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TAYLOR–TYPE EXPANSIONS IN TERMS
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(Communicated by C. P. Niculescu)

Abstract. The aim of this paper is to derive an extension of the Taylor theorem related to lin-
ear differential operators with constant coefficients. For this aim, using divided differences with
repeated arguments, the so-called characteristic element from the kernel of the differential oper-
ator is described. The extension of the Taylor theorem related to exponential polynomials and its
consequences are established with integral remainder terms as well as in the form of mean value
type theorems.

1. Introduction

There are two basic variants of the classical Taylor Theorem, which have a huge
number of applications and extensions in various settings.

Given a function f : I → R , which is n times differentiable at a ∈ I (where I is a
non-degenerate real interval), the polynomial Tn;a( f ) defined by

Tn;a( f )(x) :=
n

∑
j=0

f ( j)(a) · (x−a) j

j!
, (1)

is called the nth-order Taylor polynomial of the function f at the base point a .
The form with integral remainder term can be formulated as follows.

THEOREM 1.1. Let I be a real interval and let f : I → R be (n+ 1) times con-
tinuously differentiable. Then, for all a,x ∈ I ,

f (x) = Tn;a( f )(x)+
∫ x

a
f (n+1)(t) · (x− t)n

n!
dt.

The variant as an intermediate value theorem is the following assertion.
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THEOREM 1.2. Let I be a real interval and let f : I → R be (n+1) times differ-
entiable. Then, for all a,x ∈ I , there exists a point ξ between a and x such that

f (x) = Tn;a( f )(x)+ f (n+1)(ξ ) · (x−a)n+1

(n+1)!
. (2)

These two theorems are contained in most of the textbooks on basic analysis (see,
e.g., [2], [3], [10], [11]). There have been several papers where extensions, generaliza-
tions and applications of the above fundamental results can be found, cf. [1], [5], [7],
[6], [8], [9], [12].

The main content of these results is that they give a high order approximation of
the function f near the point a ∈ I in terms of the polynomial Tn;a( f ) defined by (1),
which is of at most degree n and therefore it is in the kernel of the differential operator
D given by D( f ) = f (n+1) .

It seems to be a natural problem to obtain similar approximations in terms of lin-
ear combinations of a given finite set of functions, in particular, in terms of exponential
polynomials, which span the kernel of a linear differential operator with constant coef-
ficients. Of course, the remainder term of such an approximation is of interest both in
integral form and in terms of a mean value theorem.

The aim of this paper is to accomplish the above goal and derive a general form
of the Taylor theorem related to a linear differential operator with constant coefficients.
For this aim, in Section 2, we describe the so-called characteristic element from the
kernel of the differential operator using divided differences with repeated arguments.
The main results, an extension of the Taylor theorem and its consequences with an
integral remainder term, are stated in Section 3, while mean value type extensions are
established in Section 4.

2. Auxiliary results on linear differential equations

Let K denote either the field of real or complex numbers. The imaginary unit in
C will be denoted by i .

Given an interval I ⊆ R , let CK(I) stand for the space of continuous K -valued
functions defined on I . If additionally n ∈ N , then let C n

K
(I) denote the space of n -

times continuously differentiable K -valued functions defined on I . For c = (c0, . . . ,cn)
in Kn+1 with cn = 1, let n th-order linear differential operator Dc : C n

K
(I) → CK(I) be

defined by the formula

Dc( f ) := cn f (n) + · · ·+ c1 f ′ + c0 f ( f ∈ C n
K
(I)). (3)

Let ωc ∈ C n
C
(R) denote the unique solution of the initial value problem

Dc(ωc) = 0, ω(�)
c (0) = δ�,n−1 (� ∈ {0, . . . ,n−1}). (4)

The function ωc will be called the characteristic solution of the differential equation
Dc(ω) = 0. One can see that if c ∈ Rn+1 , then ωc is real-valued and hence it belongs
to C n

R
(R) . Let Pc denote the characteristic polynomial of Dc , which is given by

Pc(λ ) := cnλ n + · · ·+ c1λ + c0 (λ ∈ C). (5)
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In order to provide a more or less explicit formula for Pc , we recall the notion of
divided differences and their limiting properties.

If D ⊆ K and n ∈ N , then let σn(D) denote the set

σn(D) := {(λ1, . . . ,λn) ∈ Dn | λi �= λ j for all i, j ∈ {1, . . . ,n} with i �= j}.

For f : D → C , and (λ1, . . . ,λn) ∈ σn(D) , the (n− 1)st order divided difference of f
at (λ1, . . . ,λn) is defined by

f (λ1, . . . ,λn) :=
n

∑
i=1

f (λi)
∏ j∈{1,...,n}\{i}(λi−λ j)

,

see [4] for more details and alternative definitions. To define divided differences with
repeated arguments, for λ ∈ C and m ∈ N , let (λ )m denote the m-tuple (λ , . . . ,λ ) ∈
Cm and, for n,k,m1, . . . ,mk ∈ N with m1 + · · ·+ mk = n and (λ1, . . . ,λk) ∈ σk(D) ,
denote

f ((λ1)m1 , . . . ,(λk)mk ) := lim
σn(D)�(μ1,...,μn)→((λ1)m1 ,...,(λk)mk )

f (μ1, . . . ,μn)

provided that the limit exists. In the following lemma, we compute divided differences
of f with repeated arguments under natural regularity assumptions.

LEMMA 2.1. Let D⊆K be open, let n,k,m1, . . . ,mk ∈N with m1 + · · ·+mk = n,
let (λ1, . . . ,λk) ∈ σk(D) and define the polynomials P1, . . . ,Pk,P : C → C by

Pi(λ ) := ∏
j∈{1,...,k}\{i}

(λ −λ j)mj (i ∈ {1, . . . ,k}) and P(λ ) :=
k

∏
j=1

(λ −λ j)mj .

(6)
If f : D → C is (mi −1) times continuously differentiable at λi for all i ∈ {1, . . . ,k} ,
then

f ((λ1)m1 , . . . ,(λk)mk ) =
k

∑
i=1

mi−1

∑
�=0

(P−1
i )(mi−1−�)(λi)
(mi −1− �)!

· f (�)(λi)
�!

. (7)

Furthermore,

f ((λ1)m1 , . . . ,(λk)mk ) =
k

∑
i=1

mi−1

∑
�=0

(
mi−1−�

∑
j=0

(−1) j j!Bmi−1−�, j
(
xi,1, . . . ,xi,mi−�− j

)
(mi −1− �)!x j+1

i,0

)
f (�)(λi)

�!
,

where

xi,α :=
α!

(mi + α)!
P(mi+α)(λi) (i ∈ {1, . . . ,k}, α ∈ {0, . . . ,mi}).

Proof. In what follows, the symbol ∂� will stand for differentiation with respect
to the variable λ� , where � ∈ {1, . . . ,k} .
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Using the well-known formula for divided differences with repeated arguments
and also the higher-order Leibniz Rule at the very last equality, we get

f ((λ1)m1 , . . . ,(λk)mk) =
( k

∏
�=1

∂m�−1
�

(m�−1)!

)
f (λ1, . . . ,λk)

=
( k

∏
�=1

∂m�−1
�

(m�−1)!

) k

∑
i=1

f (λi)
∏ j∈{1,...,k}\{i}(λi −λ j)

=
k

∑
i=1

( k

∏
�=1

∂m�−1
�

(m� −1)!

)
f (λi)

∏ j∈{1,...,k}\{i}(λi −λ j)

=
k

∑
i=1

∂mi−1
i

(mi −1)!

(
∏

�∈{1,...,k}\{i}

∂m�−1
�

(m�−1)!

)
f (λi)

∏ j∈{1,...,k}\{i}(λi−λ j)

=
k

∑
i=1

∂mi−1
i

(mi −1)!
f (λi)

(
∏

�∈{1,...,k}\{i}

∂m�−1
� (λi−λ�)−1

(m� −1)!

)

=
k

∑
i=1

∂mi−1
i

(mi −1)!
f (λi)

(
∏

�∈{1,...,k}\{i}
(λi−λ�)−m�

)

=
k

∑
i=1

(P−1
i · f )(mi−1)(λi)

(mi −1)!

=
k

∑
i=1

mi−1

∑
�=0

(P−1
i )(mi−1−�)(λi)
(mi −1− �)!

· f (�)(λi)
�!

.

This proves the first equality of the lemma.
By applying the Faà di Bruno formula (see [3]) for the computation of the (mi −

1− �) th-order derivative of P−1
i = Q◦Pi (with Q(u) := u−1 ), we have

(P−1
i )(mi−1−�)(λi) =

mi−1−�

∑
j=0

(−1) j j!

Pj+1
i (λi)

Bmi−1−�, j(P′
i (λi), . . . ,P

(mi−�− j)
i (λi)).

For i ∈ {1, . . . ,k} and λ ∈ C , we have that P(λ ) = (λ −λi)miPi(λ ) . Thus, using the
higher-order Leibniz Rule again, for � � 0 and i ∈ {1, . . . ,k} , we obtain

P(mi+�)(λi) =
mi+�

∑
j=�

(
mi + �

j

)
mi!

( j− �)!
(λi−λi) j−�P( j)

i (λi) =
(mi + �)!

�!
P(�)

i (λi).

Applying these equalities, for i ∈ {1, . . . ,k} , we conclude that

(P−1
i )(mi−1−�)(λi)

=
mi−1−�

∑
j=0

(−1) j
j!Bmi−1−�, j

( 1!
(mi+1)!P

(mi+1)(λi), . . . ,
(mi−�− j)!
(2mi−�− j)!P

(2mi−�− j)(λi)
)

(
0!
mi!

P(mi)(λi)
) j+1 .

Substituting this expression into the first equality of the lemma, we get the second
asserted formula. �
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REMARK 2.2. The i th term of the first (equivalently, of the second) formula of
the lemma becomes very simple in the particular cases when 1 � mi � 3. Indeed,

mi−1

∑
�=0

(P−1
i )(mi−1−�)(λi)
(mi −1− �)!

· f (�)(λi)
�!

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
P′(λi)

f (λi) if mi = 1,

2
P′′(λi)

f ′(λi)− 2P′′′(λi)
3P′′(λi)2 f (λi) if mi = 2,

3
P′′′(λi)

f ′′(λi)− 3P(4)(λi)
2P′′′(λi)2 f ′(λi)+

(
3P(4)(λi)2

8P′′′(λi)3 − 3P(5)(λi)
10P′′′(λi)2

)
f (λi) if mi = 3.

LEMMA 2.3. Let n∈N , c = (c0, . . . ,cn)∈Kn+1 with cn = 1 , and let λ1, . . . ,λk ∈
C be pairwise distinct roots of the characteristic polynomial Pc with multiplicities
m1, . . . ,mk ∈ N , respectively. Then

ωc(t) =
k

∑
i=1

mi−1

∑
�=0

(P−1
i )(mi−1−�)(λi)
(mi−1− �)!

· t
� exp(λit)

�!
,

where Pi is defined by (6).

Proof. From the theory of higher-order linear ordinary differential equations, it
follows that the functions t� exp(λit) (where i ∈ {1, . . . ,k} and � ∈ {0, . . . ,mi − 1} )
form a fundamental system of solutions to the linear differential equation Dc(ω) = 0.
Therefore, any linear combination of them is a solution, which proves that Dc(ωc) = 0
holds. To complete the proof, we need to show that ωc also satisfies the initial value

condition ω( j)
c (0) = δ j,n−1 for all j ∈ {0, . . . ,n−1} .

Denote Et(λ ) := exp(λ t) . Then, for all � � 0, we have that E(�)
t (λ ) = t� exp(λ t) .

Therefore, using the definition of ωc and the previous lemma, we can conclude that

ωc(t) =
k

∑
i=1

mi−1

∑
�=0

(P−1
i )(mi−1−�)(λi)
(mi −1− �)!

· E(�)
t (λi)
�!

= Et((λ1)m1 , . . . ,(λk)mk ) = lim
σn(D)�(μ1,...,μn)→((λ1)m1 ,...,(λk)mk )

Et(μ1, . . . ,μn).

Thus, for � � 0, we obtain

ω( j)
c (t) =

d j

dt j

(
lim

σn(D)�(μ1,...,μn)→((λ1)m1 ,...,(λk)mk )
Et(μ1, . . . ,μn)

)

= lim
σn(D)�(μ1,...,μn)→((λ1)m1 ,...,(λk)mk )

d j

dt j Et(μ1, . . . ,μn)
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= lim
σn(D)�(μ1,...,μn)→((λ1)m1 ,...,(λk)

mk )

d j

dt j

n

∑
i=1

exp(μit)
∏�∈{1,...,n}\{i}(μi − μ�)

= lim
σn(D)�(μ1,...,μn)→((λ1)m1 ,...,(λk)mk )

n

∑
i=1

μ j
i exp(μit)

∏�∈{1,...,n}\{i}(μi − μ�)
.

Finally, substituting t = 0, we arrive at

ω( j)
c (0) = lim

σn(D)�(μ1,...,μn)→((λ1)m1 ,...,(λk)mk )

n

∑
i=1

μ j
i

∏�∈{1,...,n}\{i}(μi − μ�)
.

Observe that the sum in the above expression is equal to the (n− 1)st-order divided
difference of the j th monomial function at (μ1, . . . ,μn) . Therefore, this sum and hence
its limit are equal to δ j,n−1 if j ∈ {0, . . . ,n−1} . �

For the formulation of some consequences of our main results, for n ∈ N , k ∈ N0

with k < n and γ ∈ C , we define the function ζn,k,γ : R → R by

ζn,k,γ(t) :=
∞

∑
i=0

γ it i(n−k)+n

(i(n− k)+n)!
. (8)

By applying the ratio test, it follows that the series is convergent for all t ∈ R . For
further properties, we have the following statement.

LEMMA 2.4. Let n ∈ N , k ∈ N0 with k < n and γ ∈ C . Then, the function ζn,k,γ
is the (unique) solution of the initial value problem

ζ (n+1) = γζ (k+1), ζ (i)(0) = δi,n (i ∈ {0, . . . ,n}). (9)

In addition, if j ∈ {0, . . . ,k} , then

ζ ( j)
n,k,γ = ζn− j,k− j,γ . (10)

If γ �= 0 , then, for all t ∈ R ,

ζn,k,γn−k(t) = γ−nζn,k,1(γt). (11)

Furthermore, for all t ∈ R ,

ζn,k,0(t) =
tn

n!
, ζn,0,1(t) = −1+

1
n

n−1

∑
j=0

exp

(
cos
(2π j

n

)
t

)
· cos

(
sin
(2π j

n

)
t

)
.

(12)

Proof. The unique solvability of (9) is a consequence of standard results of the
theory of linear differential equations. It is easy to see that ζ = ζn,k,γ satisfies the
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initial value conditions. To see that it fulfills the differential equation in (9), we have
the following computation:

ζ (n+1)
n,k,γ (t) =

( ∞

∑
i=0

γ it i(n−k)+n

(i(n− k)+n)!

)(n+1)

=
∞

∑
i=1

γ it i(n−k)−1

(i(n− k)−1)!

= γ
∞

∑
i=1

γ i−1ti(n−k)−1

(i(n− k)−1)!
= γ

∞

∑
i=0

γ it(i+1)(n−k)−1

((i+1)(n− k)−1)!

= γ
∞

∑
i=0

γ it i(n−k)+n−k−1

(i(n− k)+n− k−1)!
= γ
( ∞

∑
i=0

γ it i(n−k)+n

(i(n− k)+n)!

)(k+1)

= γζ (k+1)
n,k,γ (t).

For the proof of (10) when j ∈ {0, . . . ,k} , observe that

ζ ( j)
n,k,γ(t) =

( ∞

∑
i=0

γ it i(n−k)+n

(i(n− k)+n)!

)( j)

=
∞

∑
i=0

γ it i(n−k)+n− j

(i(n− k)+n− j)!

=
∞

∑
i=0

γ it i((n− j)−(k− j))+n− j

(i((n− j)− (k− j))+n− j)!
= ζn− j,k− j,γ(t).

We now show that (11) holds for γ �= 0. Indeed,

γ−nζn,k,1(γt) = γ−n
∞

∑
i=0

(γt)i(n−k)+n

(i(n− k)+n)!
=

∞

∑
i=0

(γn−k)it i(n−k)+n

(i(n− k)+n)!
= ζn,k,γn−k(t).

The formula stated for ζn,k,0 in (12) is obvious. To compute ζn,0,1 , we use the fact
that this function is the unique solution ζ : R → R of the initial value problem

ζ (n+1) = ζ ′, ζ (�)(0) = δ�,n (� ∈ {0, . . . ,n}).

The characteristic polynomial of this linear differential equation is P(λ ) = λ n+1−λ =
(λ n − 1)λ . The roots of this polynomial are the n th roots of unity, λ j = exp(i 2π j

n ) =
cos( 2π j

n )+ isin( 2π j
n ) =: α j + iβ j , where j ∈ {0, . . . ,n−1} and λn = 0.

Using that P(λ ) = λ n+1−λ and that λn = 0 and λ n
j = 1 for all j < n , Lemma 2.3

implies that

ζ (t) =
n

∑
j=0

exp(λ jt)
(n+1)λ n

j −1
= −1+

n−1

∑
j=0

exp(λ jt)
(n+1)λ n

j −1
= −1+

1
n

n−1

∑
j=0

exp(λ jt).

Taking into consideration that ζ is real valued, it follows that

ζ (t) = −1+
1
n

n−1

∑
j=0

ℜ(exp(λ jt)) = −1+
1
n

n−1

∑
j=0

exp

(
cos
(2π j

n

)
t

)
· cos

(
sin
(2π j

n

)
t

)
,

which proves the second formula in (12). �
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3. A generalization of the Taylor theorem

Our first main result can be stated as follows.

THEOREM 3.1. Let n∈ N , c = (c0, . . . ,cn) ∈ Kn+1 with cn = 1 , and assume that
f : I → K is (n−1) times differentiable at a ∈ I . Define Ta,c f : R → K by

(Ta,c f )(x) :=
n−1

∑
j=0

(
f ( j)(a)

n−1− j

∑
i=0

ci+ j+1ω(i)
c (x−a)

)
,

where ωc is defined by (4). Then, Ta,c f belongs to the kernel of Dc and

f (�)(a) = (Ta,c f )(�)(a) (� ∈ {0, . . . ,n−1}). (13)

The function Ta,c f is termed the generalized Taylor polynomial at the point a with
respect to the differential operator Dc .

Proof. The characteristic function ωc satisfies the differential equation (3), i.e.,
we have

cnω(n)
c + · · ·+ c1ω ′

c + c0ωc = 0. (14)

Differentiating this equality i times (where i ∈ N), we can see that ω(i)
c also solves the

differential equation (3). It is also obvious that the function ω(i)
c with the translated

argument (x− a) is still a solution to (3). Therefore, Ta,c f is a linear combination of
solutions of the differential equation (3), which implies that Ta,c f belongs to the kernel
of Dc .

From the definition of the function Ta,c f , for � ∈ {0, . . . ,n−1} , we have that

(Ta,c f )(�)(a) =
n−1

∑
j=0

(
f ( j)(a)

n−1− j

∑
i=0

ci+ j+1ω(i+�)
c (0)

)
.

In order to prove that (13) holds, it is sufficient to verify that

n−1− j

∑
i=0

ci+ j+1ω(i+�)
c (0) = δ j,� ( j, � ∈ {0, . . . ,n−1}). (15)

Using the initial value conditions in (4), we get

n−1− j

∑
i=0

ci+ j+1ω(i+�)
c (0) =

n−1− j

∑
i=n−1−�

ci+ j+1ω(i+�)
c (0) =

n

∑
α=n+ j−�

cα ω(α+�− j−1)
c (0). (16)

If j > � , then n+ j−� > n , thus the summation is over the empty set, and therefore
(15) is trivially valid.

If j = � , then

n−1− j

∑
i=0

ci+ j+1ω(i+�)
c (0) =

n

∑
α=n

cα ω(α−1)
c (0) = cnω(n−1)

c (0) = 1,
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which proves that (15) holds in this case.
Finally, assume that j < � . Differentiating the equation (14) (�− j−1) times and

then evaluating it at 0 , we get

0 =
n

∑
α=0

cα ω(α+�− j−1)
c (0) =

n

∑
α=n+ j−�

cα ω(α+�− j−1)
c (0),

which, combined with (16), shows that (15) is also valid in this case. �

THEOREM 3.2. Let n ∈ N , c = (c0, . . . ,cn) ∈ Kn+1 with cn = 1 . Then, for all
f ∈ C n

K
(I) and x,a ∈ I , we have

f (x) = (Ta,c f )(x)+
∫ x

a
Dc( f )(t) ·ωc(x− t)dt. (17)

Proof. Let k ∈ {1, . . . ,n} be fixed. First we show that, for all j ∈ {0, . . . ,k} ,

∫ x

a
f (k)(t) ·ωc(x− t)dt =

j−1

∑
i=0

(
f (k−1−i)(x) ·ω(i)

c (0)− f (k−1−i)(a) ·ω(i)
c (x−a)

)

+
∫ x

a
f (k− j)(t) ·ω( j)

c (x− t)dt.

(18)

We show this equality by induction on j . Clearly, this equality holds if j = 0 (because
the domain of summation is then empty, and therefore the sum equals 0). Assume that
we have proved (18) for some j ∈ {0, . . . ,k−1} . Then, integrating by parts, we have

∫ x

a
f (k− j)(t) ·ω( j)

c (x− t)dt = f (k−1− j)(x) ·ω( j)
c (0)− f (k−1− j)(a) ·ω( j)

c (x−a)

+
∫ x

a
f (k−1− j)(t) ·ω( j+1)

c (x− t)dt.

Combining this equality with (18), we get

∫ x

a
f (k)(t) ·ωc(x− t)dt =

j

∑
i=0

(
f (k−1−i)(x) ·ω(i)

c (0)− f (k−1−i)(a) ·ω(i)
c (x−a)

)

+
∫ x

a
f (k−1− j)(t) ·ω( j+1)

c (x− t)dt,

which is exactly the statement (18) for j +1 and completes the induction.
Applying (18) for j = k , we get that

∫ x

a
f (k)(t) ·ωc(x− t)dt =

k−1

∑
i=0

(
f (k−1−i)(x) ·ω(i)

c (0)− f (k−1−i)(a) ·ω(i)
c (x−a)

)

+
∫ x

a
f (t) ·ω(k)

c (x− t)dt

(19)
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is valid for k ∈ {1, . . . ,n} and, trivially, also for k = 0. Multiplying (19) by ck and
adding up the equalities so obtained side by side, and applying (4), we get∫ x

a
Dc( f )(t) ·ωc(x− t)dt

=
n

∑
k=0

ck

∫ x

a
f (k)(t) ·ωc(x− t)dt

=
n

∑
k=0

ck

( k−1

∑
i=0

(
f (k−1−i)(x) ·ω(i)

c (0)− f (k−1−i)(a) ·ω(i)
c (x−a)

))

+
n

∑
k=0

ck

(∫ x

a
f (t) ·ω(k)

c (x− t)dt

)

=
n

∑
k=1

ck

( k−1

∑
i=0

(
f (k−1−i)(x) ·ω(i)

c (0)− f (k−1−i)(a) ·ω(i)
c (x−a)

))

+
∫ x

a
f (t) ·Dc(ωc)(x− t)dt

=
n

∑
k=1

k−1

∑
i=0

ck f (k−1−i)(x) ·ω(i)
c (0)−

n

∑
k=1

k−1

∑
i=0

ck f (k−1−i)(a) ·ω(i)
c (x−a)

= cn f (x)−
n−1

∑
j=0

(
f ( j)(a)

n−1− j

∑
i=0

ci+ j+1ω(i)
c (x−a)

)
= f (x)− (Ta,c f )(x).

This completes the proof of (17). �
The following result is a consequence of Theorem 3.2 in which the main part

contains the Taylor expansion of order k and the rest is in terms of the function ζn,k,γ .

THEOREM 3.3. Let n∈N , k∈N0 with k < n, and γ ∈K . Then, for all f ∈C n
K
(I)

and x,a ∈ I ,

f (x) =
k−1

∑
j=0

f ( j)(a)
(x−a) j

j!
+

n−1

∑
j=k

f ( j)(a)ζ (n− j)
n,k,γ (x−a)

+
∫ x

a
( f (n)(t)− γ f (k)(t))ζ ′

n,k,γ (x− t)dt.

(20)

Proof. Consider the particular case of Theorem 3.2 when cn = 1, ck = −γ , and
ci = 0 for i ∈ {0, . . . ,n− 1} \ {k} , i.e., when Dc( f ) = f (n) − γ f (k) . We show that

ωc = ζ ′
n,k,γ . The leading term of this power series is tn

n! , therefore, ζ (i+1)
n,k,γ (0) = δi,n−1

for all i ∈ {0, . . . ,n−1} . On the other hand,

Dc(ζ ′
n,k,γ )(t) = ζ (n+1)

n,k,γ (t)− γζ (k+1)
n,k,γ (t)

=
∞

∑
i=1

γ it i(n−k)−1

(i(n− k)−1)!
− γ

∞

∑
i=0

γ it(i+1)(n−k)−1

((i+1)(n− k)−1)!
= 0.
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Thus, we have obtained that ζ ′
n,k,γ is a solution of the initial value problem (4).

For j ∈ {0, . . . ,k−1} , we get

n−1− j

∑
i=0

ci+ j+1ω(i)
c (t) = cnζ (n− j)

n,k,γ (t)+ ckζ (k− j)
n,k,γ (t)

=
∞

∑
i=0

γ it i(n−k)+ j

(i(n− k)+ j)!
− γ

∞

∑
i=0

γ it(i+1)(n−k)+ j

((i+1)(n− k)+ j)!
=

t j

j!
.

Similarly, for j ∈ {k, . . . ,n−1} , we get

n−1− j

∑
i=0

ci+ j+1ω(i)
c (t) = cnζ (n− j)

n,k,γ (t).

Putting these formulas together, we can see that (17) simplifies to the equality (20),
which was to be proved. �

The subsequent results will be corollaries of Theorem 3.3. First we note that the
classical Taylor theorem with an integral remainder term follows from Theorem 3.3 by
taking k = 0 and γ = 0.

COROLLARY 3.4. For all f ∈ C 2
K
(I) and a,x ∈ I , we have

f (x) = f (a)cos(x−a)+ f ′(a)sin(x−a)+
∫ x

a
( f ′′(t)+ f (t))sin(x− t)dt. (21)

Proof. Let n = 2, k = 0 and γ = −1 in Theorem 3.3. Then, ζ2,0,−1(t) = 1−
cos(t) . Therefore, the equality (20) reduces to (21). �

COROLLARY 3.5. For all f ∈ C 2
K
(I) and a,x ∈ I , we have

f (x) = f (a)cosh(x−a)+ f ′(a)sinh(x−a)+
∫ x

a
( f ′′(t)− f (t))sinh(x− t)dt. (22)

Proof. Let n = 2, k = 0 and γ = 1 in Theorem 3.3. Then, ζ2,0,1(t) = cosh(t)−1.
Hence, the equality (20) simplifies to (22). �

COROLLARY 3.6. For all f ∈ C 4
K
(I) and a,x ∈ I , we have

f (x) = f (a)
cosh(x−a)+ cos(x−a)

2
+ f ′(a)

sinh(x−a)+ sin(x−a)
2

+ f ′′(a)
cosh(x−a)− cos(x−a)

2
+ f ′′′(a)

sinh(x−a)− sin(x−a)
2

+
∫ x

a
( f ′′′′(t)− f (t))

sinh(x− t)− sin(x− t)
2

dt.

(23)
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Proof. Let n = 4, k = 0 and γ = 1 in Theorem 3.3. Then, it is easy to see that

ζ4,0,1(t) =
∞

∑
i=0

t4i+ j

(4i+4)!
=

cosh(t)+ cos(t)
2

−1.

Thus, the equality (20) of Theorem 3.3 can be rewritten as (23). �

COROLLARY 3.7. Let α,β ∈ R with αβ (α2−β 2) �= 0 . Then, for all f ∈ C 4
K
(I)

and a,x ∈ I , we have

f (x) = f (a)
β 2 cos(α(x−a))−α2 cos(β (x−a))

β 2−α2

+ f ′(a)
β 3 sin(α(x−a))−α3 sin(β (x−a))

αβ (β 2 −α2)

+ f ′′(a)
cos(α(x−a))− cos(β (x−a))

β 2−α2

+ f ′′′(a)
β sin(α(x−a))−α sin(β (x−a))

αβ (β 2 −α2)

+
∫ x

a
( f ′′′′(t)+ (α2 + β 2) f ′′(t)+ α2β 2 f (t))

β sin(α(x− t))−α sin(β (x− t))
αβ (β 2−α2)

dt.

(24)

Proof. Let n = 4 and apply Theorem 3.2 in the setting c4 = 1, c3 = c1 = 0,
c2 = α2 +β 2 , c0 = α2β 2 , that is, when Dc( f ) = f ′′′′+(α2 +β 2) f ′′+α2β 2 f . Then the
corresponding characteristic polynomial is Pc(λ ) = λ 4 +(α2 + β 2)λ 2 + α2β 2 whose
roots are ±αi and ±β i . Therefore, sin(αx) , cos(αx) , sin(βx) , and cos(βx) form
a fundamental system of solutions for the differential equation Dc( f ) = 0. Then, the
characteristic solution ωc is given by

ωc(t) =
β sin(αt)−α sin(β t)

αβ (β 2−α2)
.

We can easily obtain

n−1− j

∑
i=0

ci+ j+1ω(i)
c (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β 2 cos(αt)−α2 cos(β t)
β 2 −α2 if j = 0,

β 3 sin(αt)−α3 sin(β t)
αβ (β 2−α2)

if j = 1,

cos(αt)− cos(β t)
β 2−α2 if j = 2,

β sin(αt)−α sin(β t)
αβ (β 2 −α2)

if j = 3.

Therefore, the equalities (17) and (24) turn out to be equivalent. �
The limiting case of the above corollary (i.e., when α2 = β 2 �= 0) is formulated

as follows.
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COROLLARY 3.8. Let α ∈ R with α �= 0 . Then, for all f ∈ C 4
K
(I) and a,x ∈ I ,

we have

f (x) = f (a)
2cos(α(x−a))+ α(x−a)sin(α(x−a))

2

+ f ′(a)
3sin(α(x−a))−α(x−a)cos(α(x−a))

2α

+ f ′′(a)
(x−a)sin(α(x−a))

2α
+ f ′′′(a)

sin(α(x−a))−α(x−a)cos(α(x−a))
2α3

+
∫ x

a
( f ′′′′(t)+2α2 f ′′(t)+ α4 f (t))

sin(α(x− t))−α(x− t)cos(α(x− t))
2α3 dt.

The proofs of this and of the next two corollaries are completely similar to that of
Corollary 3.7, and hence they are omitted. The results in terms of hyperbolic functions
in the next corollaries are analogous to Corollary 3.7 and Corollary 3.8 which are in
terms of trigonometric functions.

COROLLARY 3.9. Let α,β ∈ R with αβ (α2−β 2) �= 0 . Then, for all f ∈ C 4
K
(I)

and a,x ∈ I , we have

f (x) = f (a)
β 2 cosh(α(x−a))−α2 cosh(β (x−a))

β 2−α2

+ f ′(a)
β 3 sinh(α(x−a))−α3 sinh(β (x−a))

αβ (β 2−α2)

+ f ′′(a)
cosh(β (x−a))− cosh(α(x−a))

β 2−α2

+ f ′′′(a)
α sinh(β (x−a))−β sinh(α(x−a))

αβ (β 2−α2)

+
∫ x

a
( f ′′′′(t)−(α2 + β 2) f ′′(t)+ α2β 2 f (t))

× α sinh(β (x− t))−β sinh(α(x− t))
αβ (β 2 −α2)

dt.

(25)

COROLLARY 3.10. Let α ∈ R with α �= 0 . Then, for all f ∈ C 4(I) and a,x ∈ I ,
we have

f (x) = f (a)
2cosh(α(x−a))−α(x−a)sinh(α(x−a))

2

+ f ′(a)
3sinh(α(x−a))−α(x−a)cosh(α(x−a))

2α

+ f ′′(a)
(x−a)sinh(α(x−a))

2α

+ f ′′′(a)
α(x−a)cosh(α(x−a))− sinh(α(x−a))

2α3

+
∫ x

a
( f ′′′′(t)−2α2 f ′′(t)+ α4 f (t))

α(x− t)cosh(α(x− t))− sinh(α(x− t))
2α3 dt.
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4. A generalization of the Taylor mean value theorem

Before describing the mean value form of Theorem 3.2, we recall the extended
mean value theorem for integrals.

LEMMA 4.1. Let f : [a,b] → R be a continuous function and g : [a,b] → R a
nonnegative (or nonpositive) integrable function. Then there exists ξ ∈ [a,b] such that

∫ b

a
f g = f (ξ )

∫ b

a
g.

In the rest of this paper, for any continuous function h : R → R , let ρ+(h) ∈
[0,+∞] (resp. ρ−(h) ∈ [−∞,0]) denote the infimum of the positive roots (resp. the
supremum of the negative roots) of h .

LEMMA 4.2. Let n ∈ N and c = (c0, . . . ,cn) ∈ Rn+1 with cn = 1 . Then, for k ∈
{1, . . . ,n−1} ,

[ρ−(ω(k)
c ),ρ+(ω(k)

c )
]⊆ [ρ−(ω(k−1)

c ),ρ+(ω(k−1)
c )

]
. (26)

Furthermore, [ρ−(ω(n−1)
c ),ρ+(ω(n−1)

c )
]

is a neighborhood of 0 .

Proof. To prove (26), let k ∈ {1, . . . ,n− 1} and t ∈ [ρ−(ω(k)
c ),ρ+(ω(k)

c )
] \ {0} .

Assume first that t > 0. Then ω(k)
c does not vanish in the open interval ]0, t[ . There-

fore, ω(k−1)
c is strictly monotone on [0,t] . Hence, for all s ∈ ]0,t] , we have 0 =

ω(k−1)
c (0) �= ω(k−1)

c (s) , which shows that t ∈ [ρ−(ω(k−1)
c ),ρ+(ω(k−1)

c )
]
. This com-

pletes the proof of the inclusion in (26) for positive elements. For negative elements,
the proof is completely analogous.

We show that 0 is an interior point to the interval [ρ−(ω(n−1)
c ),ρ+(ω(n−1)

c )
]
. In

view of ω(n−1)
c (0) = 1, it follows that ω(n−1)

c is positive on [−r,r] for some r > 0.

Clearly, [−r,r] ⊆ [ρ−(ω(n−1)
c ),ρ+(ω(n−1)

c )
]
. �

THEOREM 4.3. Let n ∈ N , c = (c0, . . . ,cn) ∈ Rn+1 with cn = 1 . Then, for all
f ∈ C n

R
(I) and a,x ∈ I with ρ−(ωc) � x−a � ρ+(ωc) , there exists a point ξ between

a and x such that

f (x) = (Ta,c f )(x)+Dc( f )(ξ ) ·
∫ x−a

0
ωc(t)dt. (27)

Proof. In view of Theorem 3.2, we have that (17) holds. The statement is trivial if
x = a . Assume first that a < x . Then, by our assumption, x−a � ρ+(ωc) . If t ∈ ]a,x[ ,
then 0 < x− t < x− a and hence ωc(x− t) has the same sign for all t ∈ ]a,x[ . Using
this, by Lemma 4.1, we conclude that there exists a point ξ ∈ [a,x] such that∫ x

a
Dc( f )(t) ·ωc(x− t)dt = Dc( f )(ξ ) ·

∫ x

a
ωc(x− t)dt = Dc( f )(ξ ) ·

∫ x−a

0
ωc(t)dt.
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Using this equality, formula (17) implies the assertion.
In the case when x < a , the proof is analogous. �

THEOREM 4.4. Let n∈N , k∈N0 with k < n and γ ∈R and define ζn,k,γ : R→R

by (8). Then, for all f ∈ C n
R
(I) and x,a∈ I with ρ−(ζ ′

n,k,γ ) � x−a � ρ+(ζ ′
n,k,γ ) , there

exists a point ξ between a and x such that

f (x) =
k−1

∑
j=0

f ( j)(a)
(x−a) j

j!
+

n−1

∑
j=k

f ( j)(a)ζ (n− j)
n,k,γ (x−a)

+ ( f (n)(ξ )− γ f (k)(ξ ))ζn,k,γ (x−a).

(28)

Proof. Let the vector c ∈ Rn+1 be given by cn = 1, ck := −γ and c j = 0 other-
wise. Then Dc( f ) = f (n) − γ f (k) and, as we have seen it in the proof of Theorem 3.3,
the characteristic solution ωc of the differential equation Dc(ω) = 0 is equal to ζ ′

n,k,γ .
Assume first that a < x . Then, by our assumption, x−a � ρ+(ζ ′

n,k,γ ) . If t ∈ ]a,x[ ,
then 0 < x− t < x−a and hence ζ ′

n,k,γ (x− t) has the same sign for all t ∈ ]a,x[ . Using
this, by Lemma 4.1, we conclude that there exists a point ξ ∈ [a,x] such that∫ x

a
( f (n)(t)− γ f (k)(t))ζ ′

n,k,γ (x− t)dt = ( f (n)(ξ )− γ f (k)(ξ ))
∫ x

a
ζ ′

n,k,γ(x− t)dt

= ( f (n)(ξ )− γ f (k)(ξ ))ζn,k,γ (x−a).

By Theorem 3.3, we have formula (20), combining it with the above equality, we get
(28). �

The classical Taylor Mean Value Theorem (stated as Theorem 1.2 in the introduc-
tion) is the particular case of Theorem 4.4 when k = 0 and γ = 0. In this setting, we
have that ζn,0,0(t) = tn

n! and hence ρ±(ζ ′
n,0,0) = ±∞ and (28) simplifies to (2).

COROLLARY 4.5. For all f ∈ C 2
R
(I) and a,x ∈ I with |a− x|� π , there exists a

point ξ between a and x such that

f (x) = f (a)cos(x−a)+ f ′(a)sin(x−a)+ ( f ′′(ξ )+ f (ξ ))(1− cos(x−a)). (29)

Proof. Let n = 2, k = 0 and γ =−1 in Theorem 4.4. Then, ζ2,0,−1(t) = 1−cos(t)
and hence ρ±(ζ ′

2,0,−1) = ±π . Therefore, we can apply the statement of Theorem 4.4
and the equality (28) reduces to (29). �

To see that the condition |a−x|� π of the above corollary cannot be omitted, con-
sider the function f (x) := x . Then, for x = 2π and a = 0, the equality (29) simplifies
to 2π = ξ ·0, which cannot be valid for any ξ ∈ R .

COROLLARY 4.6. For all f ∈ C 2
R
(I) and a,x ∈ I , there exists a point ξ between

a and x such that

f (x) = f (a)cosh(x−a)+ f ′(a)sinh(x−a)+ ( f ′′(ξ )− f (ξ ))(cosh(x−a)−1). (30)
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Proof. Let n = 2, k = 0 and γ = 1 in Theorem 4.4. Then, ζ2,0,1(t) = cosh(t)−1
and hence ρ±(ζ ′

2,0,−1) = ±∞ . Therefore, we can apply the statement of Theorem 4.4
and the equality (28) simplifies to (30). �

COROLLARY 4.7. For all f ∈ C 4
R
(I) and a,x ∈ I , there exists a point ξ between

a and x such that

f (x) = f (a)
cosh(x−a)+ cos(x−a)

2
+ f ′(a)

sinh(x−a)+ sin(x−a)
2

+ f ′′(a)
cosh(x−a)− cos(x−a)

2
+ f ′′′(a)

sinh(x−a)− sin(x−a)
2

+( f ′′′′(t)− f (t))
cosh(x−a)+ cos(x−a)−2

2
.

(31)

Proof. Let n = 4, k = 0 and γ = 1 in Theorem 4.4. Then, one can easily see that

ζ4,0,1(t) =
cosh(t)+ cos(t)−2

2
and hence ρ±(ζ ′

4,0,1) = ±∞ . Thus, by applying the

statement of Theorem 4.4, the equality (28) can be rewritten as (31). �

COROLLARY 4.8. Let α,β ∈R with αβ (α2−β 2) �= 0 and let t0 be the smallest
positive root of the equation

β sin(αt) = α sin(β t). (32)

Then, for all f ∈ C 4
R
(I) and a,x ∈ I with |x−a|� t0 , there exists a point ξ between a

and x such that

f (x) = f (a)
β 2 cos(α(x−a))−α2 cos(β (x−a))

β 2 −α2

+ f ′(a)
β 3 sin(α(x−a))−α3 sin(β (x−a))

αβ (β 2−α2)

+ f ′′(a)
cos(α(x−a))− cos(β (x−a))

β 2−α2

+ f ′′′(a)
β sin(α(x−a))−α sin(β (x−a))

αβ (β 2−α2)

+ ( f ′′′′(ξ )+ (α2 + β 2) f ′′(ξ )+ α2β 2 f (ξ ))

× α2(cos(β (x−a))−1)−β 2(cos(α(x−a))−1)
α2β 2(β 2 −α2)

.

(33)

Proof. Let n = 4 and apply Theorem 4.3 in the setting c4 = 1, c3 = c1 = 0,
c2 = α2 + β 2 , c0 = α2β 2 , that is, when Dc( f ) = f ′′′′ +(α2 + β 2) f ′′ + α2β 2 f . Then
sin(αx) , cos(αx) , sin(βx) , and cos(βx) form a fundamental system of solutions for
the differential equation Dc( f ) = 0 and

ωc(t) =
β sin(αt)−α sin(β t)

αβ (β 2−α2)
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is a solution to the initial value problem (4). Observe that ρ±(ωc) = ±t0 . As we have
seen it in the proof of Corollary 3.7, the equalities in (24) hold. On the other hand,∫ x−a

0
ωc(t)dt =

α2(cos(β (x−a))−1)−β 2(cos(α(x−a))−1)
α2β 2(β 2−α2)

,

Therefore, we can apply Theorem 4.3 and hence there exists a point ξ between a and
x such that the equality (27) holds, which reduces to (33). �

REMARK 4.9. For the applicability of the previous corollary, it is essential to find
the zeroes of the equation (32). In general, beyond the trivial solution t = 0, the other
solutions cannot be established algebraically. On the other hand, if α

β is rational, say

|α
β | = n

m , where n,m are coprime natural numbers. Let s := |α |
n = |β |

m �= 0. Then
α = ±ns and β = ±ms and (32) is now equivalent to

msin(nst) = nsin(mst).

In the case when t = k
s π for some k ∈ N , then both sides are equal to zero. If t is not

of this form, then sin(st) �= 0, thus this equation can be rewritten as

mUn−1(cos(st)) = m
sin(nst)
sin(st)

= n
sin(mst)
sin(st)

= nUm−1(cos(st)),

where Uk denotes the k th degree Chebyshev polynomial of the second kind. Therefore,
the last equation is an algebraic equation for cos(st) . Solving this equation for cos(st) ,
the smallest positive solution t0 can easily be computed.

The limiting case of Corollary 4.8 (i.e., when α2 = β 2 �= 0) is formulated as
follows.

COROLLARY 4.10. Let α ∈ R with α �= 0 and let t0 be the smallest positive root
of the equation

sin(αt) = αt cos(αt). (34)

Then, for all f ∈ C 4
R
(I) and a,x ∈ I with |x−a|� t0 , there exists a point ξ between a

and x such that

f (x) = f (a)
2cos(α(x−a))+ α(x−a)sin(α(x−a))

2

+ f ′(a)
3sin(α(x−a))−α(x−a)cos(α(x−a))

2α

+ f ′′(a)
(x−a)sin(α(x−a))

2α

+ f ′′′(a)
sin(α(x−a))−α(x−a)cos(α(x−a))

2α3

+( f ′′′′(ξ )+2α2 f ′′(ξ )+ α4 f (ξ ))

× 2−2cos(α(x−a))−α(x−a)sin(α(x−a))
2α4 .

(35)
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The proof of this result is completely analogous to that of Corollary 4.8, therefore
it is omitted.

COROLLARY 4.11. Let α,β ∈R with αβ (α2−β 2) �= 0 . Then, for all f ∈C 4
R
(I)

and a,x ∈ I , there exists a point ξ between a and x such that

f (x) = f (a)
β 2 cosh(α(x−a))−α2 cosh(β (x−a))

β 2 −α2

+ f ′(a)
β 3 sinh(α(x−a))−α3 sinh(β (x−a))

αβ (β 2−α2)

+ f ′′(a)
cosh(β (x−a))− cosh(α(x−a))

β 2−α2

+ f ′′′(a)
α sinh(β (x−a))−β sinh(α(x−a))

αβ (β 2−α2)

+ ( f ′′′′(ξ )− (α2 + β 2) f ′′(ξ )+ α2β 2 f (ξ ))

× α2(cosh(β (x−a))−1)−β 2(cosh(α(x−a))−1)
α2β 2(β 2 −α2)

.

(36)

Proof. Let n = 4 and apply Theorem 4.3 in the setting c4 = 1, c3 = c1 = 0,
c2 = −(α2 + β 2) , c0 = α2β 2 , that is, when Dc( f ) = f ′′′′ − (α2 + β 2) f ′′ + α2β 2 f .
Then sinh(αx) , cosh(αx) , sinh(βx) , and cosh(βx) form a fundamental system of
solutions for the differential equation Dc( f ) = 0 and

ωc(t) =
α sinh(β t)−β sinh(αt)

αβ (β 2−α2)

is a solution to the initial value problem (4).
Now, we prove that ρ±(ωc) = ±∞ . First observe that(

sinh(x)
x

)′
=
( ∞

∑
n=0

x2n

(2n+1)!

)′
=

1
x

∞

∑
n=1

2nx2n

(2n+1)!
,

which shows that the mapping x 
→ sinh(x)/x is strictly monotone on R+ . Assume that
|α| < |β | . Then, for all nonzero t ,

sinh(αt)
αt

=
sinh(|αt|)

|αt| <
sinh(|β t|)

|β t| =
sinh(β t)

β t
.

Therefore, any nonzero number t cannot be a root of ωc , which implies ρ±(ωc) =±∞ .
As we have seen it in the proof of Corollary 3.9, the equalities in (25) hold. On

the other hand,∫ x−a

0
ωc(t)dt =

α2(cosh(β (x−a))−1)−β 2(cosh(α(x−a))−1)
α2β 2(β 2−α2)

.

Therefore, we can apply Theorem 4.3 and hence there exists a point ξ between a and
x such that the equality (27) holds, which reduces to (36). �
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COROLLARY 4.12. Let α ∈ R with α �= 0 . Then, for all f ∈ C 4
R
(I) and a,x ∈ I ,

there exists a point ξ between a and x such that

f (x) = f (a)
2cosh(α(x−a))−α(x−a)sinh(α(x−a))

2

+ f ′(a)
3sinh(α(x−a))−α(x−a)cosh(α(x−a))

2α
+ f ′′(a)

(x−a)sinh(α(x−a))
2α

+ f ′′′(a)
α(x−a)cosh(α(x−a))− sinh(α(x−a))

2α3

+( f ′′′′(ξ )−2α2 f ′′(ξ )+ α4 f (ξ ))

× 2−2cosh(α(x−a))+ α(x−a)sinh(α(x−a))
2α4 .

The proof of the above statement is omitted.
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