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(Communicated by J. Soria)

Abstract. In this paper, we present Rubio de Francia type extrapolation results for certain gen-
eralized grand Lebesgue spaces defined on sets Ω ⊆ R

n with |Ω| � ∞. Both diagonal and off-
diagonal cases have been considered. As applications to these results, boundedness of certain
integral operators has been studied and also a vector valued inequality has been established.

1. Introduction

Let Ω ⊆ R
n be open and w be a weight, i.e., positive finite almost everywhere

(a.e.) measurable locally integrable function defined on Ω. For 1 � p < ∞, the weighted
Lebesgue space, denoted by Lp(Ω,w), consists of all measurable functions f defined
on Ω for which

‖ f‖Lp(Ω,w) :=
(∫

Ω
| f (t)|pw(t)dt

)1/p

< ∞.

It is known that for 1 � p < ∞, Lp(Ω,w) is a Banach space and for 1 < p < ∞, the
space is reflexive too.

After the celebrity extrapolation result of J. L. Rubio de Francia [24], a lot of
development has taken place in this direction. A generalized form of this result can be
stated as follows: If ( f ,g) is a pair of non-negative measurable functions such that for
some 1 � p0 < ∞, the inequality∫

Rn
f p0(x)w(x)dx � C

∫
Rn

gp0(x)w(x)dx

holds for every w ∈ Ap0 (the Muckenhoupt class of weights, see [21]), then for every
1 < p < ∞, the inequality∫

Rn
f p(x)w(x)dx � C

∫
Rn

gp(x)w(x)dx (1)
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holds for every w ∈ Ap, where C depends on [w]Ap (defined in Section 3). A justifica-
tion for 1 < p < ∞ in (1) has been given in [3].

In view of its usefulness, this theory has drawn the attention of many researchers.
It has been generalized to the case of A∞ weights also (see [5]). One may refer to [4],
[25], [26] for the relevant literature. In [2], a parallel theory has been established for
Bp weights. We may mention a very recent paper [31] for extrapolation results in the
framework of Lebesgue spaces with variable exponents.

In the above discussion, the integrals in the inequality represent Lp -norms. In [17],
Kokilashvili and Meskhi have developed the Rubio de Francia extrapolation results
in the frame work of grand Lebesgue spaces defined on Ω ⊆ R

n with |Ω| < ∞ : Let
I = (0,1) and 1 < p < ∞. The grand Lebesgue space, denoted by Lp)(I) is the space
of all measurable finite a.e. functions f defined on I for which

‖ f‖Lp)(I) := sup
0<ε<p−1

(
ε
∫

I
| f (x)|p−εdx

)1/(p−ε)

< ∞.

These spaces were defined by Iwaniec and Sbordone [11], later studied and developed,
e.g., in [7], [9], [13] and the references therein. During the recent past, grand Lebesgue
spaces have caught the attention of many researchers. A lot of significant work has
been done in this direction. Unlike Lp -spaces, grand Lebesgue spaces are not reflexive
for any p > 1. Moreover, the duality in these spaces does not behave the same way as
in Lp -spaces. For such information and many more including the mapping properties
of various integral operators in these spaces, one may refer to [12], [16], [18], [20],
[27], [28] [29] and [32]. Similar results for Bp weights have also been obtained in the
framework of grand Lebesgue spaces, see [13], [19].

Let us point it out that the grand Lebesgue spaces discussed above consist of func-
tions on sets having finite measure. The case of sets having infinite measure was first
studied in [27] and later generalized in [28], [32]: the weighted grand Lebesgue space

Lq)
a (Ω,w) with suitable weight functions w and a on Ω ⊆ R

n, |Ω| � ∞ is defined to be
the space of all measurable functions f for which

‖ f‖
L

q)
a (Ω,w)

:= sup
0<ε<q−1

(
ε
∫

Ω
| f (x)|q−εw(x)aε(x)dx

)1/(q−ε)

< ∞. (2)

In the present paper, we deal with a variant of the space Lq)
a (Ω,w) replacing the

multiple ε of the integral in (2) by a more general function φ(ε) and denote the space

by Lq),φ
a (Ω,w). We study certain embedding properties of the space Lq),φ

a (Ω,w). The
main aim of the paper is to establish Rubio de Francia extrapolation results in the frame-

work of Lq),φ
a (Ω,w) spaces. We discuss both diagonal and off diagonal cases. As

applications, we deduce boundedness of various integral operators.
In various inequalities we may have used the same symbol to denote the constant,

however its value may be different at different places. Also, for an index τ (say), we
shall denote its conjugate by τ ′, i.e., 1

τ + 1
τ ′ = 1.
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2. Generalized grand Lebesgue spaces

Let Ω ⊆R
n, |Ω|� ∞, and w, a be weights defined on Ω. Let M 0(Ω) denote the

set of finite a.e. measurable functions defined on Ω.

DEFINITION 1. Let 1 < q < ∞ and φ be a positive non-decreasing function on
(0, q− 1) satisfying the condition φ(0+) = 0. Then, the generalized grand Lebesgue

space denoted by Lq),φ
a (Ω,w), is defined to be the space of all those f ∈ M 0(Ω) for

which

‖ f‖
L

q),φ
a (Ω,w)

:= sup
0<ε<q−1

(
φ(ε)

∫
Ω
| f (x)|q−εw(x)aε(x)dx

)1/(q−ε)

< ∞,

where waε ∈ L1
loc(Ω) for all ε ∈ (0, q−1). If φ(t) = tθ , θ > 0 then Lq),φ

a (Ω,w) shall

be denoted by Lq),θ
a (Ω,w).

We begin with the following result, which establishes the embedding Lq(Ω,w) ↪→
Lq),φ

a (Ω,w) . This result was proved in [32] and [33] for ε instead of φ(ε) . For com-
pleteness and convenience of the readers, we give proof with more clear explanation.

PROPOSITION 1. Let q > 1. The inequality

‖ f‖
L

q),φ
a (Ω,w)

� C‖ f‖Lq(Ω,w) (3)

holds for all f ∈ Lq(Ω,w) if and only if a ∈ Lq(Ω,w) , where C > 0 is a positive con-
stant.

Proof. Let a ∈ Lq(Ω,w) . Then 0 < ‖a‖Lq(Ω,w) < ∞. For 0 < ε < q− 1 using
Hölder’s inequality with exponents q

q−ε , q
ε , we get

‖ f‖
Lq),φ

a (Ω,w)
� sup

0<ε<q−1
φ(ε)1/(q−ε)

(∫
Ω
| f (x)|qw(x)dx

) 1
q
(∫

Ω
aq(x)w(x)dx

) ε
q(q−ε)

= ‖ f‖Lq(Ω,w) sup
0<ε<q−1

(
φ(ε)‖a‖q

Lq(Ω,w)

) 1
q−ε ‖a‖−1

Lq(Ω,w) (4)

� C(a,φ ,q)‖ f‖Lq(Ω,w),

so that (3) holds with C(a,φ ,q) := ‖a‖−1
Lq(Ω,w)(φ(q−1)+1)

(‖a‖Lq(Ω,w) +1
)q

.

Conversely, suppose the inequality (3) holds. Taking g := | f |qw in (3), we get∫
Ω

g(x)
q−ε
q w

ε
q (x)aε(x)dx < ∞, for all 0 < ε < q−1, (5)

for every g
q−ε
q ∈ L

q
q−ε (Ω). Therefore, by Riesz Lemma (see, e.g., [23], p. 120) and (5),

it follows that w
ε
q aε ∈ L

q
ε , i.e., a ∈ Lq(Ω,w). �
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REMARK 1. In view of Proposition 1, the following embeddings hold for all a ∈
Lq(Ω,w) and for all 0 < ε < q−1 :

Lq(Ω,w) ↪→ Lq),φ
a (Ω,w) ↪→ Lq−ε(Ω,waε).

For a particular case of φ , namely, φ(t) = tθ in Proposition 1, the sharp value of the
constant C can be calculated. In order to prove that, we need the following lemma:

LEMMA A [32]. Let q > 1 , s > 0 and t ∈ [0,q−1). Then

sup
t<x<q−1

(xs)
1

q−x =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ts)
1

q−t , if s � 1
t e

1− 1
t ;

eW (−1,−qse−1)/q, if 1
t e

1− 1
t < s < 1

q−1e1− 1
q−1 ;

(q−1)s, if s � 1
q−1e1− 1

q−1 ,

where W (·) is the Lambert’s function (see [32] for definition).

COROLLARY 1. Let q > 1. The inequality

‖ f‖
Lq),θ

a (Ω,w)
� C‖ f‖Lq(Ω,w) (6)

holds for all f ∈ Lq(Ω,w) if and only if a ∈ Lq(Ω,w). Moreover, the constant C in-
volved in inequality (6) is sharp and is given by

C ≡C(a,θ ,q) =

⎧⎨
⎩

(q−1)θ‖a‖q−1
Lq(Ω,w), if ‖a‖q

Lq(Ω,w) � 1
q−1e1− 1

q−1 ;

‖a‖−1
Lq(Ω,w)e

W(−1,−q‖a‖q
Lq(Ω,w)e

−1)/q
, if ‖a‖q

Lq(Ω,w) > 1
q−1e1− 1

q−1 .

Proof. On taking φ(ε) = εθ in Proposition 1, we get the first part of the corollary.
To get the sharp value of the constant, take x = εθ and s = ‖a‖q

Lq(Ω,w) in (4) and use

Lemma A with t → 0+. �
The following theorem indicates some of the important properties of the space

Lq),φ
a (Ω,w) :

THEOREM 1. Let 1 < q < ∞ and a ∈ Lq(Ω,w). The following hold:

(a) (Completeness) The generalized grand Lebesgue space Lq),φ
a (Ω,w) is a Banach

space.

(b) (Lattice property) If | f | � |g| a.e. on Ω, then ‖ f‖
Lq),φ

a (Ω,w)
� ‖g‖

Lq),φ
a (Ω,w)

.

(c) (Fatou property) If 0 � fn ↑ f a.e. in Ω, then ‖ fn‖Lq),φ
a (Ω,w)

↑ ‖ f‖
Lq),φ

a (Ω,w)
.

(d) If E ⊂ Ω, |E| < ∞ then

‖χE‖Lq),φ
a (Ω,w)

� ‖χE‖Lq(Ω,w)‖a‖−1
Lq(Ω,w)‖a‖Lq),φ

a (Ω,w)
. (7)
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(e) For all f ∈ Lq),φ
a (Ω,w) and 0 < σ < q−1, the following estimate holds:

‖ f‖
Lq),φ

a (Ω,w)
� C(a,σ ,φ ,q) sup

0<ε�σ

(
φ(ε)

∫
Ω
| f (x)|q−εw(x)aε (x)dx

)1/(q−ε)

.

(8)

Proof. We shall only prove (d) and (e). The remaining are easy to prove.
(d) For 0 < ε < q−1, using Hölder’s inequality with the exponents q

q−ε and q
ε ,

we get

‖χE‖Lq),φ
a (Ω,w)

= sup
0<ε<q−1

(
φ(ε)

∫
Ω

|χE(x)|q−εw(x)aε(x)dx

) 1
q−ε

� sup
0<ε<q−1

φ(ε)
1

q−ε

(∫
Ω
|χE(x)|qw(x)dx

) 1
q
(∫

Ω

aq(x)w(x)dx

) ε
q(q−ε)

(9)

= ‖χE‖Lq(Ω,w) sup
0<ε<q−1

φ(ε)
1

q−ε

(∫
Ω

aq−ε(x)w(x)aε (x)dx

) 1
q−ε

‖a‖−1
Lq(Ω,w)

= ‖χE‖Lq(Ω,w) ‖a‖−1
Lq(Ω,w)‖a‖L

q),φ
a (Ω,w)

.

(e) Let f ∈ Lq),φ
a (Ω,w) and 0 < σ < q− 1. For σ < ε < q− 1, on applying

Hölder’s inequality with conjugate indices λ := q−σ
q−ε , λ ′ := q−σ

ε−σ , we have

‖ f‖Lq−ε(Ω,waε ) �
(∫

Ω
| f |q−σ (x)w(x)aσ (x)dx

) 1
q−σ
(∫

Ω
a(ε− σ

λ )λ ′
(x)w(x)dx

) 1
(q−ε)λ ′

= ‖ f‖Lq−σ (Ω,waσ ) ‖a‖
q(ε−σ)

(q−σ)(q−ε)
Lq(Ω,w) .

Also, for σ < ε < q−1

0 <
ε −σ

(q−σ)(q− ε)
<

q−1−σ
q−σ

.

Using the above estimates, we have

‖ f‖
Lq),φ

a (Ω,w)
=

= max

{
sup

0<ε�σ
φ(ε)1/(q−ε)‖ f‖Lq−ε (Ω,waε ), sup

σ<ε<q−1
φ(ε)1/(q−ε)‖ f‖Lq−ε (Ω,waε)

}

� max

{
1, sup

σ<ε<q−1
φ(ε)1/(q−ε)φ(σ)−

1
q−σ ‖a‖

q(ε−σ)
(q−σ)(q−ε)
Lq(Ω,w)

}
×

× sup
0<ε�σ

φ(ε)1/(q−ε)‖ f‖Lq−ε (Ω,waε )
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� max

{
1,(φ(q−1)+1)φ(σ)−

1
q−σ
(
‖a‖q

Lq(Ω,w) +1
) q−1−σ

q−σ

}
×

× sup
0<ε�σ

φ(ε)1/(q−ε)‖ f‖Lq−ε (Ω,waε ).

from which it follows that the estimate (8) holds with

C(a,σ ,φ ,q) = max

{
1,(φ(q−1)+1)φ(σ)−

1
q−σ
(
‖a‖q

Lq(Ω,w) +1
) q−1−σ

q−σ

}
(10)

and we are done. �

REMARK 2. In view of Remark 1 and (7), it follows that χE ∈ Lq),φ
a (Ω,w).

REMARK 3. For φ(t) = tθ , the constant C(a,σ ,φ ,q) can be obtained in a more
precise form. Indeed, on using Lemma A for x = εθ , s = ‖a‖q

Lq(Ω,w) and letting t → 0+,

we have

sup
σ<ε<q−1

ε
θ

q−ε ‖ f‖Lq−ε(Ω,waε )

� ‖ f‖Lq−σ (Ω,waσ )‖a‖
−q

q−σ
Lq(Ω,w) sup

σ<ε<q−1
(εθ‖a‖q

Lq(Ω,w))
1/(q−ε)

= C(a,σ ,θ ,q)σ
θ

q−σ ‖ f‖Lq−σ (Ω,waσ ),

where the constant C(a,σ ,θ ,q) is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖a‖
−q

q−σ
Lq(Ω,w)

(
σθ‖a‖q

Lq(Ω,w)

) 1
q−σ σ

−θ
q−σ , if ‖a‖q

Lq(Ω,w) � 1
σ e1− 1

σ ;

‖a‖
−q

q−σ
Lq(Ω,w)e

W (−1,−q‖a‖q
Lq(Ω,w)e

−1)/qσ
−θ
q−σ , if 1

σ e1− 1
σ < ‖a‖q

Lq(Ω,w) < 1
q−1e1− 1

q−1 ;

‖a‖
−q

q−σ
Lq(Ω,w)(q−1)σ

−θ
q−σ , if ‖a‖q

Lq(Ω,w) � 1
q−1e1− 1

q−1 ,

where W is the Lambert’s function. Consequently, (9) gives that

‖ f‖
Lq),θ

a (Ω,w)
� C1(a,σ ,θ ,q) sup

0<ε�σ
εθ/(q−ε)

(∫
Ω
| f (x)|q−εw(x)aε (x)dx

)1/(q−ε)

,

and

C1(a,σ ,θ ,q) = max{1,C(a,σ ,θ ,q)} .
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3. Extrapolation theorem for the diagonal case

In this section, our aim is to prove extrapolation theorem for the diagonal case in

the framework of generalized grand Lebesgue space Lq),φ
a (Ω,w), when |Ω| � ∞.

Let us recall Ar , the Muckenhoupt class of weights. For 1 < r < ∞, we say that a
weight w ∈ Ar if

[w]Ar := sup
B⊆Ω

(
1
|B|
∫

B
w(t)dt

)(
1
|B|
∫

B
w1−r′(t)dt

)r−1

< ∞,

where |B| being the Lebesgue measure of the ball B. The term [w]Ar is usually known
as the Ar constant of the weight w. In the sequel, we shall assume that the weight
class Ar satisfies the following properties when considered on the general domain Ω .
This seems reasonable to assume these properties since they are known to hold when
Ω = R

n .

(i) If 1 � s � r < ∞, then As ⊆ Ar and [w]Ar � [w]As .

(ii) If w ∈ Ar, then there exists 0 < ε < r−1 such that w ∈ Ar−ε .

(iii) If w ∈ Ar and 0 � α � 1, then wα ∈ Ar and [wα ]Ar � [w]αAr
.

(iv) If w1,w2 ∈Ar, then wt
1w

1−t
2 ∈Ar for all 0 � t � 1 and [wt

1w
1−t
2 ]Ar � [w1]tAr

[w2]1−t
Ar

.

(v) If w ∈ Ar, then there exists ξ > 0 such that w1+ξ ∈ Ar.

(vi) [w]Ar � 1.

We prove the following lemma which is a reformulation of Lemma 5 in [32] with
some modifications and more clear explanation:

LEMMA 1. Let 1 < r < ∞ , w ∈ Ar and aδ ∈ Ar for some δ > 0. Then there exists
σδ > 0 such that σδ < δ and was ∈ Ar−s for all s, 0 < s � σδ . Moreover,

[was]Ar−s � [w]Ar−σδ
[waσδ ]Ar−σδ

.

Proof. Let w ∈ Ar and aδ ∈ Ar for some δ > 0, then there exist σ0 > 0, β > 1
such that w ∈ Ar−σ0 and wβ ∈ Ar. Further, there exist σ1 > 0, σ2 > 0 such that wβ ∈
Ar−σ1 and aδ ∈ Ar−σ2 . For some s > 0, write

was = (wβ )
1
β (asβ ′

)
1

β ′ . (11)

Now, asβ ′
= a

(
sβ ′
δ

)
δ ∈ Ar−σ2 whenever s � δ

β ′ . Choose σδ = min{σ0,σ1,σ2,
δ
β ′ }.

Then in view of (11), was ∈ Ar−σδ whenever 0 < s � σδ . Hence, was ∈ Ar−s for
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all s, 0 < s � σδ . Also, we have

[was]Ar−s � [w]
1− s

σδ
Ar−s

[waσδ ]
s

σδ
Ar−s

� [w]
1− s

σδ
Ar−σδ

[waσδ ]
s

σδ
Ar−σδ

� [w]Ar−σδ
[waσδ ]Ar−σδ

and we are done. �
The Ar class of weights is very important. It characterizes the boundedness of the

maximal operator

M f (x) := sup
B�x

1
|B|
∫

B
| f (y)|dy,

where B is ball in Ω, in Lebesgue spaces [21], and also in grand Lebesgue spaces (for
|Ω| < ∞) [8]. This also characterizes the Hilbert transform for Ω = R in Lebesgue
spaces [10] as well as on grand Lebesgue spaces [16], on Ω = J, where J is some
bounded intreval in R . In [14] and [15] also, authors have characterized boundedness
of strong maximal fractions, multilinear maximal fractions and singular integrals in
weighted grand Lebesgue spaces with Muckenhoupt class of weights. Let us point it
out that in [1], the so called Bukley’s estimate has been given, we will use the estimate
for the Lr(Ω,w) norm, which reads

‖M‖Lr(Ω,w)→Lr(Ω,w) � cr′[w]1/(r−1)
Ar

, (12)

where c is a constant.
In [6], an extrapolation theorem of Rubio de Francia type has been proved in the

framework of Lebesgue spaces, which provides sharp bounds in terms of the Ar con-
stant of a weight.

THEOREM B [6]. Let ψ be a non-negative non-decreasing function on (0,∞) ,
( f ,g) be a pair of non-negative measurable functions defined on Ω ⊆R

n. Let 1 � r0 <
∞ be fixed, and for every w ∈ Ar0(∫

Ω
gr0(t)w(t)dt

) 1
r0 � C0 ψ([w]Ar0

)
(∫

Ω
f r0(t)w(t)dt

) 1
r0

, (13)

where C0 does not depend on w. Then for all r, 1 < r < ∞ and for every w ∈ Ar, we
have (∫

Ω
gr(t)w(t)dt

) 1
r

� C0 K(w)
(∫

Ω
f r(t)w(t)dt

) 1
r

,

where

K(w) =

⎧⎪⎨
⎪⎩

ψ
(
[w]Ar(2‖M‖Lr(Ω,w))r0−r

)
, if r < r0;

ψ
(

[w]
r0−1
r−1

Ar
(2‖M‖Lr′ (Ω,w1−r′ ))

r−r0
r−1

)
, if r > r0

(14)

and C0 is constant as in (13).
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REMARK 4. In view of (12) and (14), the above constant K(w) becomes

K(w) =

⎧⎪⎨
⎪⎩

ψ
(

[w]
r0−1
r−1

Ar
(2r′c)r0−r

)
, if r < r0;

ψ
(
[w]Ar(2rc)

r−r0
r−1

)
, if r > r0

(15)

Now, we give our first main theorem.

THEOREM 2. Let ψ be a non-negative non-decreasing function on (0,∞) and
( f ,g) be a pair of non-negative measurable functions defined on Ω⊂R

n, |Ω|� ∞. Let
1 < r0 < ∞ be fixed and for every w ∈ Ar0

(∫
Ω

gr0(t)w(t)dt

) 1
r0 � C0 ψ([w]Ar0

)
(∫

Ω
f r0(t)w(t)dt

) 1
r0

,

where C0 does not depend on w. Then for all r, 1 < r < ∞ and for all w ∈ Ar , the
following inequality holds

‖g‖
L

r),φ
a (Ω,w)

� C(w,a,φ ,r,δ )‖ f‖
L

r),φ
a (Ω,w)

,

where a ∈ Lr(Ω, w) and aδ ∈ Ar for some δ > 0.

Proof. Let 1 < r < ∞ and w ∈ Ar. Then there exists σ1 > 0 such that w ∈ Ar−σ1 .
By Lemma 1, there exists σ2, 0 < σ2 < δ such that waε ∈ Ar−ε for all 0 < ε � σ2.
Take σδ = min{σ1,σ2}, therefore, by Theorem B and (15), we have

(∫
Ω

gr−ε(t)w(t)aε(t)dt

) 1
r−ε

� C0 K(w,a,ε)
(∫

Ω
f r−ε (t)w(t)aε(t)dt

) 1
r−ε

(16)

for all 0 < ε � σδ , where

K(w,a,ε) =

⎧⎪⎨
⎪⎩

ψ
(

[waε ]
r0−1

r−ε−1
Ar−ε

(2(r− ε)′c)r0−r+ε
)

, if r− ε < r0;

ψ
(
[waε ]Ar−ε (2(r− ε)c)

r−ε−r0
r−ε−1

)
, if r− ε > r0.

Now, on using Theorem 1 (e) and (16), we have

‖g‖
Lr),φ

a (Ω,w)
� C(a,σδ ,φ ,r) sup

0<ε�σ
φ(ε)

1
r−ε ‖g‖Lr−ε(Ω,waε )

� C(a,σδ ,φ ,r) sup
0<ε�σ

C0K(w,a,ε)φ(ε)
1

r−ε ‖ f‖Lr−ε (Ω,waε )

� C(a,σδ ,φ ,r) sup
0<ε�σ

C0K(w,a,ε)‖ f‖
Lr),φ

a (Ω,w)
, (17)
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where C(a,σδ ,φ ,r) is as in (10). Also, by Lemma 1, we have

sup
0<ε�σ

K(w,a,ε) �

⎧⎪⎨
⎪⎩

ψ
(

[w]
r0−1

r−σ−1
Ar−σ

[waσ ]
r0−1

r−σ−1
Ar−σ

(2r′c)r0−r+σ
)

, if r−σ < r0;

ψ
(
[w]Ar−σ [waσ ]Ar−σ (2rc)

r−r0
r−σ−1

)
, if r−σ > r0

≡ K1(w,a,σ ,r).

Take
C(w,a,φ ,r,δ ) = C0 inf

0<σ<r−1
C(a,σδ ,φ ,r)K1(w,a,σ ,r),

and using it in (17), we get

‖g‖
L

r),φ
a (Ω,w)

� C(w,a,φ ,r,δ )‖ f‖
L

r),φ
a (Ω,w)

and the result is proved. �

REMARK 5. Theorem2 extends a result of Samko and Umarkhadzhiev [27], which
can be obtained by taking a(x) = wβ (x), β �= 0 and φ(t) = tθ , θ > 0 such that∫

Ω w1+β r < ∞.

4. Extrapolation theorem for the off-diagonal case

The main result in this section is the off diagonal version of Theorem 2. To deal
with this, we first give Ap,q , the Muckenhoupt-Wheeden class of weights [22] and
some of its important properties.

DEFINITION 2. Let 1 < p,q < ∞. We say that a weight ρ ∈ Ap,q if

[ρ ]Ap,q := sup
B⊆Ω

(
1
|B|
∫

B
ρq(x)dx

)(
1
|B|
∫

B
ρ−p′(x)dx

) q
p′

< ∞.

For p = q, we set Ap := Ap,q.

As in the diagonal case, here too, we assume that the weight Ap,q satisfies the
following properties when considered on general Ω since they hold when Ω = R

n :

(i) [ρ ]Ap = [ρ p]Ap .

(ii) ρ ∈ Ap,q ⇔ ρq ∈ A1+ q
p′

and [ρ ]Ap,q = [ρq]A1+ q
p′

.

(iii) If 1 < p < r < ∞ and 1 < q < s < ∞ then Ap,q ⊂ Ar,s . Moreover, [ρ ]Ar,s �
[ρ ]Ap,q .

(iv) ρ ∈ Ap,q ⇔ ρ−p′ ∈ A
1+ p′

q
and [ρ ]Ap,q = [ρ−p′ ]

q
p′
A

1+ p′
q

.
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(v) If w ∈ Ap,q , 1 < p < q < ∞, then there exists 0 < ε0 < q− 1, 0 < η0 < p− 1
such that w ∈ Ap−η0, q−ε0 with

1
p−η0

− 1
q− ε0

=
1
p
− 1

q

Using the above properties (iii) and (v), the following can be proved:

LEMMA 2. Let 1 < p < q < ∞. If w ∈ Ap,q , then there exists 0 < ε0 < q− 1 ,
0 < η0 < p−1 with

1
p−η0

− 1
q− ε0

=
1
p
− 1

q
=: α

such that w ∈ Ap−η, q−ε for all 0 < ε � ε0 , 0 < η � η0 with 1
p−η − 1

q−ε = α.

We prove the following crucial lemma:

LEMMA 3. Let 1 < p < q < ∞. If w ∈ Ap,q and aδ ∈ Ap,q for some δ > 0, then
there exist ε0 and η0 with 0 < ε0 < δ , 0 < η0 < δ with

1
p−η0

− 1
q− ε0

=
1
p
− 1

q
=: α

such that
(
wa

p
q ε
) 1

q−ε ∈Ap−η, q−ε for all 0 < ε < ε0 , 0< η < η0 with 1
p−η − 1

q−ε = α.

Moreover, [(
wa

p
q ε
) 1

q−ε
]

Ap−η, q−ε

� [w]A q−ε0
(p−η0)′ +1

[
wa

p
q ε0
]
A q−ε0

(p−η0)′ +1

. (18)

Proof. Let w ∈ Ap,q and aδ ∈ Ap,q for some δ > 0, . Then wq ∈ A1+ q
p′

and

aδq ∈ A1+ q
p′

. Therefore, for some t > 1, (wq)t ∈ A1+ q
p′

and (aδq)
p
q ∈ A1+ q

p′
. Then by

using property (v) given above, there exists ε1 > 0, η1 > 0 and ε2 > 0, η2 > 0 such

that wqt ∈ A q−ε1
(p−η1)′ +1

and (a
p
q )δq ∈ A q−ε2

(p−η2)′ +1
with

1
p−η1

− 1
q− ε1

= α =
1

p−η2
− 1

q− ε2
.

For given ε > 0, we can write

wq(a
p
q )εq = (wqt)

1
t

(
(a

p
q )t

′εq
) 1

t′
. (19)

Now, (a
p
q )t

′εq ∈ A q−ε2
(p−η2)′ +1

if ε � δ
t′ . Take ε0 = min

{
ε1,ε2,

δ
t′
}

and choose η0 =

p− q−ε0
1+α(q−ε0)

. Then clearly, η0 � η1 , η0 � η2 and by (19), we have(
wa

pε
q

)q ∈ A1+ q−ε
(p−η)′

.
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So, as q > 1, we have

wa
pε
q ∈ A1+ q−ε

(p−η)′

and consequently (
wa

pε
q

) 1
q−ε ∈ Ap−η, q−ε

for all 0 < ε � ε0, 0 < η < η0 with 1
p−η − 1

q−ε = α. Also, we have

[(
wa

pε
q

) 1
q−ε
]

Ap−η, q−ε

=
[
wa

pε
q

]
A

1+ q−ε
(p−η)′

� [w]
1− ε

ε0
A

1+ q−ε
(p−η)′

[wa
pε0
q ]

ε
ε0
A

1+ q−ε
(p−η)′

� [w]A
1+ q−ε

(p−η)′
[wa

pε0
q ]A

1+ q−ε
(p−η)′

� [w]A
1+

q−ε0
(p−η0)′

[wa
pε0
q ]A

1+
q−ε0

(p−η0)′

for all 0 < ε � ε0, 0 < η < η0 with 1
p−η − 1

q−ε = α. �
We mention below the off diagonal case of Theorem B.

THEOREM C [6]. Let ψ be a non-negative non-decreasing function on (0,∞) ,
( f ,g) be a pair of non-negative measurable functions defined on Ω ⊆ R

n. Let 1 �
p0 < ∞ and 0 < q0 < ∞ be fixed and for every w ∈ Ap0,q0(∫

Ω
(gw)q0(t)dt

) 1
q0 � c ψ([w]Ap0,q0

)
(∫

Ω
( f w)p0(t)dt

) 1
p0

, (20)

where c does not depend on w. Then for all 1 < p < ∞ , 0 < q < ∞ such that

1
q0

− 1
p0

=
1
q
− 1

p

and for every w ∈ Ap,q, we have

(∫
Ω
(gw)q(t)dt

) 1
q

� c K(w, p,q)
(∫

Ω
( f w)p(t)dt

) 1
p

,

where

K(w, p,q) =

⎧⎪⎪⎨
⎪⎪⎩

ψ
(
[w]Ap,q

(
2‖M‖Lγq(Ω,wq)

)γ(q−q0)
)

, if q < q0;

ψ

(
[w]

γq0−1
γq−1

Ap,q

(
2‖M‖Lγ p′ (Ω,w−p′ )

) γ(q−q0)
γ p−1

)
, if q > q0,

(21)

γ = 1
q0

+ 1
p′0

, and c is the constant same as in (20).
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REMARK 6. The above constant K(w, p,q) given in (21) can be written in terms
of the Bukley’s estimate.

K(w, p,q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ

⎛
⎝[w]

q0 p′
qp′0
Ap,q

(
2c
(
1+ p′

q

))γ(q−q0)

⎞
⎠ , if q < q0;

ψ

(
[w]Ap,q

(
2c
(
1+ q

p′
)) γ(q−q0)p′

q

)
, if q > q0,

(22)

Now, we are ready to prove our main theorem of this section.

THEOREM 3. Let ψ be a non-negative non-decreasing function on (0,∞), ( f ,g)
be a pair of non-negative measurable functions defined on Ω ⊆ R

n, |Ω| � ∞. Let 1 <
p0 < ∞ and 1 < q0 < ∞ be fixed and for every w ∈ Ap0,q0(∫

Ω
(gw)q0(t)dt

) 1
q0 � c ψ([w]Ap0,q0

)
(∫

Ω
( f w)p0(t)dt

) 1
p0

, (23)

where c does not depend on w. Then for all 1 < p < q < ∞ such that

1
p0

− 1
q0

=
1
p
− 1

q
=: α

and arbitrary w ∈ Ap,q, the following inequality holds:

sup
0<ε<q−1

(
εθ
∫

Ω
|g|q−ε(x)w(x)a

pε
q (x)dx

) 1
q−ε

� C2(a,w,θ ,δ , p,q)×

× sup
0<η<p−1

(
φθ (η)

∫
Ω
| f (x)w−α (x)|p−ηw(x)aη (x)dx

) 1
p−η

,

where φ(η) =
(
q+ η−p

1+α(η−p)

)1−α(p−η)
, a∈ Lp(Ω,w) and aδ ∈Ap,q for some δ > 0.

Proof. Let 1 < p < q < ∞ be such that

1
p0

− 1
q0

=
1
p
− 1

q
= α

and a∈ Lp(Ω,w), aδ ∈Ap,q. Suppose that w∈Ap,q i.e., wq ∈A1+ q
p′

and aδq ∈A1+ q
p′

.

By property (v), there exist 0 < ε1 < q−1 and 0 < η1 < p−1 with

1
p−η1

− 1
q− ε1

= α and wq ∈ A
1+ q−ε1

(p−η1)′
. (24)

By Lemma 3, there exist 0 < ε2 < δ and 0 < η2 < δ with

1
p−η2

− 1
q− ε2

= α and wa
pε
q ∈ A1+ q−ε

(p−η)′
(25)
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for all 0 < ε � ε2 , 0 < η � η2 with 1
p−η − 1

q−ε = α. Take ε0 = min{ε1,ε2} and choose

η0 > 0 such that 1
p−η0

− 1
q−ε0

= α. Clearly, η0 = min{η1,η2}. From (24) and (25),
we have

wq ∈ A
1+ q−ε0

(p−η0)′
and wa

pε
q ∈ A1+ q−ε

(p−η)′

for all 0 < ε � ε0 , 0 < η � η0 with 1
p−η − 1

q−ε = α. Now, for ε0 > 0, using Theorem
1(e), we get

sup
0<ε<q−1

(
εθ
∫

Ω
|g|q−ε(x)w(x)a

pε
q (x)dx

) 1
q−ε

� C1(a,ε0,q,θ ) sup
0<ε�ε0

(
εθ
∫

Ω
|g|q−ε(x)w(x)a

pε
q (x)dx

) 1
q−ε

, (26)

where C1(a,ε0,θ ,q) := max{1,C(a,ε0,θ ,q)}, and C(a,ε0,θ ,q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

‖a‖
−q

q−ε0
Lq(Ω, w)

(
εθ
0 ‖a‖q

Lq(Ω, w)

) 1
q−ε0 ε

−θ
q−ε0
0 , if ‖a‖q

Lq(Ω, w) � 1
ε0

e
1− 1

ε0 ;

‖a‖
−q

q−ε0
Lq(Ω, w)e

W (−1,−q‖a‖q
Lq(Ω, w)e

−1)ε
−θ

q−ε0
0 , if 1

ε0
e
1− 1

ε0 < ‖a‖q
Lq(Ω, w) < 1

q−1e1− 1
q−1 ;

‖a‖q
(
1+ −1

q−ε0

)
Lq(Ω, w) (q−1)ε

−θ
q−ε0
0 , if ‖a‖q

Lq(Ω, w) � 1
q−1e1− 1

q−1

and W is the Lambert’s function. Since
(
wa

pε
q

) 1
q−ε ∈ Ap−η,q−ε for all 0 < ε < ε0 ,

0 < η < η0 with 1
p−η − 1

q−ε = α, by Theorem C, (22) and (26), we get

sup
0<ε<q−1

ε
θ

q−ε

(∫
Ω
|g|q−ε(x)w(x)a

pε
q (x)dx

) 1
q−ε

� c C1(a,ε0,θ ,q) sup
0<ε�ε0

K(a,w, p−η ,q− ε)×

× ε
θ

q−ε

(∫
Ω
| f |p−η (x)

(
wa

pε
q

) p−η
q−ε (x)dx

) 1
p−η

� c C1(a,ε0,θ ,q) sup
0<ε�ε0

sup
0<η�η0

K(a,w, p−η ,q− ε)×

× sup
0<η�η0

(
φθ (η)

∫
Ω
| f (x)w−α (x)|p−ηw(x)aη (x)dx

) 1
p−η

, (27)
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where

K(a,w, p−η ,q− ε) =

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ

⎛
⎜⎝
[(

wa
pε
q

) 1
q−ε
] (p−η)′q0

(q−ε)p′0

Ap−η,q−ε

(
2c
(
1+ (p−η)′

q−ε

))γ(q−ε−q0)

⎞
⎟⎠ , if q− ε < q0;

ψ

([(
wa

pε
q

) 1
q−ε
]

Ap−η,q−ε

(
2c
(
1+ q−ε

(p−η)′
)) γ(q−ε−q0)(p−η)′

q−ε

)
, if q− ε > q0,

c and c are constants same as in (23) and Bukley’s estimate (12) respectively, φ(η)

=
(
q+ η−p

1+α(η−p)

)1−α(p−η)
and γ = 1

q + 1
p′ .

Now, by using the fact that ψ is a non-decreasing function and (18), we obtain

K1(w,a,ε0,η0, p,q)
:= sup

0 < ε � ε0

0 < η � η0

K(a,w, p−η ,q− ε)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ

⎛
⎜⎝
(

[w]A
1+

q−ε0
(p−η0)′

[wa
pε0
q ]A

1+
q−ε0

(p−η0)′

) q0(γ−1)
p′0 (

2cγ q
γ−1

)γ(q−q0)

⎞
⎟⎠ , if q− ε < q0;

ψ

(
[w]A

1+
q−ε0

(p−η0)′
[wa

pε0
q ]A

1+
q−ε0

(p−η0)′
(2cqγ)

γ(q−q0)q
γ−1

)
, if q− ε > q0.

(28)

By using (28) in (27), we have the following inequality

sup
0<ε<q−1

ε
θ

q−ε

(∫
Ω
|g|q−ε(x)w(x)a

pε
q (x)dx

) 1
q−ε

� c C1(a,ε0,θ ,q)K1(a,w,η0,ε0, p,q)×

× sup
0<η<p−1

(
φθ (η)

∫
Ω
| f (x)w−α (x)|p−ηw(x)aη (x)dx

) 1
p−η

� C2(a,w,θ , p,q,δ ) sup
0<η<p−1

(
φθ (η)

∫
Ω
| f (x)w−α (x)|p−ηw(x)aη (x)dx

) 1
p−η

,

where

C2(a,w,θ ,δ , p,q) := inf
0<ε0,η0�δ

c C1(a,ε0,q,θ ) K1(a,w,η0,ε0, p,q)

and the proof is complete. �
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COROLLARY 2. Let ψ be a non-negative non-decreasing function on (0,∞), ( f ,g)
be a pair of non-negative measurable functions defined on Ω ⊆ R

n. Let 1 < p0 < ∞
and 1 < q0 < ∞ be fixed and for every w ∈ Ap0,q0

(∫
Ω
(gw)q0(t)dt

) 1
q0 � c ψ([w]Ap0,q0

)
(∫

Ω
( f w)p0(t)dt

) 1
p0

,

where c does not depend on w. Then for all 1 < p < q < ∞ such that

1
p0

− 1
q0

=
1
p
− 1

q
=: α

and arbitrary w ∈ Ap,q , the following inequality holds:

sup
0<ε<q−1

(
εθ
∫

Ω
|g|q−ε(x)w(x)a

pε
q (x)dx

) 1
q−ε

� C2(a,w,θ ,δ , p,q) sup
0<η<p−1

(
η

pθ
q

∫
Ω
| f (x)w−α (x)|p−ηw(x)aη (x)dx

) 1
p−η

,

where a ∈ Lp(Ω,w), aδ ∈ Ap,q for some δ > 0 .

Corollary 2 can easily be deducted from Theorem 3 in view of the following
lemma:

LEMMA D [20]. Let 1 < p < q < ∞ and η0 ∈ (0, p−1). For x ∈ (0,η0) , define

φ(x) =
(

q+
x− p

1+ α(x− p)

)1−α(p−x)

,

where α = 1
p − 1

q . Then φ(x) ≈ x
p
q near to 0.

5. Applications

In this section, we apply our extrapolation results Theorems 2 and 3 to prove a
vector-valued inequality, boundedness of sublinear integral operators and boundedness
of fractional integral transforms in the framework of generalized grand Lebesgue spaces

Lp),φ
a (Ω,w), Ω ⊆ R, |Ω| � ∞. The first result in this direction is the following:

THEOREM 4. Suppose that ψ is a non-negative non-decreasing function on (0,∞)
and F is the collection of all pairs ( f ,g) of non-negativemeasurable functions defined
on Ω ⊆ R. Suppose that 1 < p0 < ∞ be fixed, and for every ( f ,g) ∈ F and w ∈ Ap0

(∫
Ω

gp0(t)w(t)dt

) 1
p0 � C0 ψ([w]Ap0

)
(∫

Ω
f p0(t)w(t)dt

) 1
p0

,
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where C0 is a constant independent of w. Then for all 1 < p,q < ∞ and for every
w ∈ Ap, the vector-valued inequality

‖
(

∞

∑
i=1

gq
i

) 1
q

‖
Lp),φ

a (Ω,w)
� C ‖

(
∞

∑
i=1

f q
i

) 1
q

‖
Lp),φ

a (Ω,w)
(29)

holds for {( fi,gi)} ⊆ F , where a ∈ Lp(Ω,w) and aδ ∈ Ap for some δ > 0.

Proof. Choose 1 < q < ∞ and fix it. Let

Fq,k =

(
k

∑
i=1

f q
i

) 1
q

and

Gq,k =

(
k

∑
i=1

gq
i

) 1
q

.

Clearly, (Fq,k,Gq,k) is a pair of non-negative measurable functions. Now, for any w ∈
Aq applying Theorem B, we get

∫
Ω

gq
i (t)w(t)dt � Cq

0 Kq(w)
∫

Ω
f q
i (t)w(t)dt, i = 1,2, . . . ,k (30)

where

K(w) =

⎧⎪⎪⎨
⎪⎪⎩

ψ
(

[w]
p0−1
q−1

Aq
(2q′c)p0−q

)
, if q < p0;

ψ
(

[w]Aq(2qc)
q−p0
q−1

)
, if q > p0.

Adding the k inequalities in (30), we have

(∫
Ω

Gq
q,k(t)w(t)dt

) 1
q

� C0 K(w)
(∫

Ω
Fq

q,k(t)w(t)dt

) 1
q

.

Now, for 1 < p < ∞ and w ∈ Ap , by following the proof of Theorem 2, we obtain

‖Gq,k‖L
p),φ
a (Ω,w)

� C(w,a,φ ,q, p,δ )‖Fq,k‖L
p),φ
a (Ω,w)

,

where a ∈ Lp(Ω,w) and aδ ∈ Ap for some δ > 0. This inequality is equivalent to (29)

for all finite sums. Therefore by using Fatou property for the space Lp),φ
a (Ω,w) , the

assertion follows. �

The next result concerns with sublinear operators.
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THEOREM 5. Let ψ be a non-negative non-decreasing function on (0,∞) and T
be a sublinear operator which is bounded on Lp0(Ω,w) for a fixed p0, 1 < p0 < ∞ and
for every w ∈ Ap0 , i.e.,

(∫
Ω
(T f )p0(t)w(t)dt

) 1
p0 � C0 ψ([w]Ap0

)
(∫

Ω
f p0(t)w(t)dt

) 1
p0

,

where C0 does not depend on w. Then for all 1 < p < ∞ and for all w ∈ Ap , the
inequality

‖T f‖
L

p),φ
a (Ω,w)

� C(w,a,φ , p,δ )‖ f‖
L

p),φ
a (Ω,w)

,

holds where a ∈ Lp(Ω, w) and aδ ∈ Ap for some δ > 0.

Proof. Assertion follows easily by using Theorem 2 for the pair of non-negative
measurable functions (T f , f ). �

REMARK 7. Recall that the Lp -boundedness of the maximal operator M and
Hilbert transform H are characterized by Ap class of weights. Consequently, by using
Theorem 5, sufficient conditions for the boundedness of these operators respectively in

the spaces Lp),φ
a (Ω,w) and Lp),φ

a (R,w) can be written. Note that for the maximal op-
erator, a sufficient condition was obtained in [32] for the case |Ω| < ∞ and in [33] for
|Ω| � ∞.

Now, we consider the fractional Riesz potential operator

Iα f (x) :=
∫

Ω

f (y)
|x− y|n−α dy

and the fractional maximal operator

Mα f (x) := sup
B�x

1

|B|1− α
n

∫
B
| f (y)|dy.

In [22], Muckenhoupt and Wheeden characterized the boundedness of these operators
in terms of Ap,q -class of weights, where 0 < α < n, on Lp(Rn,w). In the next theorem,
we extend this boundedness to the generalized grand Lebesgue spaces.

THEOREM 6. Let 1 < p < ∞ , 0 < α < 1
p and θ > 0. Let Sα = Iα or Mα . If

w ∈ Ap,q, where q = p
1−α p , then there exists C > 0 such that

‖Sα f‖
L

q),θ
ap/q (Ω,w)

� C‖ f w−α‖
L

p), p
q θ

a (Ω,w)
,

where a ∈ Lp(Ω,w) and aδ ∈ Ap,q for some δ > 0.

Proof. It is obtained by Corollary 2 and the fact that when w ∈ Ap0,q0 , Sα are
bounded from Lp0(Ω,wp0) to Lq0(Ω,wq0). �
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REMARK 8. In [29], results similar to the above theorem are given for Ω = R
n.

Finally, we consider the commutators [g, Iα ] of fractional integral operators, de-
fined by

[g, Iα ] f (x) := g(x)Iα f (x)− Iα(g f )(x)

=
∫

Ω

g(x)−g(y)
|x− y|n−α f (y)dy,

where 0 < α < n, g ∈ BMO(Ω), i.e.,

sup
B

1
|B|
∫

B
|g(y)−gB|dy < ∞,

where B is a ball in Ω ⊆ R
n and gB is the average of g over B .

REMARK 9. For 0 < α < n, the fractional averaging operator is defined as

Aα f (x) :=
1

|B|1− α
n

∫
B

f (y)dy.

In view of the estimate |Aα f (x)| � Mα f (x), we have Theorem 6 for the fractional
averaging operator as well.

Segovia and Torrea [30] proved the Lp -Lq boundedness of [g, Iα ] as follows:

THEOREM E. Let 0 < α < n, 1 < p < n
α and 1

p − 1
q = α

n . Suppose g∈ BMO(Ω)
and w ∈ Ap,q , then the commutator [g, Iα ] is bounded from Lp(Ω,wp) to Lq(Ω,wq).

Theorem E can be extended in the framework of generalized grand Lebesgue
spaces using Corollary 2 as follows:

THEOREM 7. Let 1 < p < ∞ , 0 < α < 1
p and θ > 0. If w ∈ Ap,q with q = p

1−α p
and g ∈ BMO(Ω), then there exists C > 0 such that

‖[g, Iα ] f ‖
L

q),θ
ap/q(Ω,w)

� C‖ f w−α‖
L

p), p
q θ

a (Ω,w)
,

where a ∈ Lp(Ω,w) and aδ ∈ Ap,q for some δ > 0.
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