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ON PROPERTIES OF WEIGHTED HARDY CONSTANT FOR MEANS

PAWEŁ PASTECZKA

(Communicated by C. P. Niculescu)

Abstract. For a given weighted mean M defined on a subinterval of R+ and a sequence of
weights λ = (λn)∞

n=1 we define a Hardy constant H (λ) as the smallest extended real number
such that

∞

∑
n=1

λnM
(
(x1, . . . ,xn),(λ1, . . . ,λn)

)
� H (λ) ·

∞

∑
n=1

λnxn for all x ∈ �1(λ).

The aim of this note is to present a comprehensive study of the mapping H . For example
we prove that it is lower semicontinuous in the pointwise topology.

Moreover we show that whenever M is a monotone and Jensen-concave mean which is
continuous in its weights then H is monotone with respect to the partitioning of the vector.
Finally we deliver some sufficient conditions for λ to validate the equality H (λ) = supH for
every symmetric and monotone mean.

1. Introduction

History of Hardy inequality began in 1920s and a series of papers by Hardy [14],
Landau [20], Knopp [18], and Carleman [4]. Their results can be summarized as the
inequality involving the p -th power mean Pp . More precisely they proved that

∞

∑
n=1

Pp(x1, . . . ,xn) < C(p) ·
∞

∑
n=1

xn (1.1)

for all p < 1 and x ∈ �1(R+) , where

C(p) :=

{
(1− p)−1/p p ∈ (−∞,0)∪ (0,1),
e p = 0.

(1.2)

Moreover it is known that the above constants are sharp. It can be extended by putting
C(−∞) := 1 and C(p) := +∞ for all p ∈ [1,+∞] (with a natural extension of power
means P−∞ = min and P+∞ = max). For more details we refer the reader to surveys
by Pečarić–Stolarsky [28], Duncan–McGregor [11], and a book of Kufner–Maligranda–
Persson [19].
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This classical result was extended in several directions. First, Páles and Persson
[43] introduced a notion of Hardy mean. More precisely M :

⋃∞
n=1 In → I (here I

stands for an interval with infI = 0) is a Hardy mean if there exists a constant C ∈
(0,+∞) such that

∞

∑
n=1

M (x1, . . . ,xn) � C ·
∞

∑
n=1

xn for all x ∈ �1(I).

In the next step, following the notion from [36], the smallest extended real number
C satisfying this inequality is called a Hardy constant of M and denoted here simply
by H . In this setup a mean is a Hardy mean if and only if its Hardy constant is finite.

In fact the most important result from [36] is that whenever M is a monotone,
symmetric, Jensen concave, homogeneous, and repetition invariant mean on R+ then
its Hardy constant is given by a limit

H = lim
n→∞

n ·M (
1, 1

2 , . . . , 1
n

)
.

In particular this sequence is always convergent (possibly to +∞) and M is a Hardy
mean if and only if this limit is finite. This result generalized the inequality from 1920s.

The next step was to deliver a weighted counterpart of Hardy inequality. Such
generalization was first study by Copson [5] and Elliott [12] who proved the inequality

∞

∑
n=1

Pp
(
(x1, . . . ,xn),(λ1, . . . ,λn)

)
< C(p)

∞

∑
n=1

λnxn

for every p ∈ (0,1) , all-positive-entries sequence λ , and x ∈ �1(λ ) (here Pp stands
for the weighted p -th power mean). This result is generalized in a series of papers by
Páles and Pasteczka [38, 39, 40, 41, 42].

All precise definitions concerning weighted means are given in the next section.
Let us now give some insight into these results.

One of new concepts which appeared in [40] was to introduced a weighted Hardy
constant. For a weighted mean M (see the next section for the definition) and infinite
sequence of weights λ we define H (λ ) as the smallest extended real number such
that

∞

∑
n=1

λnM
(
(x1, . . . ,xn),(λ1, . . . ,λn)

)
� H (λ ) ·

∞

∑
n=1

λnxn for all x ∈ �1(λ ).

Note that for λ = (1,1, . . .) =: 1 we go back to the nonweighted setting, thus we
have H (1) = H (we recall some of these definitions more precisely in section 2.2).

Remarkably, it turned out that whenever M is monotone and symmetric then the
maximal weighted Hardy constant is a nonweighted one (which refers to a constant
sequence λ ) – cf. [40, Theorem 2.8] which is quoted in Theorem 2.4 below. This
obviously extends the Copson–Elliott result.

Second important result states that whenever M is symmetric, monotone, and
Jensen-concave weighted mean (either R-weighted which is continuous in its weights
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or Q -weighted), and (λn)∞
n=1 is a sequence of weights such that ∑∞

n=1 λn = +∞ and
( λn

λ1+···+λn
)∞
n=1 is nonincreasing then

H (λ ) = sup
y>0

liminf
n→∞

λ1+λ2+···+λn
y ·M

(( y
λ1

, y
λ1+λ2

, . . . , y
λ1+...+λn

),(λ1, . . . ,λn)
)
. (1.3)

The key tool of the proof was so-called (nonweighted) Kedlaya inequality [16] and its
weighted counterpart [17], which was extended in both of these cases – cf. [36] and
[38], respectively.

Having this, our consideration split into two parts. First issue was to characterize
Jensen-concavity for vary families of means (symmetry and monotonicity are simpler
in general) – such results are contained in [41]. Second problem was to calculate a
weighted Hardy constant for some particular families (and weights) – it was done in
[42].

The present paper is a continuation of this research. We study the properties of
the mapping H for a given (fixed) mean. This problem arised from the paper [40],
where it was proved that, under some additional assumptions, the maximal value is ob-
tained for the contstant vector. There were also few other results (for particular families
of means and under some additional condition on λ ) which arised from studying the
equality (1.3) (see [42]). All of them can be encompassed in the following form: Under
certain conditions the value H (λ ) depends on λ only implicitly by a limit of the ratio
sequence

( λn
λ1+···+λn

)∞
n=1 . It also corresponds to our Theorem 3.2.

2. Weighted means

In this section we recall several preliminary results concerning weighted means.
This definition first appeared in [38] in the context of so-called Kedlaya inequality
[16, 17]. It is separated from any particular family of means, which was a new idea.

DEFINITION 2.1. ([38], Weighted mean) Let I ⊂R be an arbitrary interval, R⊂
R be a ring and, for n ∈ N , define the set of n -dimensional weight vectors Wn(R) by

Wn(R) := {(λ1, . . . ,λn) ∈ Rn | λ1, . . . ,λn � 0, λ1 + · · ·+ λn > 0}.

A weighted mean on I over R or, in other words, an R-weighted mean on I is a function

M :
∞⋃

n=1

In×Wn(R)→ I

satisfying the following conditions:

(i) Nullhomogeneity in the weights: For all n ∈ N , for all (x,λ ) ∈ In×Wn(R) , and
t ∈ R+ ,

M (x,λ ) = M (x,t ·λ ),
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(ii) Reduction principle: For all n ∈ N and for all x ∈ In , λ ,μ ∈Wn(R) ,

M (x,λ + μ) = M (x� x,λ � μ),

where � is a shuffle operator, that is (p1, . . . , pn)�(q1, . . . ,qn) := (p1,q1, . . . , pn,qn) .

(iii) Mean value property: For all n ∈ N , for all (x,λ ) ∈ In×Wn(R)

min(x1, . . . ,xn) � M (x,λ ) � max(x1, . . . ,xn),

(iv) Elimination principle: entries with a zero weight can be omitted.

From now on I is an arbitrary interval, R stands for an arbitrary subring of R .
Following [38], a weighted mean M is said to be symmetric, if for all n ∈ N ,

x∈ In , λ ∈Wn(R) , and a permutation σ ∈ Sn we have M (x,λ ) = M (x◦σ ,λ ◦σ) . M
is called monotone if it is nondecreasing in each of its entry. Similarly M is concave
if for every n ∈ N and λ ∈Wn(R) the mapping In � x 	→M (x,λ ) ∈ I is concave (or
equivalently, by [3], Jensen concave).

In fact in can be proved that every R-weighted mean admits a unique extension to
R∗ -weighted mean (R∗ stands for the quotient field, i.e. the smallest field generated by
R). Moreover this extension preserve few important properties. This statement binds
few results [38, Theorems 2.2–2.5].

PROPOSITION 2.2. Let I be an interval, R ⊂ R be a ring, M be a weighted
mean defined on I over R. Then there exists a unique mean M̃ defined on I over R∗
(which denotes the quotient field of R) such that

M̃ |⋃∞
n=1 In×Wn(R) = M .

Moreover if M is symmetric, monotone or Jensen concave then so is M̃ , respectively.

This proposition is of essential importance as it allows to extend nonweighted
means to weighted ones. Indeed, there exists a natural correspondence between repeti-
tion invariant means and Z-weighted means (see [38, Theorem 2.3] for details). Then
by Proposition 2.2 it can be uniquely extended to Q -weighted mean and, whenever
there exists a continuous extension, to R-weighted mean. What is more, for a given
mean such extension is uniquely determined and in most cases it coincide with al-
ready known generalizations – for example for quasideviation means [33] and all its
subclasses: quasiarithmetic means [15], Gini means [13], Bajraktarević means [1, 2],
deviation (Daróczy) means [7] and so on.

Based on these facts and nullhomogeneity in the weights hereafter we assume
1 ∈ R . It can be easily checked that the arithmetic mean (from now on denoted by A )
is an R-weighted mean on R .
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2.1. R-simple functions. Sum-type and integral-type notation

For the sake of convenience, we will use the sum-type and integral-type abbrevi-
ation. First, if M is an R-weighted mean on I , n ∈ N and (x,λ ) ∈ In×Wn(R) , then
we denote

n

M
i=1

(xi,λi) := M
(
(x1, . . . ,xn),(λ1, . . . ,λn)

)
.

To introduce the integral-type notion we need to define so-called R-intervals. We
say that D⊆R is an R-interval if D is of the form [a,b) for some a,b∈ R . For a given
R-interval D = [a,b) , a function f : D→ I is called R-simple if there exist a partition
of D into a finite number of R-intervals {Di}ni=1 such that:

(i) supDi = infDi+1 for all i ∈ {1, . . . ,n−1}

(ii) f is constant on each Di .

Then, for an R-weighted mean M on I and R-simple function f like above, we define

b

M
a

f (x)dx :=
n

M
i=1

(
f |Di , |Di|

)
= M

(
( f |D1 , . . . , f |Dn),(|D1|, . . . , |Dn|)

)
. (2.1)

Let us just mention that we use reduction principle to define this function – that is to
guarantee that the value of a mean does not depend on a choice of (Di) .

In this setting M is symmetric if and only if for every pair of R-simple func-
tions f ,g : D→ I which have the same distribution the equality M f (x)dx = M g(x)dx
holds. Similarly M is monotone if and only if for every pair of R-simple functions
f ,g : D→ I with f � g the inequality M f (x)dx � M g(x)dx is valid.

Let us introduce the notion of a weighted characteristic function. For n∈N∪{∞} ,
x∈ In and λ ∈ [0,∞)n set Λk := ∑k

i=1 λi (0 � k � n ) (for n∈ {0,+∞} we take a natural
extension) and define χx,λ : [0,Λn)→ I by

χx,λ (t) = xk for t ∈ [Λk−1,Λk) k ∈ N∩ [1,n].

Observe that, in view of (2.1), for every mean R-weighted mean M on I , n ∈ N , and
a pair (x,λ ) ∈ In×Wn(R) we have following identities

M (x,λ ) =
n

M
i=1

(xi,λi) =
n

M
i=1

(
χx,λ (Λi−1),λi

)
=

Λn

M
0

χx,λ (t)dt.

2.2. Hardy inequality

For the simplicity we will assume that weight zero is not allowed. Therefore let
W 0

N(R) = (R∩(0,+∞))N and W 0(R) = (R∩(0,+∞))∞ . Let us first recall the definition
of weighted Hardy property which was already mentioned in the introduction.
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DEFINITION 2.3. ([40], Weighted Hardy property) Let I be an interval with inf I =
0, R⊂ R be a ring. For an R-weighted mean M on I and weights λ ∈W 0(R) , let C
be the smallest extended real number such that for all sequences (xn) in I ,

∞

∑
n=1

λn ·
n

M
i=1

(
xi,λi

)
� C ·

∞

∑
n=1

λnxn. (2.2)

We call C the λ -weighted Hardy constant of M or the λ -Hardy constant of M and
denote it by HM (λ ) . Whenever this constant is finite, then M is called a λ -weighted
Hardy mean or simply a λ -Hardy mean.

In the other setup for λ ∈W 0(R) we consider a weighted �1 space

�1(λ , I) :=
{

(x1,x2, . . .) ∈ IN : ‖x‖�1(λ ) :=
∞

∑
n=1

λi |xi|< ∞
}

.

Next, for a given R-weighted mean M on I we define the weighted averaging operator
TM : �1(λ , I)→ IN by

TM ,λ (x1,x2 . . .) =
( n

M
i=1

(
xi,λi

))∞

n=1
.

Using this notation we have

HM (λ ) =
∥∥TM ,λ

∥∥
�1(λ )→�1(λ ) for all λ ∈W 0(R),

as, by the definition, HM (λ ) is the smallest extended real number C such that∥∥TM ,λ (x)
∥∥

�1(λ ) � C‖x‖�1(λ ) for all x ∈ �1(λ ).

Next result shows that under mild assumptions the maximal Hardy constant is the non-
weighted one – more precisely the one which is related to the vector 1 := (1,1, . . .) .

THEOREM 2.4. ([40], Theorem 2.8) For every symmetric and monotoneweighted
mean M we have supHM = HM (1) .

Let us now give some insight into [40, section 5] which was completely devoted
to the proof of this theorem. It was split into three, somewhat independent, statements
which we recall below. It is quite easy to bind them to the final form.

LEMMA 2.5. ([40], Lemma 5.1) Let M be a R∗ -weighted, monotone mean on
I and a ∈ R∗ ∩ (0,∞) . Then the mapping R∗ ∩ (0,a] � u 	→M u

0 f (t)dt ∈ I is nonin-
creasing for every nonincreasing R∗ -simple function f : [0,a)→ I .

LEMMA 2.6. ([40], Lemma 5.2) Let M be a monotone R∗ -weighted mean on I .
Then, for all N ∈N , for all nonincreasing sequences x ∈ IN and weights λ ∈W 0

N(R∗) ,
the inequality

N

∑
n=1

λn

n

M
i=1

(
xi,λi

)
� HM (1)

N

∑
n=1

λnxn.

is valid.
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LEMMA 2.7. ([40], Lemma 5.3) Let M be a symmetric and monotone R-weighted
mean on I . Then, for all N ∈ N , for all vectors x ∈ IN and weights λ ∈W 0

N(R) , there
exist M ∈ N , a nonincreasing sequence y ∈ IM and a weight sequence ψ ∈W 0

M(R)
such that

N

∑
n=1

λn

n

M
i=1

(
xi,λi

)
�

M

∑
m=1

ψm

m

M
i=1

(
yi,ψi

)
.

and
∑

{n : xn=t}
λn = ∑

{m : ym=t}
ψm

for all t ∈ R . In particular ∑N
n=1 λnxn = ∑M

m=1 ψmym .

Next theorem shows that whenever the mean M admit some additional assump-
tions, we can prove a counterpart of this lemma with ψ = λ . However, the sequence x
and y are no longer equidistributed so it cannot be considered as a generalization. We
also need much more assumptions for the mean M .

THEOREM 2.8. Let M be a monotone and Jensen concave Q -weighted mean on
I (resp. R-weighted mean on I which is continuous in its weights).

For every λ ∈W 0
N(Q) (resp. λ ∈W 0

N(R)) and x ∈ IN there exists a nonincreasing
sequence y ∈ IN such that ∑N

n=1 λnxn = ∑N
n=1 λnyn and

n

M
i=1

(xi,λi) �
n

M
i=1

(yi,λi) for all n ∈ {1, . . . ,N}. (2.3)

Proof. First assume that λ ∈W 0
N(Z) . Define (sk)

ΛN
k=1 by sk = xn for k ∈ {Λn−1 +

1, . . . ,Λn} (recall that Λn = λ1 + . . .+λn ). Let (s∗k) be a nondecreasing rearrangement
of (sk) and define the sequence (yn)N

n=1 as

yn :=
Λn

A
k=Λn−1+1

s∗k =
s∗Λn−1+1 + · · ·+ s∗Λn

λn
, n ∈ {1, . . . ,N}.

Obviously
N

∑
n=1

λnyn =
ΛN

∑
k=1

s∗k =
ΛN

∑
k=1

sk =
N

∑
n=1

λnxn.

Moreover, as both A and (s∗k) are monotone, then so is (yn) . Furthermore as M is
symmetric and monotone for all n ∈ {1, . . . ,N} we have

n

M
i=1

(xi,λi) =
Λn

M
k=1

(sk,1) �
Λn

M
k=1

(s∗k ,1).

Now define a permutation π : {1,2, . . . ,ΛN}→ {1,2, . . . ,ΛN} (in a cyclic notion)
by

π := (1, . . . ,Λ1)(Λ1 +1, . . . ,Λ2) · · · (Λn−1 +1, . . . ,Λn)
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Denote briefly the order of π by πord = lcm(Λ1, . . . ,ΛN) . Then, by Jensen-concavity
and symmetry of M , for all n ∈ {1, . . . ,N} we obtain

n

M
i=1

(xi,λi) �
Λn

M
k=1

(s∗k ,1) =
1

πord

πord

∑
j=1

Λn

M
k=1

(
s∗π j(k),1

)
�

Λn

M
k=1

( 1
πord

πord

∑
j=1

s∗π j(k),1
)

=
Λn

M
k=1

( πord

A
j=1

s∗π j(k),1
)

=
n

M
i=1

( Λi

A
k=Λi−1+1

s∗k ,λi

)
=

n

M
i=1

(yi,λi),

which is (2.3).
For λ ∈W 0

N(Q) there exists a natural number K ∈ N such that Kλ ∈W 0
N(Z) .

Then (2.3) is true for a triple (x,y,Kλ ) which, by nullhomogeneity in weights implies
that it is remains valid for a triple (x,y,λ ) , too.

Finally, if M is R-weighted mean which is continuous in its weights then, apply-
ing above consideration, we obtain that (2.3) is valid for all λ ∈W 0

N(Q) . However in
this case both sides of (2.3) are continuous in λ , thus inequality (2.3) can be extended
to whole W 0

N(R) . �
Let us now recall two technical results concerning divergence of sequences.

LEMMA 2.9. ([42], Lemma 4.1) The sequence (Λn) and the series ∑λn/Λn are
equi-convergent (either both of them are convergent or both of them are divergent).

LEMMA 2.10. ([42], Lemma 4.2) If λn/Λn→ 0 and Λn→ ∞ , then

lim
n→∞

max(λ1, . . . ,λn)
Λn

= 0.

Next lemma a generalization of [36, Proposition 3.1] where it was stated in a
nonweighted case (which refers to λ = 1 ).

LEMMA 2.11. Let M be an R-weighted mean M on I and λ ∈W 0(R) . Then
C = HM (λ ) is the smallest extended real number such that

N

∑
n=1

λn ·
n

M
i=1

(
xi,λi

)
� C ·

N

∑
n=1

λnxn for all N ∈N and (xn) ∈ IN . (2.4)

Proof. Fix λ ∈W 0(R) . In a limit case as N→∞ , (2.4) implies (2.2) with the same
constant, thus C � HM (λ ) . The remaining part is to verify (2.4) for C = HM (λ ) . If
HM (λ ) = ∞ , this inequality is trivially satisfied. Thus one can assume that M is a
λ -weighted Hardy mean.

Fix (xn) ∈ IN , ε ∈ I and define

yn :=

{
xn for n � N

min(1,λ−1
n )2N−nε for n > N
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Then we have

N

∑
n=1

λn ·
n

M
i=1

(
xi,λi

)
=

N

∑
n=1

λn ·
n

M
i=1

(
yi,λi

)
�

∞

∑
n=1

λn ·
n

M
i=1

(
yi,λi

)
� HM (λ ) ·

∞

∑
n=1

λnyn

� HM (λ ) ·
( ∞

∑
n=N+1

2N−nε +
N

∑
n=1

λnxn

)
= HM (λ ) ·

(
ε +

N

∑
n=1

λnxn

)
.

Now we can simply take ε → 0 to obtain (2.4) with C = HM (λ ) . �
Let us conclude this section with a characterization of the weighted Hardy prop-

erty for the arithmetic mean. As a matter of fact, there are a substantial background
beyond this result as the arithmetic mean is a boundary case in few contexts. First,
it is the smallest power mean which does not admit the Hardy property (see the very
beginning of this paper). Second, it is the largest concave mean, in particular all results
related to Kedlaya inequality are stated for the means which are comparable to the arith-
metic mean. Finally, the series which is related to the (nonweighted) Hardy property is
divergent for every vector of nonnegative elements except the identically-zero sequence
which has some further implications (cf. [27]).

PROPOSITION 2.12. Let A be the arithmetic mean and λ ∈W 0(R) . Then

HA (λ ) =
∞

∑
m=1

λm

Λm
. (2.5)

In particular the arithmetic mean is a λ -Hardy mean if and only if ∑∞
n=1 λn < +∞ .

Proof. Take x ∈ �1(λ ) arbitrarily. We have

∞

∑
n=1

λn

n

A
k=1

(xk,λk) =
∞

∑
n=1

λn

Λn

n

∑
k=1

λkxk =
∞

∑
n=1

( ∞

∑
m=n

λm

Λm

)
λnxn

�
∞

∑
m=1

λm

Λm
·

∞

∑
n=1

λnxn

Thus we obtain the (�) part of (2.5). To prove the converse inequality fix q ∈ (0,1)
and take a sequence xn = qn

λn
. Then ∑∞

n=1 λnxn = q
1−q . Thus

∞

∑
n=1

λn

n

A
k=1

(x,λ ) =
∞

∑
n=1

( ∞

∑
m=n

λm

Λm

)
qn �

∞

∑
m=1

λm

Λm
q

= (1−q)
( ∞

∑
m=1

λm

Λm

) ∞

∑
n=1

λnxn.

In a limit case as q→ 0 we obtain the remaining inequality in (2.5). Let us emphasize
that this proof remains valid in the case ∑∞

m=1
λm
Λm

= +∞ . Finally, as the series (λn) and

( λn
Λn

) are equiconvergent (see Lemma 2.9) we obtain the moreover part. �
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3. Main result

In what follows we are heading towards the sufficient condition for M and λ to
validate the equality H (λ ) = H (1) . In view of Theorem 2.4 the (�) inequality is
satisfied for all symmetric, monotone means and all vectors λ . Therefore we need to
show the converse inequality. The idea is similar to the one which was used in [40,
section 5].

First we generalize Lemma 2.6 by replacing 1 by a vector λ satisfying certain
properties.

LEMMA 3.1. Let M be a symmetric and monotone R∗ -weighted mean on I . Let
ψ ∈W 0(R∗) and λ ∈W 0(R∗) with Λn→ ∞ and λn/Λn→ 0 . Then the inequality

M

∑
m=1

ψm

m

M
i=1

(
yi,ψi

)
� HM (λ )

M

∑
m=1

ψmym. (3.1)

is valid for every M ∈ N and every nonincreasing sequence y ∈ IM .

Its technical and quite lengthy proof is shifted to section 5. As a direct conse-
quence, using some already known results, we can prove our next theorem. It is inspired
by a proof of Theorem 2.4.

THEOREM 3.2. For every symmetric, monotone R-weighted mean M and a vec-
tor λ ∈W 0(R) such that Λn→∞ and λn/Λn→ 0 , the equality HM (1) = HM (λ ) is
valid.

Proof. Let N ∈ N and x ∈ IN . First, by Proposition 2.2 we may extend M to the
R∗ -weighted mean. Next, by Lemma 2.7 there exists M ∈N , a nonincreasing sequence
y ∈ IM and ψ ∈W 0

M(R∗) such that ∑N
n=1 xn = ∑M

n=1 ψnyn and

N

∑
n=1

n

M
i=1

(
xi,1

)
�

M

∑
m=1

ψm

m

M
i=1

(
yi,ψi

)
.

Now, applying Lemma 3.1 we obtain

N

∑
n=1

n

M
i=1

(
xi,1

)
�

M

∑
m=1

ψm

m

M
i=1

(
yi,ψi

)
� HM (λ )

M

∑
m=1

ψmym

= HM (λ )
N

∑
n=1

xn.

Finally, by Lemma 2.11 we get HM (1) � HM (λ ) . This ends the proof as the
converse inequality is a direct implication of Theorem 2.4. �
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3.1. Partition ordering and cut theorem

In this section we intend to show some monotonicity-type result for Hardy con-
stant. First let us introduce some preorder on vectors of real numbers

DEFINITION 3.3. (Partition ordering) We define the order ≺ on infinite sequences
of real numbers in the following way: (αk)∞

k=1 ≺ (βn)∞
n=1 if there exists a nondecreas-

ing, divergent sequence (nk)∞
k=0 with n0 = 0 such that αk =

nk

∑
n=nk−1+1

βn (for nk = nk−1

we assume αk = 0).

It can be shown that if we restrict our consideration to a vectors with all positive
entries then ≺ is the partial order. As a matter of fact, this order is related to Hardy
constant

THEOREM 3.4. (Cut theorem) Let M be a monotone and Jensen concave Q -
weighted mean on I (resp. R-weighted mean on I which is continuous in its weights).
The mapping HM is monotone with respect to ≺ . More precisely for every ψ ,λ ∈
W 0(R) with ψ ≺ λ we have HM (ψ) � HM (λ ) (here R = Q or R = R depending
on the context).

Proof. Take M ∈ N and x ∈ IM . By Theorem 2.8, there exists nonincreasing
sequence y ∈ IM such that ∑M

m=1 ψmxm = ∑M
m=1 ψmym and

m

M
i=1

(xi,ψi) �
m

M
i=1

(yi,ψi) for all m ∈ {1, . . . ,M}.

With the usual notation Λn = λ1 + · · ·+λn and Ψm := ψ1 + · · ·+ψm (with Ψ0 =
Λ0 = 0), by ψ ≺ λ there exists a sequence (nm)∞

m=1 such that Ψm = Λnm for all m ∈
N+∪{0} . Denote briefly N := nM , i.e. ΨM = ΛN . Using all these facts jointly with
Lemma 2.5 we get

M

∑
m=1

ψm

m

M
i=1

(yi,ψi) =
M

∑
m=1

ψm

Ψm

M
0

χy,ψ(t)dt =
M

∑
m=1

nm

∑
n=nm−1+1

λn

Λnm

M
0

χy,ψ(t)dt

�
M

∑
m=1

nm

∑
n=nm−1+1

λn

Λn

M
0

χy,ψ(t)dt =
N

∑
n=1

λn

Λn

M
0

χy,ψ(t)dt

Let us now observe that χy,ψ is constant on every interval [Λi−1,Λi) . Therefore by
Lemma 2.11 we have

N

∑
n=1

λn

Λn

M
0

χy,ψ(t)dt =
N

∑
n=1

λn

n

M
i=1

(
χy,ψ(Λi−1),λi

)
� HM (λ )

N

∑
n=1

λnχy,ψ(Λn−1).
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But
N

∑
n=1

λnχy,ψ(Λn−1) =
N

∑
n=1

∫ Λn

Λn−1

χy,ψ(t)dt =
∫ ΛN

0
χy,ψ(t)dt

=
∫ ΨM

0
χy,ψ(t)dt =

M

∑
m=1

ψmym =
M

∑
m=1

ψmxm.

Binding all properties above we get

M

∑
m=1

ψm

m

M
i=1

(xi,ψi) �
M

∑
m=1

ψm

m

M
i=1

(yi,ψi) �
N

∑
n=1

λn

Λn

M
0

χy,ψ(t)dt

� HM (λ )
N

∑
n=1

λnχy,ψ(Λn−1) = HM (λ )
M

∑
m=1

ψmxm.

Finally, as M ∈N was taken arbitrarily by Lemma 2.11 we obtain HM (ψ) � HM (λ ) .
�

Let us now present a simple application of this result.

COROLLARY 3.5. Let M be a monotone and Jensen concave Q -weighted mean
on I (resp. R-weighted mean on I which is continuous in its weights). Let C : (0,∞)→
[1,+∞] be given by

C(q) := HM

((
qn)∞

n=1

)
.

Then C(qr) � C(q) for all q ∈ (0,∞) and r ∈N .

Proof. For q = 1 this statement is trivial. For q ∈ (0,∞)\ {1} define two vectors

λ :=
(
qn)∞

n=1 and ψ =
(1−qr

1−q
qrk

)∞

k=1
.

First we prove that ψ ≺ λ . Indeed, for a sequence (nk)∞
k=1 = (r · k)∞

k=1 we have

nk+1−1

∑
n=nk

λn =
r(k+1)−1

∑
n=rk

qn = qrk
r−1

∑
n=0

qn = qrk 1−qr

1−q
= ψk.

Therefore, by nullhomogeneity in weights and Theorem 3.4 we have

C(qr) = HM

((
qrk)∞

k=1

)
= HM (ψ) � HM (λ ) = C(q),

which is the statement. �

3.2. Lower semicontinuouity

Next results show that for every mean a Hardy constant is lower semicontinuous
as a function of weight sequence (in a pointwise topology).
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DEFINITION 3.6. (Pointwise topology) Let λ ,ψ(1),ψ(2), . . . be elements in RN .

We say that the sequence (ψ(k))∞
k=1 converges to λ in pointwise topology if limk→∞ ψ(k)

n

= λn for all n ∈ N . We denote it brifely by ψ(k) p−→ λ .

Whenever the sequence λ contains only positive terms we can rewrite this in an
equvalient form: for all θ < 1 and N ∈N there exists k0 ∈ N such that∣∣∣∣∣ψ(k)

n

λn

∣∣∣∣∣ ∈ (θ ,θ−1) for all n ∈ {1, . . . ,N} and k � k0.

Main result of this section states as follows

THEOREM 3.7. For every weighted mean M which is continuous it its weights
the mapping HM is lower semicontinuous in the pointwise topology.

Proof. Take a sequence (ψ(k))∞
k=1 of elements in W 0(R) which is convergent to

λ ∈W 0(R) in the pointwise topology. We prove that

liminf
k→∞

HM

(
ψ(k)) � HM (λ ). (3.2)

Fix θ ∈ (0,1) . There exists a sequence x ∈ �1(λ ) such that

∞

∑
n=1

λn

n

M
i=1

(xi,λi) > θHM (λ )
∞

∑
n=1

λnxn

As the series on the left hand side is convergent we can take Nθ ∈N with

Nθ

∑
n=1

λn

n

M
i=1

(xi,λi) � θ
∞

∑
n=1

λn

n

M
i=1

(xi,λi).

Once Nθ is fixed, ψ(k) p−→ λ , and M is continuous in its weights, there exists kθ ∈ N

such that

ψ(k)
n

n

M
i=1

(xi,ψ
(k)
i ) � θλn

n

M
i=1

(xi,λi) for all n � Nθ and k � kθ .

Then for all k � kθ we have

∞

∑
n=1

ψ(k)
n

n

M
i=1

(xi,ψ
(k)
i ) >

Nθ

∑
n=1

ψ(k)
n

n

M
i=1

(xi,ψ
(k)
i ) � θ

Nθ

∑
n=1

λn

n

M
i=1

(xi,λi)

� θ 2
∞

∑
n=1

λn

n

M
i=1

(xi,λi) > θ 3HM (λ )
∞

∑
k=1

λixi.

Thus HM

(
ψ(k)) > θ 3HM (λ ) for all k � kθ . As θ ∈ (0,1) was taken arbitrarily we

obtain the inequality (3.2). �
Let us now show that the mapping mentioned in the theorem above is not neces-

sarily continuous.
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EXAMPLE 3.8. Define λ ,ψ(1),ψ(2), . . . ∈W 0(R) by

λi = 1
2i (i ∈ N),

ψ(k)
i =

{
1
2i i ∈ N\ {k}
1 i = k

for all k ∈N.

Obviously ψ(k) p−→ λ and Λn = 1− 1
2n for all n ∈ N . Then Proposition 2.12 implies

HA (λ ) =
∞

∑
m=1

λm

Λm
=

∞

∑
m=1

1
2m−1

=: E,

where E ≈ 1.606 is so-called Erdös-Borwein constant. On the other hand, for all k∈N ,

HA

(
ψ(k)) =

∞

∑
m=1

ψ(k)
m

Ψ(k)
m

=
k−1

∑
m=1

ψ(k)
m

Ψ(k)
m

+
ψ(k)

k

Ψ(k)
k

+
∞

∑
m=k+1

ψ(k)
m

Ψ(k)
m

.

If we take the limit as k→ ∞ we get

lim
k→∞

k−1

∑
m=1

ψ(k)
m

Ψ(k)
m

= lim
k→∞

k−1

∑
m=1

λm

Λm
= E,

lim
k→∞

ψ(k)
k

Ψ(k)
k

= lim
k→∞

1
Λk−1 +1

= lim
k→∞

1

2− 1
2k−1

=
1
2
,

(0 �) lim
k→∞

∞

∑
m=k+1

ψ(k)
m

Ψ(k)
m

� lim
k→∞

∞

∑
m=k+1

1
2k+1 = 0.

Thus
lim
k→∞

HA

(
ψ(k)) = E + 1

2 > HA (λ ).

This shows that inequality (3.2) can be strict and consequently that the mapping HM

is not continuous (for M = A ).

Let us now present an important application of Theorem 3.7.

COROLLARY 3.9. Let M be a symmetric and monotone R-weighted mean on I
which is continuous in its weights. For every sequence (ψ(k)) of elements in W 0(R)
with ψ(k) p−→ 1 we have HM

(
ψ(k))→HM (1) . In particular

lim
s→1

HM

(
(sn)∞

n=1

)
= HM (1).

Its proof is straightforward in view of Theorems 2.4 and 3.7. This statement is
related to [42, Theorem 5.5], where such Hardy constants were obtained for a concave
quasideviation means (under some additional assumptions).

Let us conlude this section with a natural open problem. It was shown in Theo-
rem 3.7 that HM is lower semicontinuous. By Example 3.8, we know that it is not
continuous in a case M = A . However we suppose that it is the case for Hardy (1-
Hardy) means.
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CONJECTURE 1. Let M be a symmetric and monotone R-weighted mean on I
which is continuous in its weights. If M is a 1 -Hardy mean (equivalently it is a λ -
Hardy mean for all λ ∈W 0(R)) then HM is continuous in the pointwise topology.

4. Applications

We now aim to present few implications of the latter results.

4.1. Gini means

First we recall a clasical notion of Gini means in a weighted setting [13]. For
p,q ∈R the Gini mean Gp,q is the R-weighted mean on R+ defined by

Gp,q(x,λ ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(

λ1x
p
1 + · · ·+ λnx

p
n

λ1x
q
1 + · · ·+ λnx

q
n

) 1
p−q

if p �= q,

exp

(
λ1x

p
1 logx1 + · · ·+ λnx

p
n logxn

λ1x
p
1 + · · ·+ λnx

p
n

)
if p = q.

In a sequence papers, further generalizations were obtained: Bajraktarević means
[1], deviation (or Daróczy) means [6] and quasideviation means [29]. For more details,
we just refer the reader to a series of papers by Losonczi [21, 22, 24, 23, 25, 26] (for Ba-
jraktarević means), Daróczy [6, 7], Daróczy–Losonczi [8], Daróczy–Páles [9, 10] (for
deviation means), Páles [29, 30, 31, 32, 33, 34, 35] (for deviation and quasideviation
means) and Páles–Pasteczka [40] (for semideviation means).

Clearly, in the particular case q = 0, the mean Gp,q reduces to the p th power mean
Pp . It is also obvious that Gp,q = Gq,p . It is known [22, 23] that Gp,q is monotone if
and only if pq � 0 and concave if and only if

min(p,q) � 0 � max(p,q) � 1. (4.1)

Furthermore the following properties involving Hardy inequality are valid.

LEMMA 4.1. ([42], Proposition 5.2) Let (λn)∈W0 such that Λn→∞ and
( λn

Λn

)∞
n=1

is nonincreasing with a limit η ∈ [0,1) . Let p, q ∈ R satisfying (4.1). Then

HGp,q(λ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− (1−η)1−q

1− (1−η)1−p

) 1
p−q

, η ∈ (0,1) and p �= q;(
1−q
1− p

) 1
p−q

, η = 0 and p �= q;

(1−η)1−1/η , η ∈ (0,1) and p = q = 0;

e, η = 0 and p = q = 0.

Now we show that the monotonicity assumption of the ratio sequence
( λn

Λn

)∞
n=1

can be ommited in the case η = 0.
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PROPOSITION 4.2. Let (λn) ∈W0 such that Λn→ ∞ and λn
Λn
→ 0 . Let p, q ∈R ,

min(p,q) � 0 � max(p,q) < 1 . Then

HGp,q(λ ) =

⎧⎪⎪⎨⎪⎪⎩
(

1−q
1− p

) 1
p−q

, p �= q;

e, p = q = 0.

(4.2)

Proof. As Gp,q is monotone by Theorem 3.2 we have HGp,q(λ ) =HGp,q(1) . Now,
using Lemma 4.1 to a vector λ = 1 we obtain desired equality (4.2). �

REMARK 4.3. We can analogously relax such a monotonicity assumption for all
concave quasideviation means – see [41, 42] for detailed study of their Hardy property.

Now we establish completely new Hardy-type inequality related to Gini means

PROPOSITION 4.4. For all p,q ∈ R satisfying (4.1), τ ∈ R , and x ∈ �1(λ ) we
have

∞

∑
n=1

λnx
τ
n

(
G(1−τ)p+τ,(1−τ)q+τ

(
(x1, . . . ,xn),(λ1, . . . ,λn)

))1−τ
� HGp,q(1)

∞

∑
n=1

λnxn.

(4.3)

Proof. Fix p, q ∈ R satisfying (4.1) and d ∈ R . Applying Proposition 4.2 to a
sequence of weights with λn replaced by μn := λnyd

n we obtain

∞

∑
n=1

λny
d
nGp,q

(
(y1, . . . ,yn),(λ1y

d
1 , . . . ,λny

d
n)

)
� HGp,q(1)

∞

∑
n=1

λny
d+1
n

However by the definition of Gini mean we easily get

Gp,q
(
(y1, . . . ,yn),(λ1y

d
1 , . . . ,λny

d
n)

)
=

(
G p+d

d+1 , q+d
d+1

(
(yd+1

1 , . . . ,yd+1
n ),(λ1, . . . ,λn)

)) 1
d+1

.

Binding above results and putting xn := yd+1
n we get

∞

∑
n=1

λnx
d

d+1
n

(
G p+d

d+1 , q+d
d+1

(
(x1, . . . ,xn),(λ1, . . . ,λn)

)) 1
d+1 � HGp,q(1)

∞

∑
n=1

λnxn.

Now we can put d = τ
1−τ to obtain desired inequality (4.3). �

We can now use above resuly to give some majorization of the Hardy constant for
Gini means in a rectangle (−∞,0)2 .

THEOREM 4.5. Let p,q ∈ (−∞,0) with p � q. Then

HGp,q(λ ) �
C

( q−p
1−p

)− p

1− p
for all λ ∈W 0(R), (4.4)

where C(p) was defined in (1.2).
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Proof. Let q0 := q−p
1−p ∈ (−∞,0) . Fix λ ∈W 0(R) and x∈ �1(λ ) . Applying Propo-

sition 4.4 with (p,q,τ)← (0, q−p
1−p , p) inequality (4.3) becomes

∞

∑
n=1

λnx
p
n

(
Gp,(1−p) q−p

1−p+p

(
(x1, . . . ,xn),(λ1, . . . ,λn)

))1−p
� HG

0,
q−p
1−p

(1)
∞

∑
n=1

λnxn.

Thus, by the identities (1− p) q−p
1−p + p = q , G0, q−p

1−p
= P q−p

1−p
, and (1.1) we get

∞

∑
n=1

λnx
p
n

(
Gp,q

(
(x1, . . . ,xn),(λ1, . . . ,λn)

))1−p
� C

( q−p
1−p

) ∞

∑
n=1

λnxn.

Applying the inverse Cauchy inequality pu+(1− p)v � upv1−p which is valid for all
u,v ∈ (0,+∞) and p < 0 we obtain

p
∞

∑
n=1

λnxn +(1− p)
∞

∑
n=1

λnGp,q
(
(x1, . . . ,xn),(λ1, . . . ,λn)

)
� C

( q−p
1−p

) ∞

∑
n=1

λnxn,

which is trivially equivalent to

∞

∑
n=1

λnGp,q
(
(x1, . . . ,xn),(λ1, . . . ,λn)

)
�

C
( q−p

1−p

)− p

1− p

∞

∑
n=1

λnxn.

The latter statement implies (4.4) �

REMARK 4.6. Using some homogenization techniques described in [41] one can
find anouther estmation for the Hardy constant of Gini means in a case p,q ∈ (−∞,0)
with p �= q . More precisely one we can show that HGp,q(λ ) � ξp,q , where ξp,q is the
unique solution ξ ∈ (1,e) of the equation

p
p−1

( q
p

) p−1
p−q − q

q−1

( q
p

) q−1
p−q =

1
1−q

ξ 1−q− 1
1− p

ξ 1−p.

This result has also the relevant limit counterpart when p = q . Approximate calcula-
tions motivates us to conjecture that this estimate is better than the one given in Theo-
rem 4.5.

4.2. Repeted sequences

For λ ∈W 0(R) and k ∈ N define λ�n ∈W 0(R) by

(λ�n)q = λ�q/n� for all q ∈ N.

Intuitively λ�n is obtained by repeating n -times each element of λ . Such notation
is motivated by the identity λ � λ = λ�2 with the two-parameter operator � which
already appeared (for finite vectors) in Definition 2.1. Obviously λ�n = λ precisely if
n = 1 or λ is a constant vector. We show the mapping n 	→HM (λ�n) is monotone
with the division (partial) ordering for a vast family of means.
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PROPOSITION 4.7. Let M be a monotone and Jensen concave Q -weighted mean
on I (resp. R-weighted mean on I which is continuous in its weights) and λ ∈W 0(Q)
(resp. λ ∈ W 0(R)). Then for all m,n ∈ N with n

m ∈ N we have HM (λ�m) �
HM (λ�n) . Moreover

lim
n→∞

HM (λ�n) = HM (1). (4.5)

Proof. Let k := n
m . Then we have

k

∑
i=1

(λ�n)ks+i =
k

∑
i=1

λ� ks+i
n � =

k

∑
i=1

λ� ks+i
km � for all s ∈ N.

Now observe that ks+i
km /∈ N for i ∈ {1, . . . ,k−1} . Thus

⌈
ks+i
km

⌉
=

⌈
ks+k
km

⌉
=

⌈
s+1
m

⌉
for

all i ∈ {1, . . . ,k} and, consequently,

k

∑
i=1

(λ�n)ks+i = kλ⌈
s+1
m

⌉ = k(λ�m)s.

Therefore (kλ�m)≺ (λ�n) . Now by Theorem 3.4 and nullhomogeneity in the weights
we obtain HM (λ�m)� HM (kλ�n) =HM (λ�n) . To show the moreover part observe

that (λ�n)
p−→ λ11 and therefore by nullhomogeneity in weights and Corollary 3.9 we

obtain the equality lim
n→∞

HM (λ�n) = HM (λ11) = HM (1) , which is (4.5). �

5. Proof of Lemma 3.1

In this section we reuse the concepts which were contained in the proof of [40,
Lemma 5.2] (see Lemma 2.6 above).

First observe that if HM (λ ) = +∞ then (3.1) is trivially valid. From now on
assume that HM (λ ) < +∞ . In order to make the proofs more compact, define Ψm :=
ψ1 + · · ·+ ψm for m ∈ {1, . . . ,M} and Λn := λ1 + · · ·+ λn for n ∈ N . In view of the
nullhomogeneity of M , we may assume that ΨM = 1. For each j ∈ N define the
R∗ -simple function f j : [0,1)→ I by

f j
∣∣[ Λs

Λ j
,

Λs+1
Λ j

) := χy,ψ
( Λs

Λ j

)
for all s ∈ {0, . . . , j−1}.

As the sequence y is nonincreasing, χy,ψ is nonincreasing, too. Therefore, for all
j ∈ N , the function f j is nonincreasing and χy,ψ � f j . Thus, by Lemma 2.5, so is the
function Cj : [0,1)→ I given by

Cj(t) :=

⎧⎨⎩ y1 if t = 0,

inf
s∈[0,t]∩R∗

s

M
0

f j(x)dx if t ∈ (0,1),
( j ∈ N).
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Fix j ∈ N with j � 2 arbitrarily. As Cj is monotone, it is also Riemann integrable.
Whence, for all m ∈ {1, . . . ,M} we get

ψm ·
m

M
i=1

(
yi,ψi

)
= ψm ·

Ψm

M
0

χy,ψ(x)dx � ψm ·
Ψm

M
0

f j(x)dx

= ψm ·Cj(Ψm) =
∫ Ψm

Ψm−1

Cj(Ψm)dx �
∫ Ψm

Ψm−1

Cj(x)dx.

Therefore, if we sum-up these inequalities side-by-side, we obtain

M

∑
m=1

ψm ·
m

M
i=1

(
yi,ψi

)
�

∫ 1

0
Cj(x)dx. (5.1)

We are now going to majorize the right hand side of this inequality. Observe first
that ∫ Λ1/Λ j

0
Cj(x)dx � Λ1

Λ j
·Cj(0) =

λ1y1

Λ j
. (5.2)

Furthermore, for all n ∈ {1, . . . , j−1} , as Cj is nonincreasing and Λn
Λ j
∈ R∗ we get

∫ Λn+1
Λ j

Λn
Λ j

Cj(x)dx � λn+1

Λ j
Cj

(Λn

Λ j

)
=

λn+1

Λ j
·

Λn/Λ j

M
0

f j(x)dx =
λn+1

Λ j
·

n

M
i=1

(
χy,ψ

(Λi−1
Λ j

)
,λi

)
.

(5.3)
If we now sum up (5.2) and (5.3) for all n ∈ {1, . . . , j−1} , we obtain

∫ 1

0
Cj(x)dx =

∫ Λ1
Λ j

0
Cj(x)dx+

j−1

∑
n=1

∫ Λn+1
Λ j

Λn
Λ j

Cj(x)dx

� λ1

Λ j
y1 +

j−1

∑
n=1

λn+1

Λ j
·

n

M
i=1

(
χy,ψ

(Λi−1
Λ j

)
,λi

)
=

λ1

Λ j
y1 +

j−1

∑
n=1

λn

Λ j
·

n

M
i=1

(
χy,ψ

(Λi−1
Λ j

)
,λi

)
+

j−1

∑
n=1

λn+1−λn

Λ j
·

n

M
i=1

(
χy,ψ

(Λi−1
Λ j

)
,λi

)
.

Now, by Lemma 2.11,

j−1

∑
n=1

λn

Λ j
·

n

M
i=1

(
f j

(Λi−1
Λ j

)
,λi

)
� HM (λ )

j−1

∑
n=1

λn

Λ j
f j

(Λn−1
Λ j

)
= HM (λ )

j−2

∑
n=0

λn+1

Λ j
f j

(Λn
Λ j

)
= HM (λ )

( λ1

Λ j
f j(0)+

j−2

∑
n=1

λn

Λ j
f j

(Λn
Λ j

)
+

j−2

∑
n=1

λn+1−λn

Λ j
f j

(Λn
Λ j

))
.
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Thus by f j(0) = y1 and f j(Λn
Λ j

) = χy,ψ(Λn
Λ j

) , we have

∫ 1

0
Cj(x)dx � λ1

Λ j
y1 +HM (λ )

( λ1

Λ j
y1 +

j−2

∑
n=1

λn

Λ j
χy,ψ

(Λn
Λ j

)
+

j−2

∑
n=1

λn+1−λn

Λ j
χy,ψ

(Λn
Λ j

))
+

j−1

∑
n=1

λn+1−λn

Λ j
·

n

M
i=1

(
χy,ψ

(Λi−1
Λ j

)
,λi

)
.

Furthermore monotonicity of χy,ψ implies

j−2

∑
n=1

λn

Λ j
χy,ψ

(Λn
Λ j

)
�

j−2

∑
n=1

∫ Λn
Λ j

Λn−1
Λ j

χy,ψ(t)dt �
∫ 1

0
χy,ψ(t)dt =

∫ ΨM

0
χy,ψ(t)dt =

M

∑
m=1

ψmym.

Thus, by (5.1),

M

∑
m=1

ψm ·
m

M
i=1

(
yi,ψi

)
� Pj +HM (λ )Qj +Rj +HM (λ )

M

∑
m=1

ψmym, (5.4)

where

Pj := (1+HM (λ ))
λ1

Λ j
y1,

Qj :=
j−2

∑
n=1

λn+1−λn

Λ j
χy,ψ

(Λn
Λ j

)
,

Rj :=
j−1

∑
n=1

λn+1−λn

Λ j
·

n

M
i=1

(
χy,ψ

(Λi−1
Λ j

)
,λi

)
.

We are going to prove that lim j→∞ Pj � 0, limsup j→∞ Qj � 0 and limsup j→∞ Rj � 0.
Having this we take limsup as j → ∞ in (5.4) and, by subadditivity of limsup, we
obtain desired inequality.

As Λ j → ∞ , we have lim
j→∞

Pj = 0. In the second term we obtain, by Abel’s sum-

mation formulae,

Qj =
λ j−1

Λ j
χy,ψ

(Λ j−2
Λ j

)− λ1

Λ j
χy,ψ

( λ1
Λ j

)
+

j−2

∑
k=2

λk

Λ j

(
χy,ψ

(Λk−1
Λ j

)− χy,ψ
(Λk

Λ j

))
As y is nonincreasing we get χy,ψ

(Λk−1
Λ j

)− χy,ψ
(Λk

Λ j

)
� 0 and

j−2

∑
k=2

λk

Λ j

(
χy,ψ

(Λk−1
Λ j

)− χy,ψ
(Λk

Λ j

))
�

(
max

k∈{2,..., j−2}
λk

Λ j

) j−2

∑
k=2

(
χy,ψ

(Λk−1
Λ j

)− χy,ψ
(Λk

Λ j

))
=

(
max

k∈{2,..., j−2}
λk

Λ j

)(
χy,ψ

( λ1
Λ j

)− χy,ψ
(Λ j−1

Λ j

))
� max

k∈{1,..., j}
λk

Λ j
χy,ψ

( λ1
Λ j

)
.
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As y is nonincreasing we obtain supχy,ψ = y1 , thus

Qj � 2y1 max
k∈{1,..., j}

λk

Λ j
.

As λ j/Λ j→ 0 and Λ j→∞ we obtain, by Lemma 2.10, that the limit on the right hand
side tends to 0 therefore limsup

j→∞
Qj � 0.

To estimate the upper limit of (Rj) observe that, as f in nonincreasing and M is

monotone, by Lemma 2.5 the mapping n 	→M n
i=1

(
χy,ψ

(Λi−1
Λ j

)
,λi

)
is nonincreasing.

Therefore we can apply Abel’s summation formula again to establish the inequality
limsup

j→∞
Rj � 0.

Finally, if we consider the upper limit as j→ ∞ in (5.4), we obtain (3.1).
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