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MONOTONICITY PROPERTIES OF GAUSSIAN HYPERGEOMETRIC

FUNCTIONS WITH RESPECT TO THE PARAMETER

QI BAO, MIAO-KUN WANG ∗ AND SONG-LIANG QIU

(Communicated by I. Perić)

Abstract. The authors establish the necessary and sufficient conditions under which certain com-
binations of Gaussian hypergeometric function and elementary function are monotone in the
parameter, which generalize the recent results of generalized elliptic integrals of the first and
second kinds obtained by Qiu et al. Moreover, the authors also prove two monotonicity theo-
rems of generalized elliptic integrals from another point of view.

1. Introduction

Throughout this paper, we always let r ′ =
√

1− r2 for r ∈ [0,1] , denote by N

(resp. R) the set of positive integers (resp. real numbers), and set N0 = N∪{0} . For
complex number x with Rex > 0, let

Γ(x) =
∫ ∞

0
tx−1e−tdt, B(x,y) =

Γ(x)Γ(y)
Γ(x+ y)

, ψ(x) =
Γ′(x)
Γ(x)

(1.1)

be the classical Euler gamma, beta and psi (digamma) functions, respectively (cf. [1, 5,
7, 8]). For complex numbers a,b and c with c �= 0,−1,−2, · · · , the Gaussian hyperge-
ometric function is defined by

F(a,b;c;x) = 2F1(a,b;c;x) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

xn

n!
(|x| < 1), (1.2)

where (a,n) is the Pochhammer symbol or shifted factorial defined as (a,0) = 1, and
(a,n) = a(a+1)(a+2) · · ·(a+n−1)= Γ(n+a)/Γ(a) for n∈ N (cf. [1, 7, 8, 10, 17]).
F(a,b;c;x) is said to be zero-balanced if c = a+b , and it converges absolutely for all
|x| < 1 (cf. [7, Theorem 2.1.1]). It is well known that F(a,b;c;x) has many important
applications in several branches of mathematics, physics and engineering, and many
other special functions in mathematical physics and even some elementary functions
are particular or limiting cases of this function.
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In 1769, Euler gave an important integral representation of Gaussian hypergeo-
metric function 2F1 (cf. [1, 15.3.1]). If Rec > Reb > 0 and x ∈ C\ [1,+∞) , then

2F1(a,b;c;x) =
2Γ(c)

Γ(b)Γ(c−b)

∫ π/2

0
(sinu)2b−1(cosu)2c−2b−1(1− xsin2 u)−adu. (1.3)

For a ∈ (0,1) and r ∈ (0,1) , the generalized elliptic integrals of the first and
second kinds are defined as⎧⎪⎨⎪⎩

Ka = Ka(r) = πF
(
a,1−a;1;r2

)
/2,

K ′
a = K ′

a (r) = Ka(r ′),
Ka(0) = π/2,Ka(1) = ∞,

(1.4)

and ⎧⎪⎨⎪⎩
Ea = Ea(r) = πF

(
a−1,1−a;1;r2

)
/2,

E ′
a = E ′

a(r) = Ea(r ′),
Ea(0) = π/2,Ea(1) = [sin(πa)]/[2(1−a)],

(1.5)

respectively (cf. [6, 4, 11]). Taking a = 1/2, K1/2 ≡K and E1/2 ≡ E are the complete
elliptic integrals of the first and second kinds, respectively (cf. [1, 17.3.9–17.3.10]).

During the past few years, both complete elliptic integrals (K and E ) and gen-
eralized elliptic integrals (Ka and Ea ) have been widely studied and applied in the
theories of conformal invariants, quasiconformal mappings and Ramanujan’s modular
equations [2, 3, 4, 9, 12, 13, 15, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40]. One of the meaningful tasks is to investigate the
dependence on the parameter a in Ka and Ea , and thus show some stabilities of Ka

and Ea with respect to a and establish several sharp bounds for Ka and Ea in terms of
K and E .

In 2000, Anderson, Qiu, Vamanamurthy and Vuorinen [4, Theorem 7.2] proved
the following Theorem 1.1.

THEOREM 1.1. For each r ∈ (0,1) , let μ , ν be defined on [0,1] by μ(a)= F(a−
1,1−a;1;r2) and ν(a) = F(a,1−a;1;r2) .

(1) If 1/2 � a < b � 1 , then all coefficients are positive in the Taylor series for
μ(b)− μ(a) in powers of r2 .

(2) If 0 � a < b � 1−1/
√

2 , then all coefficients are negative in the Taylor series
for μ(b)− μ(a)− (b−a)(2−a−b)r2 in powers of r2 .

(3) If 0 � a < b � 1/2 (resp. 1/2 � a < b � 1) , then all coefficients are positive
(resp. negative) in the Taylor series for ν(b)−ν(a) in powers of r2 .

It is apparent from Theorem 1.1 that Ka and Ea are both strictly increasing with
respect to the parameter a ∈ (0,1/2] . Recently, Qiu, Ma and Bao [19, Theorems 1.1
and 1.2] presented the necessary and sufficient conditions under which certain familiar
combinations, defined in terms of Ka , Ea and elementary functions, are monotone in
a∈ (0,1/2] , so that some known related results were proved substantially. For example,
they proved the following monotonicity theorem.
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THEOREM 1.2. Let 1.118763390276 < λ0< 1.118763390286 be as in [19, Lemma
2.1 (3)], for each r ∈ (0,1) and λ ∈ R , define the functions ϕ1,λ , ϕ2,λ , ϕ3,λ and ϕ4,λ
on (0,1/2] by

ϕ1,λ (a) =
Ka(r)−π/2

aλ , ϕ2,λ (a) =
π/2−Ea(r)

aλ ,

ϕ3,λ (a) =
Ka(r)−Ea(r)

aλ and ϕ4,λ (a) =
Ea(r)− r ′2Ka(r)

aλ ,

respectively. Then the following conclusions hold:
(1) ϕ1,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ � 0

(resp. λ � 1 ).
(2) ϕ2,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ � −2

(resp. λ � 0 ).
(3) ϕ3,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ � −1

(resp. λ � 1 ).
(4) ϕ4,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ � 1

(resp. λ � λ0 ).

Besides, the authors [19, Theorem 6.2] further proved

THEOREM 1.3. For each λ ∈ R , n ∈ N0 and for each r ∈ (0,1) , define the func-
tions ϕ5,λ and ϕ6,λ on (0,1/2] by

ϕ5,λ (a) =
Ka(r)− π

2 ∑n
k=0

(a,k)(1−a,k)
(k!)2 r2k

aλ

and

ϕ6,λ (a) =
π
2 ∑n

k=0
(a−1,k)(1−a,k)

(k!)2 r2k −Ea(r)

aλ ,

respectively. Then the following conclusions hold:
(1) ϕ5,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ � 0

(resp. λ � 1 ).
(2) ϕ6,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ �

−1− 1
2n+1 (resp. λ � 0 if n = 0 or λ � 1 if n ∈ N).

Substituting n = 0 in Theorem 1.3, Theorem 1.3 (1) and (2) reduce to Theorem
1.2 (1) and (2), respectively. In this paper, we shall consider more general situations.
For fixed c ∈ (0,∞) , let a ∈ (0,c/2] , λ ∈ R and x ∈ (0,1) , then we define

f1,λ (a) =
F(a,c−a;c;x)−1

aλ , f2,λ (a) =
1−F(a−1,c−a;c;x)

aλ , (1.6)

f3,λ (a) =
F(a,c−a;c;x)−F(a−1,c−a;c;x)

aλ (1.7)
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and

f4,λ (a) =
F(a−1,c−a;c;x)− (1− x)F(a,c−a;c;x)

aλ . (1.8)

Obviously, when c = 1 and x = r2 , f1,λ , f2,λ , f3,λ and f4,λ become ϕ1,λ , ϕ2,λ ,
ϕ3,λ and ϕ4,λ in Theorem 1.2, respectively. Naturally, the following Question 1.4 is
proposed.

QUESTION 1.4. For what values of λ ∈ R , fi,λ (i = 1,2,3,4) are increasing (or
decreasing) on (0,c/2]?

Motivated by the Theorems 1.2 and 1.3, and Question 1.4, we firstly shall give
the complete answer to Question 1.4 in Section 2 (See Theorem 2.1 and Theorem 2.2).
Besides, In Section 3, we shall also generalize parts (3) and (4) in Theorem 1.2 in the
similar way as the extension from parts (1) and (2) in Theorem 1.2 to Theorem 1.3,
and thus derive several sharp lower and upper bounds for Ka −Ea and Ea − r ′2Ka in
terms of K , E and elementary functions.

Let us recall some well-known formulas, which can be found in [1, 4].

Γ(x)Γ(1− x) =
π

sin(πx)
(0 < x < 1), (1.9)

ψ(1− x)−ψ(x) = π cot(πx) (0 < x < 1), (1.10)

Γ(x+1) = xΓ(x), ψ(x+1) = ψ(x)+
1
x

(x > 0), (1.11)

F(a,b;c;1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

(a+b < c), (1.12)

F(a,b;a+b;x)∼− 1
B(a,b)

log(1− x), x → 1. (1.13)

Let γ = limn→∞(∑n
k=1

1
k − logn) = 0.577 · · · be the Euler-Mascheroni constant. Then

the psi function has the following representation (cf. [1, 6.3.16])

ψ(x) = −γ − 1
x

+
∞

∑
n=1

x
n(n+ x)

. (1.14)

The following two technical lemmas are useful for proving the monotonicity of
functions.

LEMMA 1.5. ([4, Lemma 5.1]) For −∞ < a < b < ∞ , let f , g : [a,b] → R

be continuous on [a,b] , and be differentiable on (a,b) . Let g′(x) �= 0 on (a,b) . If
f ′(x)/g′(x) is increasing (or decreasing) on (a,b) , then so are

[ f (x)− f (a)]/[g(x)−g(a)] and [ f (x)− f (b)]/[g(x)−g(b)].

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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LEMMA 1.6. ([18, Lemma 2.1]) For n ∈ N0 , let rn and sn be real numbers,
and let the power series R(x) = ∑∞

n=0 rnxn and S(x) = ∑∞
n=0 snxn be convergent for

|x| < 1 . If sn � 0 and not all vanish for n ∈ N0 , and if rn/sn is strictly increasing
(resp. decreasing) in n ∈ N0 , then the function x �→ R(x)/S(x) is strictly increasing
(resp. decreasing) on (0,1) .

2. The answer to question 1.4

In this section, we always assume that c is a fixed constant in (0,∞) , and a ∈
(0,c/2] . Let

λ1 = λ1(a) =
a

a− c
, λ2 = λ2(a) = λ1 +1 =

c−2a
c−a

, (2.15)

λ3 = λ3(a) = a[ψ(c−a)−ψ(a)], λ4 = λ4(a) =
a(2a− c−1)
(c−a)(1−a)

, (2.16)

λ5 = λ5(a) =
aΓ(c)[ψ(c+1−a)−ψ(a)]

Γ(c)−Γ(a)Γ(c+1−a)
, (2.17)

λ6 = λ6(a) = λ3 +
a

c−a
= a[ψ(c+1−a)−ψ(a)]. (2.18)

For λ ∈ R and |x| < 1, let

P1(λ ,c,x) =
(

2
c

)λ ∞

∑
n=1

( c
2 ,n)2

(c,n)n!
xn, P1(c,x) = P1(0,c,x), (2.19)

P2(λ ,c,x) =
(

2
c

)λ ∞

∑
n=1

(1− c
2)( c

2 ,n−1)( c
2 ,n)

(c,n)n!
xn, P2(c,x) = P2(0,c,x), (2.20)

P3(λ ,c,x) =
(

2
c

)λ ∞

∑
n=1

( c
2 ,n−1)( c

2 ,n)
(c,n)(n−1)!

xn, P3(c,x) = P3(0,c,x), (2.21)

P4(λ ,c,x) =
(

2
c

)λ−1 ∞

∑
n=0

( c
2 ,n)2

(n+ c)(c,n)n!
xn+1, P4(c,x) = P4(0,c,x). (2.22)

Now we state our main results below.

THEOREM 2.1. Let λ ∗
3 be as in Lemma 2.3 (3) and let P1(λ ,c,x) , P2(λ ,c,x) ,

P1(c,x) and P2(c,x) be as in (2.19)–(2.20). For each fixed c ∈ (0,∞) , a ∈ (0,c/2] ,
x ∈ (0,1) and λ ∈ R , the functions f1,λ and f2,λ are given in (1.6). Then we have the
following conclusions:

(1) f1,λ is strictly increasing (resp. decreasing) on (0,c/2] if and only if λ � 0
(resp. λ � 1 if c ∈ (0,1] or λ � λ ∗

3 if c ∈ (1,∞)), with

f1,λ (0+) =

⎧⎪⎨⎪⎩
0, if λ < 1,

log 1
1−x , if λ = 1,

∞, if λ > 1,

f1,λ

( c
2

)
= P1(λ ,c,x).
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In particular, for c ∈ (0,1] (resp. c ∈ (1,∞)) , a ∈ (0,c/2] and x ∈ (0,1) ,

1+
2a
c

P1(c,x) � F(a,c−a;c;x) � 1+min

{
P1(c,x),a log

1
1− x

}
, (2.23)

(
resp.1+

(
2a
c

)λ ∗
3

P1(c,x) � F(a,c−a;c;x) � 1+min

{
P1(c,x),a log

1
1− x

})
.

The first (resp. second) equality holds if and only if a = c/2 (resp. a = c/2 or a → 0 ).
(2) If c ∈ (0,2) , then f2,λ is strictly increasing (resp. decreasing) on (0,c/2] if

and only if λ � 2/(c−2) (resp. λ � 0 ), with

f2,λ (0+) =

⎧⎪⎨⎪⎩
0, if λ < 0,

x, if λ = 0,

∞, if λ > 0,

f2,λ

( c
2

)
= P2(λ ,c,x).

If c ∈ [2,∞) , then there does not exist λ ∈ R for which f2,λ is strictly increasing (or
decreasing) on (0,c/2] . In particular, for c ∈ (0,2) , a ∈ (0,c/2] and x ∈ (0,1) ,

1−min

{
x,

(
2a
c

) 2
c−2

P2(c,x)

}
� F(a−1,c−a;c;x) � 1−P2(c,x). (2.24)

The first (resp. second) equality holds if and only if a = c/2 or a → 0 (resp. a = c/2 ).

THEOREM 2.2. Let λ ∗
3 and λ 6 be as in Lemma 2.3 (3) and (6), and let P3(λ ,c,x) ,

P4(λ ,c,x) , P3(c,x) and P4(c,x) as in (2.21)–(2.22). For each fixed c ∈ (0,∞) and
a ∈ (0,c/2] , x ∈ (0,1) and λ ∈ R , the functions f3,λ and f4,λ are given in (1.7) and
(1.8), respectively. Then we have the following conclusions:

(1) f3,λ is strictly increasing (resp. decreasing) on (0,c/2] if and only if λ �−1
(resp. λ � 1 if c ∈ (0,1] or λ � λ ∗

3 if c ∈ (1,∞)), with

f3,λ (0+) =

⎧⎪⎨⎪⎩
0, if λ < 0,

x, if λ = 0,

∞, if λ > 0,

f3,λ

( c
2

)
= P3(λ ,c,x).

In particular, for c ∈ (0,1] (resp. c ∈ (1,∞)) , a ∈ (0,c/2] and x ∈ (0,1) ,

2a
c

P3(c,x) � F(a,c−a;c;x)−F(a−1,c−a;c;x) � c
2a

P3(c,x), (2.25)

(
resp.

(
2a
c

)λ ∗
3

P3(c,x) � F(a,c−a;c;x)−F(a−1,c−a;c;x) � c
2a

P3(c,x)

)
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with equality in each instance if and only if a = c/2 .
(2) f4,λ is strictly increasing (resp. decreasing) on (0,c/2] if and only if λ � 1

(resp. λ � λ 6 ), with

f4,λ (0+) =

⎧⎪⎨⎪⎩
0, if λ < 1,
x
c , if λ = 1,

∞, if λ > 1,

f4,λ

( c
2

)
= P4(λ ,c,x).

In particular, for c ∈ (0,∞) , a ∈ (0,c/2] and x ∈ (0,1) ,

max

{
ax
c

,

(
2a
c

)λ 6

P4(c,x)

}
� F(a−1,c−a;c;x)− (1− x)F(a,c−a;c;x)

� 2a
c

P4(c,x). (2.26)

The first (resp. second) equality holds if and only if a = c/2 or a → 0 (resp. a = c/2 ).

The following three lemmas are required in the proofs of Theorems 2.1–2.2.

LEMMA 2.3. For each fixed c ∈ (0,∞) , let λi (0 � i � 6) be as in (2.1)–(2.4) .
Then the following statements hold true:

(1) λ̃1 ≡ inf
a∈(0,c/2]

λ1(a) = −1 ;

(2) λ̃2 ≡ inf
a∈(0,c/2]

λ2(a) = 0 ;

(3) λ 3 ≡ sup
a∈(0,c/2]

λ3(a) =

{
1, if c ∈ (0,1],
λ ∗

3 , if c ∈ (1,∞),
where λ ∗

3 � 1 ;

(4) λ̃4 ≡ inf
a∈(0,c/2]

λ4(a) =

{
c/(c−2), if c ∈ (0,2),
−∞, if c ∈ [2,∞);

(5) λ 5 ≡ sup
a∈(0,c/2]

λ5(a) =

{
0, if c ∈ (0,2),
∞, if c ∈ [2,∞);

(6) λ 6 ≡ sup
a∈(0,c/2]

λ6(a) � 1 .

Proof. Since the function a �→ λ1 and a �→ λ2 are both strictly decreasing on
(0,c/2] with ranges [−1,0) and [0,1) respectively, then parts (1) and (2) follows.

For part (3) , due to the fact that a �→ λ3(a) is a continuous function on (0,c/2]
with λ3(c/2) = 0 and

λ3(0+) = lim
a→0+

aψ(c−a)− lim
a→0+

aψ(a) = 1,

the supermum λ 3 of the set {λ3(a) : a∈ (0,c/2]} exists and λ 3 � 1. If c ∈ (0,1] , then
from the monotonicity property of ψ on (0,∞) and (1.10) we get

λ 3 � sup
a∈(0,1/2]

a[ψ(1−a)−ψ(a)] = sup
a∈(0,1/2]

πa
tan(πa)

= 1.
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Consequently, it follows that λ 3 = 1 if c ∈ (0,1] . If c ∈ (1,∞) , then we denote λ 3 by
λ ∗

3 , and thereby λ ∗
3 � 1.

For part (4) , if c ∈ (0,2) , then λ4(c/2) = 2/(c−2) , so that λ̃4 � 2/(c−2) . On
the other hand,

λ4(a) =
a(2a− c−1)
(c−a)(1−a)

� 2
c−2

for a ∈ (c/2] because it is equivalent to the simple inequality 2− a(3− c) � 0 for

a ∈ (0,c/2] . This yields λ̃4 = 2/(c− 2) if c ∈ (0,2) . If c ∈ [2,∞) , then from the
representation of λ4 one has λ̃4 = −∞ immediately.

For part (5) , if c ∈ [2,∞) , then

lim
a→1+

λ5(a) = Γ(c) [ψ(c)−ψ(1)] lim
a→1+

1
Γ(c)−Γ(a)Γ(c+1−a)

= ∞,

which shows that λ 5 = ∞ .
If c ∈ (0,2) , then by (1.14),

λ 5 � λ5(0+) = lim
a→0+

aΓ(c)[ψ(c−a+1)−ψ(a)]
Γ(c)−Γ(a)Γ(c−a+1)

= lim
a→0+

aψ(a)
Γ(a)Γ(c−a+1)/Γ(c)−1

= lim
a→0+

aψ(a) · lim
a→0+

1
Γ(a)Γ(c−a+1)/Γ(c)−1

= 0. (2.27)

On the other hand, set λ5(a) = p1(a)/[1− p2(a)] , where p1(a) = a[ψ(c− a + 1)−
ψ(a)] and p2(a) = Γ(a)Γ(c−a+1)/Γ(c) . Since p2(a) > 0 for a ∈ (0,c/2] , logarith-
mic differentiation leads to

p′2(a)
p2(a)

= ψ(a)−ψ(c−a+1)< 0

for a ∈ (0,c/2] , which shows that p2 is strictly decreasing on a ∈ (0,c/2] . Thus
1− p2(a)� 1− p2(c/2)= 0 for a∈ (0,c/2] by [14, Theorem], and therefore λ5(a) � 0
for a ∈ (0,c/2] . This, in conjunction with (2.27), implies that λ 5 = 0.

For part (6) , by (2.15), (2.16) and (2.18), λ6(a) = λ3(a)− λ1(a) . Obviously,
λ6(0+) = λ6(c/2) = 1. This, together with the continuous property of a �→ λ6(a) on
(0,c/2] , implies that the supermum λ 6 of the set {λ6(a) : a∈ (0,c/2]} exists. By parts
(1) and (3), we know that λ 6 � 1. �

LEMMA 2.4. For each fixed c ∈ (0,∞) , let a ∈ (0,c/2] and n ∈ N0 , an = ψ(n+
a)−ψ(n+c−a) and bn = ψ(n+a)−ψ(n+1+c−a) . Then the sequences {an} and
{bn} are both strictly increasing in n∈N0 with a∞ = limn→∞ an = b∞ = limn→∞ bn = 0 .
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Proof. By the asymptotic formula for the psi function (cf. [1, 6.3.18]), a∞ = b∞ =
0. By (1.11), we have

an+1−an =
c−2a

(a+n)(c−a+n)
and bn = an− c

c−a+n
,

from which the monotonicity properties of {an} and {bn} follow. �

LEMMA 2.5. For each fixed c ∈ (0,∞) , let a ∈ (0,c/2] and n ∈ N0 . Define

g1,n(a) = (a,n)(c−a,n+1)

g2,n(a) = (a,n)(c−a,n)

g3,n(a) = (1−a)(a,n)(c−a,n+1)

and
g4,n(a) = a(a,n)(c−a,n).

Then the sequence {g′i,n(a)/gi,n(a)}(i = 1,2,3,4) is strictly increasing in n ∈ N0 .

Proof. Let an and bn be as in Lemma 2.4. By logarithmic differentiations, we
obtain

g′1,n(a)
g1,n(a)

= an+1−a0− 1
n+a

, (2.28)

g′2,n(a)
g2,n(a)

= an−a0, (2.29)

g′3,n(a)
g3,n(a)

= an+1−a0− 1
n+a

+
1

a−1
, (2.30)

g′4,n(a)
g4,n(a)

= an−a0 +
1
a
. (2.31)

Therefore, Lemma 2.5 follows from (2.28)–(2.31) and Lemma 2.4. �

Proof of Theorem 2.1. For part (1) , by (1.2) and (1.11) we obtain

f1,λ

( c
2

)
=
(

2
c

)λ ∞

∑
n=1

(c/2,n)2

(c,n)n!
xn = P1(λ ,c,x) (2.32)

and

f1,λ (a) =
a1−λ Γ(c)

Γ(a+1)Γ(c−a)

∞

∑
n=1

Γ(n+a)Γ(n+ c−a)
Γ(n+ c)n!

xn,

from which it follows that

f1,λ (0+) = lim
a→0+

a1−λ
∞

∑
n=1

xn

n
=

⎧⎪⎨⎪⎩
0, if λ < 1,

log 1
1−x , if λ = 1,

∞, if λ > 1.

(2.33)
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Logarithmic differentiation yields

a
f ′1,λ (a)

f1,λ (a)
= F1,a(x)−λ , (2.34)

where

F1,a(x) = a
∂

∂a [F(a,c−a;c;x)−1]
F(a,c−a;c;x)−1

= a
∑∞

n=0
g′2,n+1(a)

(c,n+1)(n+1)!x
n

∑∞
n=0

g2,n+1(a)
(c,n+1)(n+1)!x

n
, (2.35)

and g2,n is defined in Lemma 2.5. Noting that g2,n+1 > 0 for n∈N0 , and g′2,n+1/g2,n+1

is strictly increasing in n ∈ N0 by Lemma 2.5. Then by application of Lemma 1.6, we
derive that F1,a is strictly increasing in x ∈ (0,1) . Furthermore, by (2.29) and (2.35),
F1,a(0+) = ag′2,1(a)/g2,1(a) = (c−2a)/(c−a) = λ2 . For the limiting value of F1,a(x)
at 1 , firstly, written F1,a(x) as

F1,a(x) =
1

1−1/F(a,c−a;c;x)
F2,a(x), (2.36)

where

F2,a(x) = a
∂
∂aF(a,c−a;c;x)
F(a,c−a;c;x)

. (2.37)

Next, for a ∈ (0,c/2] and x ∈ (0,1) , set

F3(a,x) =
∫ π/2

0
(sinu)2c−2a−1(cosu)2a−1(1− xsin2 u)−adu,

F4(a,u) = (sinu)2c−2a−1(cosu)−1 log(sinu)

and

F5(a,u) = (sinu)2c−2a−1(cosu)2a−1(1− xsin2 u)−a [2log(tanu)+ log
(
1− xsin2 u

)]
.

Then F(a,c−a;c;x) = [2Γ(c)/Γ(a)Γ(c−a)]F3(a,x) by (1.3), so that

F2,a(x) =
2aΓ(c)

Γ(a)Γ(c−a)F(a,c−a;c;x)

{
∂F3

∂a
+[ψ(c−a)−ψ(a)]F3

}
= a[ψ(c−a)−ψ(a)]+

2aΓ(c)
Γ(a)Γ(c−a)F(a,c−a;c;x)

∂F3

∂a
, (2.38)

∂F3

∂a
= −

∫ π/2

0
F5(a,u)du, lim

x→1

∂F3

∂a
= −2

∫ π/2

0
F4(a,u)du. (2.39)

It is well known that for n ∈ N (cf. [1, 6.4.1]),

ψ(n)(x) = (−1)n+1
∫ ∞

0

tne−xt

1− e−t dt = −
∫ 1

0

tx−1

1− t
(log t)ndt.
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Employing (2.39) and substituting t = sin2 u , we have

lim
x→1

∂F3

∂a
= −2

∫ π/2

0

(sinu)2c−2a−1 log(sinu)
1− sin2 u

d(sinu)

= −1
2

∫ π/2

0

(sinu)2(c−a−1) log(sin2 u)
1− sin2 u

d(sin2 u)

= −1
2

∫ 1

0

t(c−a)−1 log t
1− t

dt =
1
2

ψ ′(c−a).

Finally, according to (1.13), (2.36) and (2.38) we get

F1,a(1−) = F2,a(1−) = a[ψ(c−a)−ψ(a)] = λ3. (2.40)

In conclusion, F1,a is strictly increasing from (0,1) onto (λ2,λ3) . Combining
(2.34) with Lemma 2.3 (1) and (3), we obtain that, for all c ∈ (0,∞) , a ∈ (0,c/2] and
x ∈ (0,1) ,

f ′1,λ (a) � 0 ⇐⇒ λ � inf
a∈(0,c/2]
x∈(0,1)

{F1,a(x)} = inf
a∈(0,c/2]

{λ2(a)} = λ̃2 = 0,

f ′1,λ (a) � 0 ⇐⇒ λ � sup
a∈(0,c/2]
x∈(0,1)

{F1,a(x)} = sup
a∈(0,c/2]

{λ3(a)} = λ 3 =

{
1, if 0 < c � 1,

λ ∗
3 , if c > 1.

This, together with (2.32) and (2.33), yields the first assertion in part (1). Employing the
monotonicity properties and ranges of f1,0 , f1,1 and f1,λ ∗

3
, we get (2.23) immediately.

For part (2), by (1.2) and (1.11), one can easily obtain

f2,λ

( c
2

)
=
(

2
c

)λ ∞

∑
n=1

(1− c/2)(c/2,n−1)(c/2,n)
(c,n)n!

xn = P2(λ ,c,x) (2.41)

and

f2,λ (a) = −a−λ
∞

∑
n=1

(a−1,n)(c−a,n)
(c,n)n!

xn

= −a−λ
∞

∑
n=1

Γ(n+a−1)Γ(n+ c−a)
Γ(a−1)Γ(c−a)(c,n)n!

xn

= (1−a)a1−λ
∞

∑
n=1

Γ(n+a−1)Γ(n+ c−a)
Γ(a+1)Γ(c−a)(c,n)n!

xn

= (1−a)a−λ

[
c−a

c
x+a

∞

∑
n=2

Γ(n+a−1)Γ(n+ c−a)
Γ(a+1)Γ(c−a)(c,n)n!

xn

]
,

from which it follows that

f2,λ (0+) =

⎧⎪⎨⎪⎩
0, if λ < 0,

x, if λ = 0,

∞, if λ > 0.

(2.42)
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Logarithmic differentiation gives

a
f ′2,λ (a)

f2,λ (a)
= F6,a(x)−λ , (2.43)

where

F6,a(x) = a
∂
∂a ∑∞

n=1
(1−a)(a,n−1)(c−a,n)

(c,n)n! xn

∑∞
n=1

(1−a)(a,n−1)(c−a,n)
(c,n)n! xn

= a
∑∞

n=0
g′3,n(a)

(c,n+1)(n+1)!x
n

∑∞
n=0

g3,n(a)
(c,n+1)(n+1)!x

n
, (2.44)

and g3,n is defined in Lemma 2.5. Since g3,n > 0 for n ∈ N0 and g′3,n/g3,n is strictly
increasing in n ∈ N0 by Lemma 2.5, then applying Lemma 1.6 we derive that F6,a is
strictly increasing in x ∈ (0,1) . Furthermore, by (2.30) and (2.44), we obtain

F6,a(0+) = a
g′3,0(a)
g3,0(a)

=
a(2a− c−1)
(c−a)(1−a)

= λ4. (2.45)

For the limiting value of F6,a(x) at 1, firstly, write F6,a(x) as

F6,a(x) = a
∂
∂a [1−F(a−1,c−a;c;x)]

1−F(a−1,c−a;c;x)
=

1
1−1/F(a−1,c−a;c;x)

F7,a(x), (2.46)

where

F7,a(x) = a
∂

∂aF(a−1,c−a;c;x)
F(a−1,c−a;c;x)

. (2.47)

Next, for a ∈ (0,c/2] and x ∈ (0,1) , let

F8(a,x) =
∫ π/2

0
(sinu)2c−2a−1(cosu)2a−1(1− xsin2 u)1−adu,

F9(a) =
∫ π/2

0
(sinu)2c−2a−1(cosu) log(sinu)du.

Then F(a−1,c−a;c;x) = [2Γ(c)/(Γ(a)Γ(c−a))]F8(a,x) by (1.3), we obtain

∂F8

∂a
=−

∫ π/2

0
(sinu)2c−2a−1(cosu)2a−1(1−xsin2 u)1−a [2log(tanu)+ log

(
1−xsin2 u

)]
du

and

F7,a(x) =
2aΓ(c)

Γ(a)Γ(c−a)F(a−1,c−a;c;x)

{
∂F8

∂a
+[ψ(c−a)−ψ(a)]F8

}
= a[ψ(c−a)−ψ(a)]+

2aΓ(c)
Γ(a)Γ(c−a)F(a−1,c−a;c;x)

∂F8

∂a
. (2.48)
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It follows from (1.12) and (2.48) that

F7,a(1−) = a[ψ(c−a)−ψ(a)]+ lim
x→1−

2aΓ(c)
Γ(a)Γ(c−a)F(a−1,c−a;c;1)

∂F8

∂a

= a[ψ(c−a)−ψ(a)]−4a(c−a)F9(a). (2.49)

Using the substitution t = sinu , and integrating by parts, we obtain

F9(a) =
∫ 1

0
t2c−2a−1 logt dt =

1
2(c−a)

∫ 1

0
logt dt2(c−a) = − 1

4(c−a)2 . (2.50)

Hence by (1.12), (2.46), (2.49) and (2.50), we obtain

F6,a(1−) =
1

1−1/F(a−1,c−a;c;1)
·F7,a(1−)

=
aΓ(c)[ψ(c−a+1)−ψ(a)]

Γ(c)−Γ(a)Γ(c−a+1)
= λ5. (2.51)

In conclusion, F6,a is strictly increasing from (0,1) onto (λ4,λ5) . By (2.43) and
Lemma 2.3 (3) and (4), we obtain that, for all c ∈ (0,∞) , a ∈ (0,c/2] and x ∈ (0,1) ,

f ′2,λ (a) � 0⇐⇒ λ � inf
a∈(0,c/2]
x∈(0,1)

{F6,a(x)}= inf
a∈(0,c/2]

{λ4(a)}= λ̃4 =

{
2

c−2 if 0 < c < 2,

−∞, if c � 2,

f ′2,λ (a) � 0 ⇐⇒ λ � sup
a∈(0,c/2]
x∈(0,1)

{F6,a(x)} = sup
a∈(0,c/2]

{λ5(a)} = λ 5 =

{
0, if 0 < c < 2,

∞, if c � 2.

This, together with (2.41)–(2.42), yields the the first assertion in part (2).
Inequality (2.24) follows from the monotonicity properties and ranges of the par-

ticular cases f2,0 and f2,2/(c−2) . The condition of each equality in (2.24) is clear. This
completes the proof. �

Proof of Theorem 2.2. For part (1) , by (1.2) and (1.11), we have

f3,λ (a) = a−λ
∞

∑
n=0

(a,n)(c−a,n)
(c,n)n!

xn −a−λ
∞

∑
n=0

(a−1,n)(c−a,n)
(c,n)n!

xn

= a−λ
∞

∑
n=1

(a,n−1)(c−a,n)
(c,n)(n−1)!

xn, (2.52)

from which one can easily obtain

f3,λ

( c
2

)
=
(

2
c

)λ ∞

∑
n=1

(c/2,n−1)(c/2,n)
(c,n)(n−1)!

xn = P3(λ ,c,x), (2.53)



1034 Q. BAO, M.-K. WANG AND S.-L. QIU

f3,λ (a) = a1−λ
∞

∑
n=1

Γ(n+a−1)Γ(n+ c−a)
Γ(1+a)Γ(c−a)(c,n)n!

xn

= a−λ

[
c−a

c
x+a

∞

∑
n=2

Γ(n+a−1)Γ(n+ c−a)
Γ(1+a)Γ(c−a)(c,n)n!

xn

]
,

and therefore

f3,λ (0+) =

⎧⎪⎨⎪⎩
0, if λ < 0,

x, if λ = 0,

∞, if λ > 0.

(2.54)

Logarithmic differentiation of f3,λ gives

a
f ′3,λ (a)

f3,λ (a)
= F10,a(x)−λ , (2.55)

where

F10,a(x) = a
∂
∂a [F(a,c−a;c;x)−F(a−1,c−a;c;x)]

F(a,c−a;c;x)−F(a−1,c−a;c;x)
= a

∑∞
n=0

g′1,n(a)
(c,n+1)n!x

n

∑∞
n=0

g1,n(a)
(c,n+1)n!x

n
, (2.56)

and g1,n is defined in Lemma 2.5.
Since g1,n > 0 for n∈N0 , and g′1,n/g1,n is strictly increasing in n∈N0 by Lemma

2.5, then F10,a is strictly increasing in x ∈ (0,1) by application of Lemma 1.6. More-
over, F10,a(0+) = ag′1,0(a)/g1,0(a) = a/(a−c) = λ1 by (2.56), and from (1.12), (1.13),
(2.37), (2.40), (2.47) and (2.51) we obtain

F10,a(1−) = a lim
x→1−

⎧⎨⎩ 1

1− F(a−1,c−a;c;x)
F(a,c−a;c;x)

[
∂

∂aF(a,c−a;c;x)
F(a,c−a;c;x)

−
∂
∂aF(a−1,c−a;c;x)

F(a,c−a;c;x)

]⎫⎬⎭
= lim

x→1−
F2,a(x)− lim

x→1−
F7,a(x) lim

x→1−
F(a−1,c−a;c;x)

F(a,c−a;c;x)
= lim

x→1−
F2,a(x) = λ3.

In conclusion, F10,a is strictly increasing from (0,1) onto (λ1,λ3) . Incorporated
with Lemma 2.3 (1) and (3), equation (2.55) gives that, for all c ∈ (0,∞) , a ∈ (0,c/2]
and x ∈ (0,1) ,

f ′3,λ (a) � 0 ⇐⇒ λ � inf
a∈(0,c/2]
x∈(0,1)

{F10,a(x)} = inf
a∈(0,c/2]

{λ1(a)} = λ̃1 = −1,

f ′3,λ (a) � 0⇐⇒ λ � sup
a∈(0,c/2]
x∈(0,1)

{F10,a(x)}= sup
a∈(0,c/2]

{λ3(a)}= λ 3 =

{
1, if 0 < c � 1,

λ ∗
3 , if c > 1.
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Therefore, the first assertion in part (1) holds true. Applying the monotonicity proper-
ties of f4,−1 , f4,1 and f4,λ ∗

3
, inequality (2.25) and its equality cases follow immedi-

ately.
For part (2), by (1.2), we obtain

f4,λ (a) = a−λ

[
∞

∑
n=0

(a−1,n)(c−a,n)
(c,n)n!

xn − (1− x)
∞

∑
n=0

(a,n)(c−a,n)
(c,n)n!

xn

]

= a1−λ
∞

∑
n=0

1
n+ c

(a,n)(c−a,n)
(c,n)n!

xn+1, (2.57)

from which it follows that

f4,λ

( c
2

)
=
( c

2

)1−λ ∞

∑
n=0

(c/2,n)2

(n+ c)(c,n)n!
xn+1 = P4(λ ,c,x),

f4,λ (a) = a1−λ
∞

∑
n=0

Γ(n+a)Γ(n+ c−a)
(n+ c)Γ(a)Γ(c−a)(c,n)n!

xn+1

= a1−λ x

[
1
c

+
a

Γ(a+1)Γ(c−a)

∞

∑
n=1

Γ(n+a)Γ(n+ c−a)
(n+ c)(c,n)n!

xn

]
, (2.58)

and therefore

f4,λ (0+) = lim
a→0+

f4,λ (a) =

⎧⎪⎨⎪⎩
0, if λ < 1,
x
c , if λ = 1,

∞, if λ > 1.

By logarithmic differentiation, we have

a
f ′4,λ (a)

f4,λ (a)
= F11,a(x)−λ , (2.59)

where

F11,a(x) = a
∂

∂a [F(a−1,c−a;c;x)− (1− x)F(a,c−a;c;x)]
F(a−1,c−a;c;x)− (1− x)F(a,c−a;c;x)

= a
∑∞

n=0
g′4,n(a)

(n+c)(c,n)n!x
n

∑∞
n=0

g4,n(a)
(n+c)(c,n)n!x

n
, (2.60)

and g4,n is defined in Lemma 2.5 (4).
Since g4,n > 0 for n∈N0 , and g′4,n/g4,n is strictly increasing in n∈N0 by Lemma

2.5, then F11,a is strictly increasing in x ∈ (0,1) by application of Lemma 1.6. Further-
more, by (2.60) F11,a(0+) = a(g′4,0(a))/g4,0(a) = 1, and from (1.12), (1.13), (2.37),



1036 Q. BAO, M.-K. WANG AND S.-L. QIU

(2.40), (2.47) and (2.51) we have

F11,a(1−)

= a lim
x→1−

{
1

1− (1− x) F(a,c−a;c;x)
F(a−1,c−a;c;x)

×
[

∂
∂aF(a−1,c−a;c;x)
F(a−1,c−a;c;x)

− (1− x)
∂
∂aF(a,c−a;c;x)

F(a−1,c−a;c;x)

]}

= a lim
x→1−

∂
∂aF(a−1,c−a;c;x)
F(a−1,c−a;c;x)

−a lim
x→1−

{
(1− x)F(a,c−a;c;x)
F(a−1,c−a;c;x)

∂
∂aF(a,c−a;c;x)
F(a,c−a;c;x)

}

= lim
x→1−

F7,a(x)− lim
x→1−

(1− x)F(a,c−a;c;x)
F(a−1,c−a;c;x)

lim
x→1−

F2,a(x) = λ6.

Therefore, F11,a is strictly increasing from (0,1) onto (1,λ6) by Lemma 1.6. Using
(2.59) and Lemma 2.3 (5), we obtain that, for all c∈ (0,∞) , a∈ (0,c/2] and x ∈ (0,1) ,

f ′4,λ (a) � 0 ⇐⇒ λ � inf
a∈(0,c/2]
x∈(0,1)

{F11,a(x)} = F11,a(0+) = 1,

f ′4,λ (a) � 0 ⇐⇒ λ � sup
a∈(0,c/2]
x∈(0,1)

{F11,a(x)} = sup
a∈(0,c/2]

{λ6(a)} = λ 6,

which yields the monotonicity properties of f4,λ . The remaining conclusions are obvi-
ous. �

3. Monotonicity of generalized elliptic integrals with respect to a

The purpose of this section is to generalize parts (3) and (4) in Theorem 1.2, thus
find the analogous extension from parts (1) and (2) in Theorem 1.2 to Theorem 1.3. For
a ∈ (0,1/2] , let

g5,n(a) ≡ g1,n(a)|c=1 = (a,n)(1−a,n+1), (3.61)

g6,n(a) ≡ g4,n(a)|c=1 = a(a,n)(1−a,n), (3.62)

λ7 = λ7(a) = πa/ tan(πa), (3.63)

λ8 = λ8(a) = a[ψ(n+a+1)−ψ(n+3−a)+ψ(1−a)−ψ(a)], (3.64)

λ9 = λ9(a) = 1+a[ψ(n+1+a)−ψ(n+2−a)+ψ(1−a)−ψ(a)], (3.65)

λ10 = λ10(a) =
a

1−a

sin(πa)+π(1−a)cos(πa)−π(1−a)2 ∑n
k=0(k+1)−1(k!)−2g′6,k(a)

sin(πa)−π(1−a)∑n
k=0(k+1)−1(k!)−2g6,k(a)

.

(3.66)
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For r ∈ (0,1) and a ∈ (0,1/2] , let

P5,n(a,r) =
π
2

n

∑
k=0

g5,k(a)
k!(k+1)!

r2(k+1), P5,n(r) = P5,n

(
1
2
,r

)
, (3.67)

P6,n(a,r) =
π
2

n

∑
k=0

g6,k(a)
k!(k+1)!

r2(k+1), P6,n(r) = P6,n

(
1
2
,r

)
, (3.68)

P7,n(r) =
π
2

∞

∑
k=n+1

1
k
r2(k+1) =

{
−πr2 logr ′, if n = 0,

−πr2 logr ′ − π
2 ∑n

k=1
1
k r2(k+1), if n � 1,

(3.69)

P8,n(r) =

{
π
2

(
r2 +2r′2 logr ′

)
, if n = 0,

π
2

(
r2 +2r′2 logr ′

)− π
2 ∑n

k=1
1

k(k+1) r
2(k+1), if n � 1.

(3.70)

Now we state our main result of this section.

THEOREM 3.1. For each λ ∈ R , n ∈ N0 and r ∈ (0,1) , let P5,n , P6,n and

Pi,n (5 � i � 8) be as in (3.67)–(3.70), let λ̃8 and λ 10 be as in Lemma 3.2 (2) and
(4), respectively. Define the functions f5,λ and f6,λ on (0,1/2] by

f5,λ (a) =
Ka(r)−Ea(r)−P5,n(a,r)

aλ and f6,λ (a) =
Ea(r)− r ′2Ka(r)−P6,n(a,r)

aλ ,

respectively. Then we have the following conclusions:
(1) f5,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ �

λ̃8 = −1/(2n+3) (resp. λ � 1 ), with

f5,λ (0+) =

⎧⎨⎩
0, λ < 1,
P7,n(r), λ = 1,
∞, λ > 1,

f5,λ

(
1
2

)
= 2λ [K (r)−E (r)−P5,n(r)

]
.

In particular, for n ∈ N0 , a ∈ (0,1/2] and r ∈ (0,1) ,

2a
[
K (r)−E (r)−P5,n(r)

]
� Ka(r)−Ea(r)−P5,n(a,r)

� min
{

aP7,n(r), (2a)−
1

2n+3
[
K (r)−E (r)−P5,n(r)

]}
, (3.71)

with equality in each instance if and only if a = 1/2 or a → 0 .
(2) f6,λ is strictly increasing (resp. decreasing) on (0,1/2] if and only if λ � 1

(resp. λ � λ 10 ), with

f6,λ (0+) =

⎧⎨⎩
0, λ < 2,
P8,n(r), λ = 2,
∞, λ > 2,

f6,λ

(
1
2

)
= 2λ [E (r)− r ′2K (r)−P6,n(r)

]
.

In particular, for n ∈ N0 , a ∈ (0,1/2] and r ∈ (0,1) ,

(2a)λ10
[
E (r)− r ′2K (r)−P6,n(r)

]
� Ea(r)− r ′2Ka(r)−P6,n(a,r)

� 2a
[
E (r)− r ′2K (r)−P6,n(r)

]
, (3.72)

with equality in each case if and only if a = 1/2 .



1038 Q. BAO, M.-K. WANG AND S.-L. QIU

The proof of Theorem 3.1 requires some properties of λi(a) (7 � i � 10), which
are given in the following Lemma 3.2.

LEMMA 3.2. For n ∈ N0 and a ∈ (0,1/2] , let λi (7 � i � 10) be as in (3.63)–
(3.66). Then we have the following conclusions:

(1) λ 7 = sup
a∈(0,1/2]

{λ7(a)} = 1 ;

(2) λ̃8 = inf
a∈(0,1/2]

{λ8(a)} = − 1
2n+3 ;

(3) λ̃9 = inf
a∈(0,1/2]

{λ9(a)} = 1 ;

(4) Let λ 10 = sup
a∈(0,1/2]

{λ10(a)} for n ∈ N0 . Then λ 10 = 2 if n = 0 . That is, for

each a ∈ (0,1/2] , if we let

z(a) ≡ λ10(a)|n=0 =
a

1−a
sin(πa)+ π(1−a)cos(πa)−π(1−a)2

sin(πa)−πa(1−a)
,

then supa∈(0,1/2]{z(a)} = 2 .

Proof. Since the function x �→ x/ tanx is strictly decreasing from (0,π/2) onto
(0,1) , then part (1) follows.

For part (2), by (1.11), λ8(1/2) = −1/(2n+3) , so that

λ̃8 = inf
a∈(0,1/2]

{λ8(a)} � − 1
2n+3

. (3.73)

On the other hand, it is easy to verify that the function a �→ a/(n+ 2− a) is strictly
increasing from (0,1/2] onto (0,1/(2n+3)] for each fixed n ∈ N0 . Combining (1.11)
and Lemma 2.4 gives

λ8(a) = a [ψ(n+a+1)−ψ(n+2−a)+ψ(1−a)−ψ(a)]− a
n+2−a

� 1−2a
1−a

− a
n+2−a

� − 1
2n+3

. (3.74)

Consequently, it follows from (3.73) and (3.74) that λ̃8 = −1/(2n+3) .
For part (3), similarly, one can easily obtain λ9(1/2) = 1, so that

λ̃9 = inf
a∈(0,1/2]

{λ9(a)} � 1. (3.75)

On the other hand, since the function a �→ a/(1−a) is strictly increasing from (0,1/2]
onto (0,1] , combining (1.11) and Lemma 2.4 we obtain

λ9(a) = 1+a [ψ(n+1+a)−ψ(n+2−a)+ψ(1−a)−ψ(a)]
� 1+a [ψ(1+a)−ψ(2−a)+ψ(1−a)−ψ(a)]

= 2− a
1−a

� 1. (3.76)
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Consequently, it follows from (3.75) and (3.76) that λ̃9 = 1 for n ∈ N0 .
For part (4), let z1(a) = a

[
sin(πa)+ π(1−a)cos(πa)−π(1−a)2

]
and z2(a) =

(1−a) [sin(πa)−πa(1−a)]. Then z(a) = z1(a)/z2(a) . Utilizing the following series
expansions

sinx =
∞

∑
n=0

(−1)n x2n+1

(2n+1)!
and cosx =

∞

∑
n=0

(−1)n x2n

(2n)!
(x ∈ R),

we derive that sin(πa) > πa−π3a3/6 and cos(πa) < 1−π2a2/2+ π4a4/24 for a ∈
(0,1/2] ,

lim
a �→0+

z(a) = lim
a �→0+

a
1−a

[
πa+ π(1−a)(1−π2a2/2)−π(1−a)2+o(a3)

πa−πa+ πa2+o(a2)

]
= 2

and therefore

z2(a)
1−a

= sin(πa)−πa(1−a)> πa− π3

6
a3−πa(1−a) = πa2(1−π2a/6) > 0

for a ∈ (0,1/2] .
Following it suffices to show that z1(a) < 2z2(a) for each a ∈ (0,1/2] , which

is equivalent to z3(a) ≡ πa(1− a)cos(πa)− (2− 3a)sin(πa) + πa(1− a)2 < 0 for
a ∈ (0,1/2] . Noting that

z3(a) < πa(1−a)(1−π2a2/2+ π4a4/24)− (2−3a)(πa−π3a3/6)+ πa(1−a)2

= −πa3

24

[
4π2−24−π4a2(1−a)

]
< 0

for a ∈ (0,1/2] . This yields the assertion of part (4). �

Proof of Theorem 3.1. (1) If n = 0, then Theorem 3.1 (1) has been proved in [19,
Theorem 1.2 (3)]. Now we suppose that n ∈ N0 , let g5,n(a) and P5,n(a,r) be as in
(3.61) and (3.67), respectively. Let h1(a) = Ka(r)−Ea(r)−P5,n(a,r) , then by (1.4)
and (1.5),

h1(a) =
π
2

∞

∑
k=n+1

g5,k(a)
k!(k+1)!

r2k+2 =
π
2

∞

∑
k=0

g5,k+n+1(a)
(k+n+1)!(k+n+2)!

r2(k+n+2), (3.77)

from which it follows that

f5,λ (a) = a−λ h1(a) =
π
2

a−λ
∞

∑
k=0

g5,k+n+1(a)
(k+n+1)!(k+n+2)!

r2(k+n+2)

=
π
2

a1−λ
∞

∑
k=0

Γ(k+n+1+a)Γ(k+n+3−a)
Γ(a+1)Γ(1−a)(k+n+1)!(k+n+2)!

r2(k+n+2),

and therefore

f5,λ (0+) =

⎧⎨⎩
0 if λ < 1,
P7,n(r), if λ = 1,
∞, if λ > 1,

f5,λ

(
1
2

)
= 2λ [K (r)−E (r)−P5,n(r)

]
. (3.78)
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Logarithmic differentiation of f5,λ leads to

a
f ′5,λ (a)

f5,λ (a)
= a

h′1(a)
h1(a)

−λ = G1,a(r)−λ , (3.79)

where

G1,a(r) = a

{
∞

∑
k=0

g′5,k+n+1(a)

(k+n+1)!(k+n+2)!
r2k

}{
∞

∑
k=0

g5,k+n+1(a)
(k+n+1)!(k+n+2)!

r2k

}−1

= a

{
∞

∑
k=0

Ckr
2k

}{
∞

∑
k=0

Dkr
2k

}−1

, (3.80)

Ck =
g′5,k+n+1(a)

(k+n+1)!(k+n+2)!
, Dk =

g5,k+n+1(a)
(k+n+1)!(k+n+2)!

.

Clearly, Dk > 0 for k ∈ N0 , and Ck/Dk is strictly increasing in k ∈ N0 by Lemma 2.5.
Applying Lemma 1.6, G1,a is strictly increasing in r ∈ (0,1) . Moreover, by (3.61) and
(3.80),

G1,a(0+) = a
C0

D0
= a

g′5,n+1(a)

g5,n+1(a)
= λ8,

and from (1.4), (1.5) and the proof of [19, Theorem 1.1] one has

G1,a(1−) = lim
r→1−

a
1−Ea/Ka−P5,n(a,r)/Ka

[
1

Ka

∂Ka

∂a
− 1

Ka

∂Ea

∂a
− 1

Ka

∂P5,n(a,r)
∂a

]
= lim

r→1−
a

Ka

∂Ka

∂a
= λ7.

Combining with (3.79), and Lemma 3.2 (1) and (2), we obtain that, for all a ∈ (0,1/2]
and r ∈ (0,1) ,

f ′5,λ (a) � 0 ⇐⇒ λ � inf
a∈(0,1/2],r∈(0,1)

{G1,a(r)} = inf
a∈(0,1/2]

{λ8(a)} = λ̃8 = − 1
2n+3

,

f ′5,λ (a) � 0 ⇐⇒ λ � sup
a∈(0,1/2],r∈(0,1)

{G1,a(r)} = sup
a∈(0,1/2]

{λ7(a)} = λ 7 = 1.

This, together with (3.78), yields the first assertion of part (1). The double inequality
(3.71) and its equality case are clear.

(2) For n ∈ N0 , let g6,n(a) and P6,n(a,r) be as in (3.62) and (3.68), respectively.
Define h2(a) = Ea(r)− r ′2Ka(r)−P6,n(a,r) , then by (1.4) and (1.5) one has

h2(a) =
π
2

∞

∑
k=n+1

g6,k(a)
k!(k+1)!

r2(k+1) =
π
2

∞

∑
k=0

g6,k+n+1(a)
(k+n+1)!(k+n+2)!

r2(k+n+2), (3.81)
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from which it follows that

f6,λ (a) = a−λh2(a) =
π
2

a−λ
∞

∑
k=0

g6,k+n+1(a)
(k+n+1)!(k+n+2)!

r2(k+n+2)

=
π
2

a2−λ
∞

∑
k=0

Γ(k+n+1+a)Γ(k+n+2−a)
Γ(a+1)Γ(1−a)(k+n+1)!(k+n+2)!

r2(k+n+2), (3.82)

and therefore

f6,λ (0+) =

⎧⎨⎩
0 if λ < 2,
π
2 ∑∞

k=n+1
1

k(k+1) r
2k+2 = P8,n(r), if λ = 2,

∞, if λ > 2,
(3.83)

f6,λ

(
1
2

)
= 2λ [E (r)− r ′2K (r)−P6,n(r)

]
. (3.84)

It is easy to verify that for x ∈ (0,1) ,
∞

∑
k=1

1
k(k+1)

xk+1 = x− (1− x) log
1

1− x
,

and hence P8,n(r) = π
2

(
r2 +2r ′2 logr ′

)
if n = 0, and

P8,n(r) =
π
2

[
r2 +2r ′2 logr ′ −

n

∑
k=1

1
k(k+1)

r2(k+1)

]
if n � 1.

Logarithmic differentiation of f6,λ leads to

a
f ′6,λ

f6,λ
= a

h′2(a)
h2(a)

−λ = G2,a(r)−λ , (3.85)

where

G2,a(r) = a

{
∞

∑
k=0

g′6,k+n+1(a)

(k+n+1)!(k+n+2)!
r2k

}{
∞

∑
k=0

g6,k+n+1(a)
(k+n+1)!(k+n+2)!

r2k

}−1

= a

{
∞

∑
k=0

Ekr
2k

}{
∞

∑
k=0

Fkr
2k

}−1

, (3.86)

Ek =
g′6,k+n+1(a)

(k+n+1)!(k+n+2)!
, Fk =

g6,k+n+1(a)
(k+n+1)!(k+n+2)!

.

Clearly, Fk > 0 for k∈N0 , and the sequence {Ek/Fk} is strictly increasing in k∈N0 by
Lemma 2.5, so that the function r �→ G2,a is strictly increasing in (0,1) by application
of Lemma 1.6. Moreover, by (3.62) and (3.86),

G2,a(0+) = a
E0

F0
= a

g′6,n+1(a)
g6,n+1(a)

= λ9(a). (3.87)
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and from (1.5) and [19, equation (4.19)] we obtain

G2,a(1−) = lim
r→1−

{
a[Ea(r)−π/2]

Ea(r)− r ′2Ka(r)−P6,n(a,r)

×
[

∂
∂a [π/2−Ea(r)]

π/2−Ea(r)
+

∂
∂a

[
r ′2Ka(r)

]
π/2−Ea(r)

+
∂
∂aP6,n(a,r)
π/2−Ea(r)

]}

=
a[sin(πa)−π(1−a)]

sin(πa)−π(1−a)∑n
k=0(k+1)−1(k!)−2g6,k(a)

×
{
− sin(πa)+ π(1−a)cos(πa)

(1−a)[π(1−a)− sin(πa)]
+

π(1−a)∑n
k=0(k+1)−1(k!)−2g′6,k(a)

π(1−a)− sin(πa)

}
=

a
sin(πa)−π(1−a)∑n

k=0(k+1)−1(k!)−2g6,k(a)

×
{

sin(πa)+ π(1−a)cos(πa)
1−a

−π(1−a)
n

∑
k=0

(k+1)−1(k!)−2g′6,k(a)

}

=
a

1−a

sin(πa)+ π(1−a)cos(πa)−π(1−a)2∑n
k=0(k+1)−1(k!)−2g′6,k(a)

sin(πa)−π(1−a)∑n
k=0(k+1)−1(k!)−2g6,k(a)

= λ10. (3.88)

Combining with (3.85), and Lemma 3.2 (3) and (4), we conclude that for all a∈ (0,1/2]
and r ∈ (0,1) ,

f ′6,λ (a) � 0 ⇐⇒ λ � inf
a∈(0,1/2],r∈(0,1)

{G2,a(r)} = inf
a∈(0,1/2]

{λ9(a)} = λ̃9 = 1,

f ′6,λ (a) � 0 ⇐⇒ λ � sup
a∈(0,1/2],r∈(0,1)

{G2,a(r)} = sup
a∈(0,1/2]

{λ10(a)} = λ 10.

This, together with (3.83) and (3.84), yields the first assertion of part (2). Inequality
(3.72) and its equality case are clear. This completes the proof. �

Taking n = 0 in Theorem 3.1 (2) and using Lemma 3.2 (4), the following Corollary
3.3 can be obtained immediately.

COROLLARY 3.3. For each λ ∈ R and r ∈ (0,1) , define the function f7,λ on
(0,1/2] by

f7,λ (a) =
Ea(r)− r ′2Ka(r)−πar2/2

aλ .

Then f7,λ is strictly decreasing on (0,1/2] if and only if λ � 2 . In particular, for all
a ∈ (0,1/2] and r ∈ (0,1) ,

a2 [4(E − r ′2K )−πr2]� Ea(r)− r ′2Ka(r)− π
2

ar2

� πa2

2

(
r2 +2r ′2 logr ′

)
.
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The first (resp. second) equality holds if and only if a = 1/2 (resp. a → 0 ).

REMARK 3.4. It is not easy to calculate the exact values of λ ∗
3 , λ 6 and λ 10 (n ∈

N) appeared in Lemma 2.3 (3), (6) and Lemma 3.2 (4), respectively. Here it is left as
an open problem for the readers.

OPEN PROBLEM 3.5. (1) What are the values of λ ∗
3 and λ 6 in Lemma 2.3 (3)

and (6)?
(2) What is the value of λ 10 in Lemma 3.2 (4) for n ∈ N?
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