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ANOTHER IDENTITY RELATING TO HARDY’S INEQUALITY FOR �2

GRAHAM J. O. JAMESON

(Communicated by J. Jakšetić)

Abstract. Let C denote the Cesàro operator on �2 , I the identity and ‖x‖ the �2 -norm of x .
Complementing an earlier result, an exact expression is derived for ‖(C− I)x‖2 . Implications
include the inequalities 1√

2 ‖x‖ � ‖(C− I)x‖ � ‖x‖ and ‖(C− I)x‖ � ‖CT − I)x‖ .

In this note we present a companion identity to one that was established in [2].
Denote by C the Cesàro (alias averaging) operator. For a (real) sequence x = (xn) ,

write Xn = ∑n
j=1 x j . Then Cx = y , where yn = Xn/n .

Note that the transposed operator CT is defined by CTx = y , where yn = ∑∞
k=n(xk/k) .

We denote by ‖x‖ the �2 -norm (∑∞
n=1 x2

n)
1/2 . For an operator A , we denote by

‖A‖ the norm of A as an operator on �2 . The n th unit vector will be denoted by en .
It was observed in [1] that CCT equates to the matrix having 1/max( j,k) in place

( j,k) . Hence CCT = C +CT −Δ1 , where Δ1 is the diagonal matrix with entries 1
n .

Equivalently,
(C− I)(CT − I) = I−Δ1.

This, of course, implies that ‖CT − I‖ = ‖C− I‖ = 1, and hence the case p = 2 in
Hardy’s inequality: ‖C‖ � 2. Further, it implies the following identity for x in �2 :

‖(CT − I)x‖2 =
∞

∑
n=2

(
1− 1

n

)
x2
n, (1)

An analogous identity relating to (C− I)x was established in [2]: if (C− I)x = z , then

∞

∑
n=2

n
n−1

z2
n =

∞

∑
n=1

x2
n. (2)

This again implies that ‖C− I‖� 1, and also that ‖(C− I)x‖� (1/
√

2)‖x‖ for x ∈ �2 .
(Equality occurs in the case (C− I)(e1− e2) = e2 .)

Here we present an identity for ‖(C− I)x‖2 itself, albeit a rather more complicated
one. We remark first that there can be no identity of the form ‖(C− I)x‖2 = ∑∞

n=1 δnx2
n ,

since this would imply that ‖(C− I)(|x|)‖= ‖(C− I)x‖ : the case x = e1−e2 is enough
to show that this is not true. Our identity actually takes the form

‖(C− I)x‖2 =
∞

∑
n=2

(
1− 1

n

)
x2
n +

∞

∑
n=1

cnX
2
n
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for a certain sequence (cn) . Note that, with (1), this will imply that ‖(C− I)x‖ �
‖(CT − I)x‖ .

To identify the only possible candidate for cn if this statement is to hold, take
x = en − en+1 . Then Xn = 1 and Xr = 0 for other r , so the right-hand side is 2− 1

n −
1

n+1 + cn . Meanwhile, Cx = 1
nen , so the left-hand side is (1− 1

n )2 +1. We deduce that
cn can only be 1/[n2(n+1)] .

THEOREM 1. Write Xn = ∑n
j=1 x j . For all x in �2 , we have

‖(C− I)x‖2 =
∞

∑
n=2

(
1− 1

n

)
x2
n +

∞

∑
n=1

X2
n

n2(n+1)
. (3)

Continue to write Cx = y and y− x = z . It is essential to recognise that (3), like
(2), applies strictly to infinite sequences. In fact, if x j = 1 for 1 � j � n , then z j = 0
for 1 � j � n . We clarify what (3) actually says for x of the form (x1,x2, . . . ,xn,0, . . .) .
For such x , we have z j = y j = Xn/ j for j > n , hence

∞

∑
j=n+1

z2
j = X2

n

∞

∑
j=n+1

1
j2

.

Meanwhile,
∞

∑
j=n+1

X2
j

j2( j +1)
= X2

n

∞

∑
j=n+1

1
j2( j +1)

.

Now
1
j2
− 1

j2( j +1)
=

1
j( j +1)

and ∑∞
j=n+1 1/[ j( j +1)] = 1/(n+1) , so (3) becomes

n

∑
j=1

z2
j +

X2
n

n+1
=

n

∑
j=2

(
1− 1

j

)
x2

j +
n

∑
j=1

X2
j

j2( j +1)
. (4)

We will prove that (4) holds for all x in �2 (not just x with finitely many non-zero
terms). To deduce (3), we then need the following elementary lemma [2, Lemma 1].

LEMMA 1. For x ∈ �2 , we have X2
n /n → 0 as n → ∞ .

Proof of Theorem 1. For a given x in �2 , we prove (4) by induction. For n = 1,
both sides of (4) are 1

2x2
1 (note that z1 = 0). Assume that (4) holds for n− 1, where

n � 2. To deduce that it holds for n , we require

z2
n +

X2
n

n+1
− X2

n−1

n
=

(
1− 1

n

)
x2
n +

X2
n

n2(n+1)
. (5)
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Since zn = 1
n (Xn−nxn) and Xn−1 = Xn− xn , the left-hand side of (5) equals

(
Xn

n
− xn

)2

+
X2

n

n+1
− (Xn− xn)2

n
=

(
1
n2 +

1
n+1

− 1
n

)
X2

n +
(

1− 1
n

)
x2
n

=
X2

n

n2(n+1)
+

n−1
n

x2
n. �

The first term of the second series in (3) is 1
2x2

1 , so an instant consequence is the
following Corollary.

COROLLARY 1.1. For x ∈ �2 , we have ‖(C− I)x‖2 � ‖(CT − I)x‖2 + 1
2x2

1 .

Again, equality occurs for x = e1− e2 .
Another instant consequence of Theorem 1 is:

COROLLARY 1.2. For x ∈ �2 , we have ‖(C− I)(|x|)‖ � ‖(C− I)x‖ .

Clearly, (3) implies (again) that ‖(C−I)x‖2 � 1
2‖x‖2 . The inequality ‖(C−I)x‖�

‖x‖ can be deduced from (3) using the fact that X2
n � n∑n

j=1 x2
j (but of course this

inequality follows more easily from (2)).
An alternative, but less self-contained, proof of Theorem 1 is by deduction from

Theorem 1 of [2], which states that CCT = CT Δ2C , where Δ2 is the diagonal matrix
with n th term n/(n+1) . We deduce that

(CT − I)(C− I)− (C− I)(CT − I) = CT (I−Δ2)C,

hence ‖(C− I)x‖2−‖CT − I)x‖2 = 〈(I−Δ2)Cx,Cx〉 = ∑∞
n=1 y2

n/(n+1) .
Finally, as noted in [2, section 5], simple pointwise reasoning shows that Theorem

1 extends to the case where the x j are themselves elements of a Hilbert space (in par-
ticular, complex numbers), in the following form: if Xn , yn , zn are defined as before,
then

∞

∑
n=1

‖zn‖2 =
∞

∑
n=2

(
1− 1

n

)
‖xn‖2 +

∞

∑
n=1

‖Xn‖2

n2(n+1)
.
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