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ON THE SUMMABILITY OF A CLASS OF FORMAL POWER SERIES

ALBERTO LASTRA ∗ , JAVIER SANZ AND J. RAFAEL SENDRA

(Communicated by M. Praljak)

Abstract. The formal power series solutions for some classes of moment differential equations,
induced by polynomial moment differential operators, are characterized in terms of their summa-
bility properties, and in terms of estimates for recursive expressions involving their coefficients.
Of special interest are the particularization of these results to classes of fractional and of ordinary
differential equations. The Stokes’ phenomenon can be described in some of these situations.
The main results are extended into the framework of q -Gevrey asymptotics and q -difference
equations.

1. Introduction

In 1886, H. Poincaré put forward the concept of asymptotic expansion at 0 for
holomorphic functions defined in an open sector in C with vertex at the origin. He
intended to give an analytic meaning to formal (in general, divergent) power series
solutions of ordinary differential equations at irregular singular points.

In the late 1970’s, J. P. Ramis [25, 26] developed the theory of k -summability of
formal power series, proving that every formal power series solution to a linear system
of meromorphic ordinary differential equation in the complex domain at an irregular
singular point can be decomposed into a finite product of formal power series, each of
which turns out to be k -summable, for some order k > 0 which depends on the series.

The previous result was only obtained in a theoretical way, and it was improved
by J. Ecalle [7, 8] through the introduction of multisummability. It turned out that any
formal power series solution of a (linear or not) meromorphic system of ordinary differ-
ential equations at an irregular singularity is, indeed, multisummable [4, 27, 1], and an
algorithm is available in order to compute actual (i.e., analytic) solutions departing from
formal ones. Moreover, B. Malgrange gave a method based on the Newton polygon in
order to find the exact orders involved in the multisummability process.

It is worth mentioning a recent paper of O. Costin and X. Xia [6], where a criteria
is given on the Taylor coefficients for the associated analytic function not to have natural
boundaries and to belong to the class of functions analytic in the complex plane with
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finitely many cuts and with algebraic behavior at infinity. Their condition is that the
coefficients admit generalized Ecalle-Borel summable transseries, a property shared by
solutions of many general classes of problems in analysis. In particular, this is the
case whenever the coefficients solve a generic linear or nonlinear recurrence relation of
finite order with analytic coefficients, see [5, 3, 9]. Such recurrence relations exist for
instance when the coefficients are obtained by solving differential equations by power
series. This paper intends to be a contribution to such kind of problems.

In the present study, we provide a simple property of a formal power series in order
to be summable along certain well chosen directions: its coefficients, when inserted in
a given recurrence relation of finite order, provide values whose growth may be suitably
controlled. Moreover, we describe a family of differential, moment-differential (includ-
ing some fractional differential equations involving Caputo’s fractional derivatives) and
q -difference equations for which such a formal power series may appear as a solution,
and the corresponding summability procedures, namely k -summability, summability
with respect to a sequence admitting a nonzero proximate order, and q -Gevrey summa-
bility, respectively.

We will also comment on the possibility of describing the Stokes’ phenomenon
in some of these situations, whenever the structure of the singularities of the Borel
transform of the formal solutions is simple. So, the difference between neighboring
solutions at both sides of a singular direction may be explicitly computed.

The layout of this work is as follows. Section 2 is mainly devoted to give a brief
summary of the main definitions and results concerning general asymptotic expansions
of functions defined in sectors of the Riemann surface of the logarithm, and the related
concept and technique of summability in a direction, all with respect to a sequence of
positive real numbers admitting a nonzero proximate order (see [18]). This generalizes
the classical Gevrey asymptotic theory and the corresponding k -summability of formal
power series, developed by J.-P. Ramis [25, 26]. In Section 3, we describe a family
of formal power series appearing as formal solutions of certain moment differential
equations, introduced by W. Balser and M. Yoshino [2], see Theorem 2. As a natural
application of these kind of problems, we may mention the case when the sequence of
moments gives rise to the so-called fractional Caputo’s derivatives, and so one enters
the framework of fractional differential equations. Next, in Theorem 3 we extend our
considerations to a particular type of formal power series of some Gevrey order s ∈ N ,
thanks to the crucial fact, due to W. Balser, that the termwise product of sequences of
moments of some Gevrey order is again a sequence of moments.

In Section 4 we indicate the main facts that allow us to provide new insights re-
garding some formal power series solutions of a class of q -difference equations. Here,
the q -Gevrey asymptotics and q -summability theory, mainly studied by J. P. Ramis and
C. Zhang (see [31]), play a prominent role. Unlike in the previous approaches, there is
no unique sum naturally associated with a formal q -Gevrey series in a direction, what
leads to the specification of a natural sum through a prescribed variation.
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2. Preliminaries

2.1. Notation

Let R denote the Riemann surface of the logarithm. Let θ > 0, d ∈ R and r > 0.
We write Sd(θ ,r) for the bounded sector with vertex at the origin, opening θ π and
bisecting direction d , given by

Sd(θ ,r) =
{

z ∈ R : |arg(z)−d|< θπ
2

,0 < |z| < r

}
.

We also consider unbounded sectors

Sd(θ ) :=
{

z ∈ R : |arg(z)−d|< θπ
2

}
.

A sectorial region Gd(α) with bisecting direction d ∈ R and opening απ will be a
domain in R such that Gd(α) ⊂ Sd(α) , and for every β ∈ (0,α) there exists ρ =
ρ(β ) > 0 with Sd(β ,ρ) ⊂ Gd(α) . In particular, sectors are sectorial regions.

A sector T is a bounded proper subsector of a sectorial region G (denoted by
T ≺ G) whenever the radius of T is finite and T ⊂G (the closure is considered in R ).

We write N0 = {0,1,2, . . .} and N = {1,2, . . .} . O(S) stands for the set of holo-
morphic functions in S , and C[[z]] is the set of formal power series with complex
coefficients.

2.2. Summability of formal power series

The theory of summability of formal solutions of different kinds of functional
equations (differential, difference, q -difference, etc.) is intimately related to asymp-
totics. This section is devoted to a general overview of both asymptotics and summa-
bility of formal power series in a direction, with respect to a sequence of positive num-
bers admitting a nonzero proximate order. We provide the results without proof, which
can be found in [30, 18, 12, 13]. The classical notions of Gevrey asymptotics and
k -summability are a particular case in this framework, see [25, 26, 1] and Remark 1.

In what follows, M = (Mp)p∈N0 stands for a sequence of positive real numbers.

DEFINITION 1. Let G be a sectorial region with vertex at the origin and f ∈
O(G) . We say f admits f̂ (z) = ∑∞

n=0 anzn ∈ C[[z]] as its M -asymptotic expansion in
G if for every T ≺ G there exist A = A(T ) > 0 and C = C(T ) > 0 such that for every
n ∈ N0 one has ∣∣ f (z)− n−1

∑
p=0

apz
p
∣∣� CAnMn|z|n, z ∈ T.

We write f ∼M ∑∞
n=0 anzn in G . ÃM(G) stands for the linear space of functions

admitting M -asymptotic expansion in G . Accordingly, we define the linear space of
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formal power series

C[[z]]M =
{

f̂ (z) =
∞

∑
n=0

anz
n : there exist C,A > 0 with |an| � CAnMn, n ∈ N0

}
.

The linear map B̃ : ÃM(G) −→ C[[z]]M sending a function to its M -asymptotic ex-
pansion will be called the asymptotic Borel map. It is a homomorphism of algebras if
M is logarithmically convex (for short, (lc)), that is, M2

p � Mp−1Mp+1 for every p∈ N .
As a consequence of Taylor’s formula and Cauchy’s integral formula for the deriva-

tives, we have the following result (see [1] for a proof in the Gevrey case, which may
be easily adapted to this more general situation).

PROPOSITION 1. Let G be a sectorial region and f ∈ O(G) . Then, f ∈ ÃM(G)
if, and only if, for every T ≺ G there exist CT ,AT > 0 such that for every p ∈ N0 and
z ∈ T , one has | f (p)(z)| � CT Ap

T p!Mp .

DEFINITION 2. A function f ∈ ÃM(G) is said to be flat (or M -flat) if B̃( f ) is
the null series, i.e., f ∼M 0̂ . We say that ÃM(G) is quasianalytic if it does not contain
nontrivial flat functions; in other words, the asymptotic Borel map is injective in the
class.

The study of quasianalyticity, for ultraholomorphic classes subject to uniform
bounds either for the derivatives (as suggested by Proposition 1) or for the asymptotics,
has been made by several authors, both in one [21, 29] or several variables [11, 19].
In order to avoid trivial situations, we restrict ourselves to weight sequences, i.e., (lc)
sequences with limp→∞ Mp+1/Mp = ∞ .

The concept of proximate order, relevant in the theory of growth of holomorphic
functions in sectors (see, for example, [10]), plays a prominent role in the following
result, which appeared in a weaker form in [30].

COROLLARY 1. (Watson’s Lemma, [13]) Given a weight sequence M and γ > 0 ,
ÃM(G0(γ)) is quasianalytic if, and only if, γ > ω(M) , where

ω(M) = liminf
p→∞

log(Mp+1/Mp)
log(p)

∈ [0,∞].

We are ready for the definition of summability in a direction in this context.

DEFINITION 3. ([18]) Let d ∈ R and M be a weight sequence. We say f̂ =
∑p�0 apz

p is M-summable in direction d if there exist a sectorial region G = Gd(γ) ,
with γ > ω(M) , and a function f ∈ ÃM(G) such that f ∼M f̂ .

According to Watson’s Lemma, f is unique with the property stated and will be
called the M-sum of f̂ in direction d . In order to explicitly construct this sum, we
need to introduce an auxiliary function ωM : (0,∞) → R given by

ωM(t) = sup
p∈N0

log
( t p

Mp

)
.
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As it may be found in [18, 12], whenever M admits a nonzero proximate order
ρ(t) , i.e., there exist constants A,B > 0 with

A � ωM(t)
tρ(t) � B, t large enough,

one may construct pairs of M-summability kernel functions e(z) and E(z) , and the
moment function associated with e(z) , that is,

m(λ ) :=
∫ ∞

0
tλ−1e(t)dt, ℜ(λ ) > 0.

The so-called sequence of moments m = (m(p))p∈N0 turns out to be equivalent to
M (in the sense that there exist B,C > 0 such that BpMp � m(p) � CpMp for every
p ∈ N0 ). Then, suitable Laplace- and Borel-like formal and analytic transforms allow
for the reconstruction of the sum, as the next result shows.

THEOREM 1. Suppose the sequence M admits a nonzero proximate order, d is a
direction and f̂ = ∑n�0 anz

n . The following are equivalent:

(i) f̂ is M-summable in direction d .

(ii) For every (some) kernel e of M-summability, its formal Borel transform g :=
B̂m( f̂ ) := ∑n�0

an

m(n)
zn converges, i.e. has positive radius of convergence, it

admits analytic continuation in an unbounded (narrow enough) sector S bisected
by d , and moreover is of M-growth in S , i.e., for every unbounded subsector T
of S there exist k1,k2 > 0 such that for every z ∈ T ,

|g(z)| � k1 exp(ωM(k2|z|)). (1)

In case any of the previous holds, the M-sum of f̂ in direction d can be constructed as
an M-analogue of Laplace transform,

f (z) =
∫ ∞(d)

0
e(u/z)g(u)

du
u

, |arg(z)−d| < ω(M)π/2, |z| small enough.

The previous integral is the line integral along the path parameterized by s ∈
(0,∞) �→ seid . The analytic continuation of f to a sectorial region bisected by d and
with opening larger than ω(M)π is obtained by changing the line of integration into
neighboring directions d′ within S .

EXAMPLE 1. For k > 0 and the Gevrey sequence M1/k = (p!1/k)p∈N0 , the clas-
sical Gevrey asymptotic theory and the k -summability method, introduced by J.-P.
Ramis [25, 26, 1], are obtained. In this case, ω(M1/k) = 1/k , the function ωM1/k

(t)
grows like tk at infinity, and M1/k admits the constant proximate order ρ(t) = k . A
kernel of k -summability is e(z) = kzk exp(−zk) , for which the sequence of moments
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is m = (Γ(1 + p/k))p∈N0 , where Γ denotes the Eulerian Gamma function. So, a se-
ries f̂ (z) = ∑p�0 fpzp is k -summable in direction d if, and only if, its formal Borel

transform of order k , B̂k f̂ (z) := ∑p�0
fp

Γ(1+p/k)z
p , has positive radius of convergence,

its sum g admits analytic continuation into an unbounded sector S bisected by d , and
there exist c1,c2 > 0 with

|g(z)| � c1 exp
(
c2|z|k

)
, z ∈ S. (2)

If these statements hold, then the k -sum of f̂ in direction d is given by

f (z) = kz−k
∫ ∞(d)

0
g(u)e−(u/z)kuk−1du (3)

whenever both sides of the equality are defined.

REMARK 1. Weight sequences admitting a proximate order are strongly regular
(in the terminology of V. Thilliez): they are (lc), of moderate growth (there exists
A > 0 such that Mp+q � Ap+qMpMq for all p,q ∈ N0 ), and satisfy the strong non-
quasianalyticity condition, i.e., there exists B > 0 such that

∑
q�p

Mq

(q+1)Mq+1
� B

Mp

Mp+1
, p ∈ N0.

These conditions are quite classical and they naturally appear in the literature [15] con-
cerning the study of so-called Carleman ultradifferentiable or ultraholomorphic classes,
consisting of C ∞ (respectively, analytic) functions whose derivatives’ growth is con-
trolled mainly by the given sequence M .

Every example of strongly regular sequence appearing in the applications admits a
nonzero proximate order. This is the case for the sequence (p!α ∏p

m=0 logβ (e+ p))p�0 ,
where α > 0 and β ∈ R , which is strongly regular (in case β < 0, after some inessen-
tial changes like scaling or adjusting a finite number of terms). However, there do exist
strongly regular sequences not admitting such a proximate order, see [12].

For q > 1 the sequence (q
p(p−1)

2 )p�0 , which will be considered later, is not strongly
regular as it does not have moderate growth, and so it does not admit a nonzero proxi-
mate order.

3. Characterization of the summability of certain formal solutions of ODEs

The forthcoming generalization of the derivative operator was firstly studied by
W. Balser and M. Yoshino [2]: Given a sequence of moments m = (m(p))p�0 as be-
fore, one can define the moment differential operator ∂m on formal power series with
complex coefficients by

∂m

(
∑
p�0

fp
m(p)

zp

)
= ∑

p�0

fp+1

m(p)
zp,
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and this definition may be proved (see [22, 18]) to extend to functions holomorphic
around the origin. Observe that this operator coincides with the usual derivative when
working with the sequence m(p) := p! = Γ(1 + p) , moments of the kernel function
e(z) = ze−z , corresponding to 1-summability.

Moment partial differential equations, related to these operators, have already been
studied in [2] and by S. Michalik [23, 24], in the case that (m(p))p∈N0 is equivalent to
a Gevrey sequence, and in the general case in [18].

As a matter of fact, the particularization of the sequence of moments in the form

m1/k :=
(

Γ
(
1+

p
k

))
p∈N0

,

for some k ∈ N , is intimately related to the Caputo fractional derivative of order 1/k ,

denoted by ∂ 1/k
x . Indeed, (∂m1/k f̂ )(z1/k) coincides with ∂ 1/k

x ( f̂ (x1/k)) for every formal

power series f . In particular, one has ∂ 1/k
z z0/k = 0, and

∂ 1/k
z zn/k =

Γ(1+ n
k )

Γ(1+ n−1
k )

z(n−1)/k,

for every n ∈ N . The action of this operator coincides with that of Caputo’s derivative.
Following [14], Caputo derivative, which is defined for α /∈ N0 , n∈ N , n−1 < α < n ,
by

CDα
0+ϕ(z) :=

1
Γ(n−α)

∫ z

0

ϕ(n)(t)
(z− t)α−n−1 dt,

turns out to satisfy

CDα
0+zβ =

Γ(1+ β )
Γ(1+ β −α)

zβ−α , n−1 < β , β ∈ N,

and
CDα

0+zk = 0, k = 0, . . . ,n−1.

The next results provide new insight for some kind of ordinary moment differential
equations.

LEMMA 1. Let M admit a nonzero proximate order, e be a kernel function asso-
ciated with M and m = (m(p))p∈N0 be the sequence of its moments. Then, for every

formal power series f̂ ∈ C[[z]] one has

τB̂m( f̂ )(τ) = B̂m

(
z∂m(z f̂ (z)

)
(τ).

The proof follows straightforward from the definitions of B̂m and ∂m . In the
forthcoming statement, for a monomial λ n the expression

(
z∂m(z ·))n is to be under-

stood as the operator computing the n -th iteration of the operator z∂m(z ·) that multi-
plies by z , then applies ∂m and again multiplies by z .
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THEOREM 2. Let M , e and m = (m(p))p�0 be as before. Let f̂ (z) = ∑p�1 fpzp ∈
C[[z]] be a formal power series. The following statements are equivalent:

(1) f̂ is the formal solution of P
(
z∂m(z ·))y = g(z) , for some polynomial P ∈ C[z]

with P(0) 
= 0 and some g ∈ C{z} .

(2) There exist r ∈ N , complex numbers a1, . . . ,ar and positive constants C,M such
that ∣∣∣ f j

m( j)
−

j−1

∑
k= j−r

a j−k
fk

m(k)

∣∣∣� CM j

m( j)
(4)

holds for every j > r .

(3) f̂ is M-summable in any direction d but the arguments of the roots of a polyno-
mial

h(z) = 1−a1z− . . .−arz
r,

and its sum, say f ∈ O(Sd) for some sector Sd of opening larger than πω(M) ,
is an actual solution of the problem P

(
z∂m(z ·))y = g(z) , for some polynomial

P ∈ C[z] , with P(0) 
= 0 , and some g ∈ C{z} which do not depend on the choice
of d .

Proof. (1) ⇒ (2) We assume that f̂ is a formal solution of P
(
z∂m(z ·))y = g(z)

for some polynomial P ∈ C[z] , with P(0) 
= 0, and some g ∈ C{z} . Up to multi-
plication by a constant factor, we may assume without loss of generality that P(z) =
1−∑r

p=1 apzp and g(z) = ∑∞
p=0 bpzp . It is clear that

(z∂m(z ·))
(

∑
p�1

fpz
p

)
= ∑

p�2

m(p) fp−1

m(p−1)
zp

and, by induction on k ∈ N ,

(z∂m(z ·))k

(
∑
p�1

fpz
p

)
= ∑

p�k+1

m(p) fp−k

m(p− k)
zp,

for every k � 2. If one plugs f̂ into the equation, then for j > r the coefficient of z j in
P
(
z∂m(z ·)) f̂ is

f j −m( j)
j−1

∑
k= j−r

a j−k
fk

m(k)
,

which should equal b j . Since g converges, there exist C,K > 0 with |bp| � CKp for
every p ∈ N , and so for every j > r ,

∣∣∣ f j

m( j)
−

j−1

∑
k= j−r

a j−k
fk

m(k)

∣∣∣� CK j

m( j)
,
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as desired.
(2)⇒ (3) Consider the formal Borel transform of f̂ , B̂m f̂ (z) = ∑p�1 fp+1m(p+

1)zp/m(p) , and the polynomial h(z)= 1−a1z− . . .−arzr . If we put f0 := 0,. . . , f1−r :=
0, it is clear that

h(z) · B̂m f̂ (z) = ∑
j�1

( f j

m( j)
−

j−1

∑
k= j−r

a j−k
fk

m(k)

)
z j.

The estimates in (4) imply the series on the right-hand side, say b(z) = ∑ j�1 b jz j/m( j) ,
defines an entire function which, taking into account the equivalence of M and the
sequence of moments, and by the definition of the auxiliary function ωM(t) , turns out
to satisfy estimates as those in (1). The same is true then for the function b(z)/h(z)
(holomorphic in C with the roots of h deleted, in particular, in a neighborhood of the
origin) in any open unbounded sector with vertex at 0 and not containing any of these
roots. So, f̂ is M-summable in every direction d which is not an argument of any
of the roots of h , as desired. Let f be the M -sum of f̂ in an appropriate direction
d ∈ R , defined in a sector Sd of opening larger than πω(M) . According to previous
computations, the coefficient of z j in h(z∂m(z ·)) f̂ is

f j −m( j)
j−1

∑
k= j−r

a j−k
fk

m(k)
= b j.

Put g(z) := ∑ j�1 b jz j , which belongs to C{z} . We have that h(z∂m(z ·)) f̂ (z)− g(z)
is the null formal power series. The stability properties of M -asymptotic expansions
with respect to sums and products guarantee that h(z∂m(z ·)) f (z)− g(z) admits null
M-asymptotic expansion in S̃d , and by Watson’s Lemma we conclude that f solves
the equation h(z∂m(z ·))y = g(z) in Sd .

(3)⇒ (1) Since f̂ is the asymptotic expansion of f in a suitable sector, it is read-
ily deduced from the elementary properties of asymptotic expansions that, whenever f
solves the differential equation, f̂ also solves the corresponding formal one. �

We may easily deduce the following corollary, treating the case of a polynomial
inhomogeneous term.

COROLLARY 2. Let M , e and m = (m(p))p�0 be as before.
Let f̂ (z) = ∑p�1 fpzp ∈ C[[z]] be a formal power series. The following statements

are equivalent:

(1) f̂ is the formal solution of P
(
z∂m(z ·))y = Q(z) , for some polynomials P,Q ∈

C[z] with P(0) 
= 0 .

(2) There exist r ∈ N and complex numbers a1, . . . ,ar such that

f j

m( j)
=

j−1

∑
k= j−r

a j−k
fk

m(k)
(5)

holds for every j > r .
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(3) f̂ is M-summable in any direction d but the arguments of the roots of a polyno-
mial

h(z) = 1−a1z− . . .−arz
r,

and its sum, say f ∈ O(Sd) for some sector Sd of opening larger than πω(M) ,
is an actual solution of the problem P

(
z∂m(z ·))y = Q(z) , for some polynomials

P,Q ∈ C[z] with P(0) 
= 0 , which do not depend on the choice of d .

Proof. (1)⇒ (2) Without loss of generality, we may write P(z) = 1−∑r0
p=1 apzp ,

with ar0 
= 0, and Q(z) = ∑s
p=0 bpzp , with bs 
= 0. As in the previous proof, for j > r0

the coefficient of z j in P
(
z∂m(z ·)) f̂ is

f j −m( j)
j−1

∑
k= j−r

a j−k
fk

m(k)
,

which should equal 0 as long as j > s . So, in case s � r0 we put r := r0 , and (5) holds
for every j > r . Whenever s > r0 we define r := s and ar0+1 := 0, . . . ,as := 0, in such
a way that (5) again holds for every j > r .

(2) ⇒ (3) Consider the polynomial h(z) = 1− a1z− . . .− arzr . If we put f0 :=
0,. . . , f1−r := 0, it is clear by (5) that

h(z) · B̂m f̂ (z) =
r

∑
j=1

( f j

m( j)
−

j−1

∑
k= j−r

a j−k
fk

m(k)

)
z j,

so that the function B̂m f̂ is a rational function, holomorphic in C except for the roots
of h , and with exponential growth order 0 in any open unbounded sector with vertex
at 0 and not containing any of these roots. So, f̂ is M-summable in every direction d
which is not an argument of any of the roots of h . Consider the polynomial

Q(z) =
r

∑
j=1

(
f j −m( j)

j−1

∑
k= j−r

a j−k
fk

m(k)

)
z j.

As before, Watson’s lemma guarantees that its sum solves the equation P(z∂m(z ·))y =
Q(z) in a suitably wide sector Sd , bisected by d , where it is defined.

(3) ⇒ (1) Immediate. �
The rest of this section is devoted to the study of necessary and sufficient con-

ditions for a formal power series to be a solution of a family of ordinary differential
equations induced by some polynomial differential operators. As we will see, it is
natural to restrict attention to values s := 1/k ∈ N for the Gevrey order. Moreover,
this formal solution turns out to be k -summable along appropriate directions which are
determined.

For this purpose, we give a property of formal Borel transforms which can be
found in the literature (see Proposition 4 in [17], for instance). Its proof is direct, so we
omit it.
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LEMMA 2. For every f̂ (z) ∈ C[[z]] , consider the modified Borel transform of or-
der k = 1/s, where s ∈ N , given by

B̃k f̂ (z) = ∑
p�0

fp
p!s

zp

(observe that B̃1 = B̂1 ). The following formal equality holds:

τB̃k( f̂ )(τ) = B̃k
(
z(z∂z +1)s f̂ (z)

)
(τ).

REMARK 2. For what follows, we need to take into account that not only the
sequences (Γ(1+ sp))p∈N0 and (p!s)p∈N0 are equivalent, but the second one is also a
sequence of moments for a suitable kernel of k -summability, as defined by W. Balser [1,
Section 5.5]. This last statement stems from [1, Theorem 31], since (p!)p∈N0 is a
sequence of moments, and any other sequence which may be expressed as a finite term-
by-term product of several moment sequences is again a moment sequence. Moreover, a
series f̂ (z) = ∑p�0 fpzp is k -summable in direction d if, and only if, its modified Borel

transform of order k , B̃k f̂ (z) , satisfies the same properties indicated in Example 1 for
the classical Borel transform, in particular the estimates in (2).

We are ready to state our next two results, which are particular versions of Theo-
rem 2 and Corollary 2, respectively.

THEOREM 3. Let f̂ (z) = ∑p�1 fpzp ∈ C[[z]] be a formal power series and s =
1/k ∈ N . The following statements are equivalent:

(1) f̂ is the formal solution of P
(
z(z∂z +1)s

)
y = g(z) , for some polynomial P∈ C[z]

with P(0) 
= 0 and some g ∈ C{z} .

(2) There exist r ∈ N , complex numbers a1, . . . ,ar and positive constants C,M such
that ∣∣∣ f j

j!s
−

j−1

∑
k= j−r

a j−k
fk
k!s

∣∣∣� CM j

j!s
(6)

holds for every j > r .

(3) f̂ is k -summable in any direction d but the arguments of the roots of a polyno-
mial

h(z) = 1−a1z− . . .−arz
r,

and its sum, say f ∈ O(Sd) for some sector Sd of opening larger than π/k , is
an actual solution of the problem P

(
z(z∂z + 1)s

)
y = g(z) , for some polynomial

P ∈ C[z] , with P(0) 
= 0 , and some g ∈ C{z} which do not depend on the choice
of d .
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Proof. (1) ⇒ (2) It suffices to check by induction that for every m ∈ N one has

(
z(z∂z +1)s)m(∑

p�1
fpz

p

)
= ∑

p�m+1

( p!
(p−m)!

)s
fp−mzp,

and then repeat the proof in Theorem 2 for the corresponding implication.
(2) ⇒ (3) For the modified Borel transform of order k of f̂ and the polynomial

h(z) = 1−a1z− . . .−arzr we obtain

h(z) · B̃k f̂ (z) = ∑
j�1

( f j

j!
−

j−1

∑
k= j−r

a j−k
fk
k!

)
z j

(with f0 := 0,. . . , f1−r := 0). By (6), the series on the right-hand side defines an entire
function of exponential order less than or equal to k , and by Remark 2 we deduce that
f̂ is k -summable in every direction d which is not an argument of any of the roots of h .
Moreover, the k -sum of f̂ is a solution of the differential equation, again by Watson’s
Lemma.

(3) ⇒ (1) Trivial. �

COROLLARY 3. Let f̂ (z) = ∑p�1 fpzp ∈ C[[z]] be a formal power series and s =
1/k ∈ N . The following statements are equivalent:

1.- f̂ is the formal solution of P
(
z(z∂z +1)s

)
y = Q(z) , for some polynomials P,Q ∈

C[z] , with P(0) 
= 0 .

2.- There exist r ∈ N and a1, . . . ,ar ∈ C such that f̂ verifies the recursion formula

f j

j!s
=

j−1

∑
k= j−r

a j−k
fk
k!s

(7)

for every j > r .

3.- f̂ is k -summable in any direction d but the arguments of the roots of a polyno-
mial

1−arz− . . .−a1z
r,

and its sum, say f ∈ O(Sd) for some sector Sd of opening larger than π/k , is
an actual solution of the problem P

(
z(z∂z +1)s

)
y = g(z) , for some polynomials

P,Q ∈ C[z] , with P(0) 
= 0 , which do not depend on d .

Proof. It resembles that of Corollary 2, resting now on Theorem 3. �

EXAMPLE 2. A classical example is given by the Euler series

ĝ(z) = ∑
p�0

(−1)pp!zp+1,



ON THE SUMMABILITY OF A CLASS OF FORMAL POWER SERIES 1113

which turns out to be a formal solution of the differential equation

z2y′ + y = z. (8)

On the other hand, the function

g(z) =
∫ ∞

0

e−t/z

1+ t
dt

is holomorphic in the sector S0(1) , and it is not difficult to check that g is a solution of
(8). Observe that

∫ ∞

0

e−t/z

1+ t
dt−

N−1

∑
p=0

(−1)pp!zp+1 = (−1)N
∫ ∞

0
e−t/z tN

1+ t
dt, z ∈ S0(1),

so that ∣∣∣∣∫ ∞

0
e−t/z tN

1+ t
dt

∣∣∣∣� N!|z|N+1, z ∈ S0(1).

Indeed, by rotating the half-line of integration the definition of g can be analytically
extended to wider sectors in which g is the unique (by Watson’s Lemma) holomorphic
function admitting ĝ as its Gevrey asymptotic expansion of order 1, and so ĝ is 1-
summable in direction d = 0 with sum g . The procedure in Example 1 may be applied
to f̂ (z) = ∑p�0(−1)pp!zp , observe that ĝ(z) = z f̂ (z) holds. Then the 1-sum of f̂ in
direction 0, say f , is computed according to (3), and we have that g(z) = z f (z) for
every z ∈ S0(1) , as expected.

In order to apply Corollary 3, one defines fp = (−1)pp! for p ∈ N and a1 = −1,
then

f j = ja1 f j−1

for every j > 1. As condition (7) holds for r = 1 and s = 1, one concludes that
f̂0 = ∑p�1(−1)pp!zp = f̂ −1 is 1-summable in every direction d but the argument of
the zeros of the equation 1−a1z = 0, i.e., 1+ z = 0, which is that of the negative real
axis. The polynomials appearing in Corollary 3 are P(z) = 1−a1z = 1+ z and Q(z) =
f1z = −z , and one may easily check that P(z(z∂z + 1)) f̂0 = z2( f̂0)′ + z f̂0 + f̂0 = −z ,
what, taking into account that ĝ = z(1+ f̂0) , amounts to z2(ĝ)′ + ĝ = z , as it should be
the case.

We mention an easy application of the previous result.

COROLLARY 4. Let a ∈ C and h ∈ N . The formal power series

f̂ (z) = ∑
p�0

(hp+1)!apzhp+1

is 1 -summable in any direction d which is not an argument for any of the h-th roots of
1/a.
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Proof. Of course, it is enough to reason with the series without its constant term.
Let us write fp for the coefficient of zp in f̂ . One can easily prove that

f j = j( j−1) . . . ( j−h+1)a f j−h

for every j > h . So, one can take r = h , a1 = a2 = . . . = ah−1 = 0 and ah = a , and
apply Corollary 3. One obtains that f̂ is 1-summable in every direction but the ones
given by the arguments of the complex numbers which verify 1−azh = 0, i.e., the h -th
roots of 1/a . �

REMARK 3. We will say some words about the Stokes’ phenomenon. We start
with the situation in Theorem 3 for s = 1. With the notation in the implication (2) ⇒
(3) , we have that the formal Borel transform of order 1 of f̂ , B̂1 f̂ (z) = ∑p�1 fpzp/p! ,
equals b(z)/h(z) , where h(z) = 1− a1z− . . .− arzr . Consider a singular direction d0

for the 1-summability of f̂ , given by an argument of some of the roots of h , and sup-
pose the directions in (d1,d2)\ {d0} are nonsingular. Our aim is to describe the jump
between the two solutions of the equation, which we denote by f−d0

and f +
d0

, obtained

as 1-sums of f̂ in directions d− ∈ (d1,d0) and, respectively, in directions d+ ∈ (d0,d2)
(the sums in different directions within one of these intervals glue together to define
a solution in a wide sector). Observe that, due to our knowledge about the region of
convergence of the Laplace transforms involved in the 1-sum, it is clear that for every
ε ∈ (0,1) there exists rε > 0 such that the sector S := Sd0(1−ε,rε ) is contained in the
intersection of the domains of definition of the corresponding functions f−d0

and f +
d0

.
Take z ∈ S , then there exist d− ∈ (d1,d0) and d+ ∈ (d0,d2) such that, according to (3)
for k = 1,

f−d0
(z) =

1
z

∫ ∞(d−)

0

b(u)
h(u)

e−u/z du, f +
d0

(z) =
1
z

∫ ∞(d+)

0

b(u)
h(u)

e−u/z du,

and so the jump is

f +
d0

(z)− f−d0
(z) =

1
z

∫ ∞(d+)

0

b(u)
h(u)

e−u/z du− 1
z

∫ ∞(d−)

0

b(u)
h(u)

e−u/z du

= lim
R→∞

(
1
z

∫
[0,R]eid+

b(u)
h(u)

e−u/z du− 1
z

∫
[0,R]eid−

b(u)
h(u)

e−u/z du

)
, (9)

where [0,R]eid− , respectively [0,R]eid+
, stands for the directed segment joining 0 and

Reid− , resp. Reid+
. We choose R larger than the modulus of any of the zeros of

the function h . Consider now the circular arc γR parameterized by γR(t) = Reit , t ∈
[d−,d+] . Due to the exponential decrease of the function under the integral sign, it is
straightforward to check that

lim
R→∞

1
z

∫
γR

b(u)
h(u)

e−u/z du = 0.
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Hence, for the closed path ΓR := [0,R]eid− + γR − [0,R]eid+
we may write, taking into

account (9),

f +
d0

(z)− f−d0
(z) = − lim

R→∞

1
z

∫
ΓR

b(u)
h(u)

e−u/z du.

By Cauchy’s Theorem, the last integral equals 2π i times the sum of the residues of the
inner function in the singularities lying within the curve ΓR . Due to our choice of R ,
this sum remains constant as R→ ∞ and it takes into account the residues in the finitely
many zeros of the function h lying on the direction d0 , so it may be easily computed
in concrete cases. In general, we may only be more specific under some simplifying
assumption: For example, suppose α0 is the only zero of h with argument d0 . In case
it is moreover a simple zero, we deduce that

f +
d0

(z)− f−d0
(z) = −2π ires

(
b(u)
zh(u)

e−u/z,α0

)
= −2π i

b(α0)
h′(α0)

1
z
e−α0/z.

If α0 is a zero of order greater than one, we may write

1
z
e−u/z = e−α0/z

∞

∑
k=0

(−1)k

k!zk+1 (u−α0)k, u 
= α0;

after expanding b(u)/h(u) in its Laurent expansion around u = α0 and multiplying
both expressions, we see that the jump will be a finite linear combination of functions
of the type z−me−α0/z with m ∈ N . In either case, since e−α0/z is exponentially flat in
the half-plane bisected by direction d0 (the argument of α0 ), we observe that the jump
also is exponentially flat in S , what agrees with the fact that the functions f +

d0
and f−d0

share the same 1-Gevrey asymptotic expansion, f̂ , in the corresponding sectors.
Similar comments could be made about the jump between neighboring solutions

for the case s � 2, but we will not provide further details.
We may also describe the Stokes’ phenomenon in the situation of Theorem 2. Now

the formal m -Borel transform of f̂ is b(z)/h(z) . Following the previous terminology
and notation, for every z in the sector S contained in the intersection of the corre-
sponding domains of definition, the solutions at both sides of the singular direction d0

are

f−d0
(z) =

∫ ∞(d−)

0

b(u)
h(u)

e(u/z)
du
u

, f +
d0

(z) =
∫ ∞(d+)

0

b(u)
h(u)

e(u/z)
du
u

,

and so the jump is

f +
d0

(z)− f−d0
(z) = lim

R→∞

(∫
[0,R]eid+

b(u)
h(u)

e(u/z)
du
u

−
∫

[0,R]eid−
b(u)
h(u)

e(u/z)
du
u

)
.

Due to the exponential decrease of the function e(z) at infinity in suitable sectors, one
can check that

lim
R→∞

∫
γR

b(u)
h(u)

e(u/z)
du
u

= 0,



1116 A. LASTRA, J. SANZ AND J. R. SENDRA

and so

f +
d0

(z)− f−d0
(z) = − lim

R→∞

∫
ΓR

b(u)
h(u)

e(u/z)
du
u

.

Again by Cauchy’s Theorem, this limit is 2π i times the sum of the residues of the inner
function in the finitely many zeros of the function h lying on the direction d0 . If we
suppose α0 is the only zero of h with argument d0 and it is simple, we see that

f +
d0

(z)− f−d0
(z) = −2π ires

(
b(u)
uh(u)

e(u/z),α0

)
= −2π i

b(α0)
α0h′(α0)

e(α0/z).

As before, since e(α0/z) is M -flat in the unbounded sector bisected by d0 and with
opening πω(M) , we deduce that the jump is M -flat, as it should be the case for the
difference of two functions sharing a same M-asymptotic expansion.

4. Some results for q -difference equations

Concerning summability, one can deal with formal power series whose coeffi-
cients’ growth is not governed by a strongly regular sequence. This is the case of the
formal power series

∑
p�1

(−1)pq
p(p−1)

2 zp, (10)

which is a formal solution of the q -difference equation zy(qz)+ y(z) = z , but whose
coefficients have a too fast rate of growth. This behavior is quite natural when regarding
q -difference equations (see [20], [28] for example). The next definitions can be found
in [31].

DEFINITION 4. Let S = Sd(θ ,r) be a sector and q∈R with q > 1. We say a func-
tion f ∈ O(S) admits f̂ (z) = ∑∞

n=0 anzn ∈ C[[z]] as its q -Gevrey asymptotic expansion
in S if for every proper and bounded subsector T of S there exist A = A(T ) > 0 and
C = C(T ) > 0 such that for every n ∈ N0 one has

∣∣ f (z)− n−1

∑
p=0

apz
p
∣∣� CAnq

n(n−1)
2 |z|n, z ∈ T.

A formal power series with complex coefficients, f̂ (z) = ∑p�0 fpzp , is said to be q -

Gevrey (of order 1) if | fp| � CApq
p(p−1)

2 for every p ∈ N0 and suitable C,A > 0. In
this case, its formal q -Borel transform is defined by

B̂q f̂ (z) = ∑
p�0

q
−p(p−1)

2 fpz
p,

and it is convergent in a neighborhood of the origin.
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We put πq for the constant ln(q)∏p�0(1− q−p−1)−1 , and consider the Jacobi θ
function, holomorphic in C� := C\ {0} and defined by

θ (z) = ∑
p∈Z

q−
p(p−1)

2 zp, z ∈ C
�.

Jacobi theta function naturally appears in the context of q -difference equations, for
it satisfies the functional equation zqy(z) = y(qz) . Moreover, its growth at infinity is
stated in the following result (see [16] for the details).

LEMMA 3. There exists C > 0 such that for every z ∈ C� one has

|θ (z)| � C(1+ |z|)exp
( log2(|z|)

2log(q)

)
.

Suppose a formal power series f̂ (z) = ∑p�0 fpzp is q -Gevrey, and its formal q -
Borel transform converges to a holomorphic function ϕ (defined in a neighborhood
of the origin) which can be analytically continued to a function Φ in an unbounded
sector S with bisecting direction d ∈ R . In addition to this, we assume there exist
C > 0,μ ∈ R verifying that

|Φ(z)| � C|zμe
(log(z))2
2 ln(q) |, z ∈ S. (11)

In this situation, one can define the function

L d
q Φ(z) =

1
πq

∫ ∞(d)

0

Φ(ξ )

θ
(

ξ
z

) dξ
ξ

,

which turns out to be a holomorphic function in some sector S in the Riemann surface
of the logarithm R with opening larger than 2π . Moreover, L d

q Φ admits f̂ as its q -

Gevrey asymptotic expansion in S . Observe that for the sequence M = (q
p(p−1)

2 )p∈N0

the value ω(M) is ∞ , what implies that the asymptotic Borel map is not injective, no
matter what the opening of the sector is. So, L d

q Φ is not the only function admitting

f̂ as q -Gevrey asymptotic expansion in S ; however, as it is pointed out in [31], this is
the only function with that property in S whose variation is suitably prescribed. In this
situation, one may say that f̂ is q -Gevrey summable in direction d .

It is important to describe a q -analog of the properties of formal Borel transform.

LEMMA 4. For every f̂ (z) ∈ C[[z]] , the following formal equality holds:

τB̂q( f̂ )(τ) = B̂q((zσq) f̂ (z))(τ),

where σq stands for the dilation operator z �→ qz extended in the natural manner to
formal power series.

One can adapt the main result in the previous sections for this type of asymptotics.
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THEOREM 4. Let f̂ (z) = ∑p�1 fpzp ∈ C[[z]] be a formal power series.
The following statements are equivalent:

(1) f̂ is the formal solution of P(zσq)y = g(z) for some polynomials P with P(0) 
= 0
and some g ∈ C{z} .

(2) There exist r ∈ N , a1, . . . ,ar ∈ C and positive constants C,K such that

∣∣∣ f j

q j( j−1)/2
−

j−1

∑
k= j−r

a j−k
fk

qk(k−1)/2

∣∣∣� CK j

q j( j−1)/2
(12)

holds for every j > r .

(3) f̂ is q-Gevrey summable in any direction d but the arguments of the roots of a
polynomial

h(z) = 1−a1z− . . .−arz
r,

and its sum, say f ∈ O(Sd) for some sector Sd of opening larger than 2π , is
a quasi-solution of the problem P(zσq)y = g(z) , for some polynomial P ∈ C[z] ,
with P(0) 
= 0 , and some g ∈ C{z} which do not depend on the choice of d , in
the sense that P(zσq) f −g admits 0̂ as its q-Gevrey asymptotic expansion in Sd .

Proof. We omit many of the details, being analogous to those of the proofs of
Theorems 2 and 3. (1) ⇒ (2) can be obtained following the same argument.

(2) ⇒ (3) If we put h(z) = 1− a1z− . . .− arzr and f0 := 0,. . . , f1−r := 0, it is
clear that

h(z) · B̂q f̂ (z) = ∑
j�1

( f j

q j( j−1)/2
−

j−1

∑
k= j−r

a j−k
fk

qk(k−1)/2

)
z j.

By (12), the series on the right-hand side, say b(z) = ∑ j�1 b jz j/q j( j−1)/2 , defines an
entire function which, thanks to Lemma 3, is bounded above by CΘ(A|z|) for suitable
A,C > 0. The function b(z)/h(z) is similarly estimated in any open unbounded sector
with vertex at 0 and not containing any of the roots of h . This entails f̂ is q -Gevrey
summable in every direction d which is not an argument of any of the roots of h .

Let f be the q -Gevrey sum of f̂ in an appropriate direction d ∈ R , defined in a
sector Sd of opening larger than 2π . The coefficient of z j in h(zσq) f̂ is

f j −q j( j−1)/2
j−1

∑
k= j−r

a j−k
fk

qk(k−1)/2
= b j.

Put g(z) := ∑ j�1 b jz j , which belongs to C{z} . Since h(zσq) f̂ (z)− g(z) is the null
series, we see that h(zσq) f (z)− g(z) admits null q -Gevrey asymptotic expansion in
S̃d .

(3) ⇒ (1) Trivial. �
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REMARK 4. In this remark we recall the concept of variation stated in [31]: Given
a sector of opening larger than 2π , say S , and a function f defined in S , we define the
variation of f at a point z ∈ {w ∈ S : we2π i ∈ S} by var( f )(z) = f (ze2π i)− f (z) .

Under the notation adopted in this work, Theorem 8 in [31] reads as follows:
Suppose f̂ is such that φ := B̂q f̂ is holomorphic in a neighborhood of the origin and
it can be analytically continued to a function Φ defined in a sector S with bisecting
direction d ∈ R , in such a way that (11) holds for some C > 0 and μ ∈ R . Then
the function f (z) := L d

q Φ(z) is the only one admitting f̂ as its q -Gevrey asymptotic
expansion and verifying that

var f (x) =
2π i
πq

∑
n∈Z

(−1)nq−n(n+1)/2φ(−qnx).

So, preserving the notations in the proof of the previous result, one can affirm that
in the case that

∑
n∈Z

(−1)nq−
n(n−1)

2

[
r

∑
j=1

a jz
jq j−1 b(−qn+ jz)

h(−qn+ j)

]
≡ 0, (13)

then f is an actual solution of the problem h(zσq) f (z) = g(z) .

EXAMPLE 3. Concerning the series (10), which appears in [31], one can put r = 1

and a1 = (−1) , so that f j = a1q j−1 f j−1 for every j � 1, with f j = (−1) jq
j( j−1)

2 . One
has that (10) is q -Gevrey summable in all directions d but d = −π .

The equation (13) is satisfied in this example, as expected because the function
f constructed in Theorem 4 turns out to be a solution of the q -difference equation
zy(qz)+ y(z)) = z . Condition (13) reads as follows in this particular example: h(z) =
1+ z , b(z) = −z , and then

∑
n∈Z

(−1)nq−
n(n−1)

2

[
(−1)z

b(−qn+1z)
h(−qn+1)

]
≡ 0

if and only if

∑
n∈Z

(−1)nq−
n(n+1)

2
qn+1

1−qn+1 ≡ 0.

The previous fact is equivalent to

∑
n∈Z

(−1)n

q
n(n+1)

2

≡ 0,

which is verified due to the fact that the n -th term in the summation is canceled by the
term in position −n−1, for every n ∈ N0 .
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