=1

r

∑
j=1

γiγ j log
(
1− (zi− p)(z j − p)(1− p)−2) .

As a consequence, we get the following results:

COROLLARY 9. If g ∈ Σk(p) and z ∈ Dp,1−p , then

(1− (1− p)−2|z− p|2)k � |(z− p)2g′(z)| � (1− (1− p)−2|z− p|2)−k.

COROLLARY 10. Let g ∈ Σk(p) and z ∈ Dp,1−p such that g(2p− z) = −g(z) ,
then ∣∣∣∣log

(
− (z− p)g′(z)

g(z)

)∣∣∣∣� k log

(
1+ |z− p|2(1− p)−2

1−|z− p|2(1− p)−2

)
.

We can prove the Corollary 9 in a similar way like we proved the Corollary 2. Corollary
10 follows in a similar way like we proved the Corollary 4.

REMARK 6. Equality holds in (25) (for m = 1) and the last three corollaries for
the following k -quasiconformal mapping on Ĉ (or, its modification):

G(z) =

⎧⎨⎩
1

z−p + k(z−p)
(1−p)2 , |z− p|< 1− p,

1
z−p + k

z−p , |z− p|� 1− p.

But we see that this function does not belong to Σk(p) .

3. Concluding remark

For a function g ∈ Σ(p) , we have considered the Laurent expansion about the
point p of the form (4). Instead of this expansion, we can also assume the following
Laurent expansion of g about the origin:

g(z) =
1

z− p
+

∞

∑
n=0

bnz
n, z ∈ D\ {p}. (35)

In this case, area theorem for Σ(p) was proved by P. N. Chichra (compare [6]), which
says that if g ∈ Σ(p) having an expansion of the form (35), then ∑∞

n=1 n|bn|2 � (1−
p2)−2 . In the previous section, we have generalized the proof of an area theorem for
Σ(p) given in (5) to get the Grunsky inequality. So, we may expect another form of the
Grunsky inequality by generalizing the proof of the Chichra’s area theorem. It will be
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interesting to establish the Grunsky inequality for the classes Σ(p) and Σk(p) where
the functions have expansion of the form (35). But we see that, this form of g does
not work for the Theorem1, as we cannot determine the Grunsky coefficients from
equation (7).
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[11] R. KÜHNAU, Wertannahmeprobleme bei quasikonformen Abbildungen mit ortsabhängiger Dilata-

tionsbeschränkung, Math. Nachr., 40, (1969), 1–11.
[12] R. KÜHNAU, Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikon-

forme Abbildungen, Math. Nachr., 48, (1971), 77–105.
[13] O. LEHTO, Schlicht functions with a quasiconformal extension, Ann. Acad. Sci. Fenn. Ser. A.I., 500,

(1971), 10 pp.
[14] O. LEHTO, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987.
[15] A. E. LIVINGSTON,Convex meromorphic mappings, Ann. Polon. Math. 59, 3 (1994), 275–291.
[16] J. MILLER, Convex meromorphic mappings and related functions, Proc. Amer. Math. Soc., 25, (1970),

220–228.
[17] CH. POMMERENKE, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

(Received November 24, 2020) Bappaditya Bhowmik
Department of Mathematics

Indian Institute of Technology Kharagpur
Kharagpur-721302, India

e-mail: bappaditya@maths.iitkgp.ac.in

Goutam Satpati
Department of Mathematics

Indian Institute of Technology Kharagpur
Kharagpur-721302, India

e-mail: goutam.satpati@gmail.com

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


