ANOTHER IDENTITY RELATING TO HARDY'S INEQUALITY FOR ℓ_2

GRAHAM J. O. JAMESON

(Communicated by J. Jakšetić)

Abstract. Let *C* denote the Cesàro operator on ℓ_2 , *I* the identity and ||x|| the ℓ_2 -norm of *x*. Complementing an earlier result, an exact expression is derived for $||(C-I)x||^2$. Implications include the inequalities $\frac{1}{\sqrt{2}}||x|| \leq ||(C-I)x|| \leq ||x||$ and $||(C-I)x|| \geq ||C^T - I)x||$.

In this note we present a companion identity to one that was established in [2]. Denote by *C* the Cesàro (alias averaging) operator. For a (real) sequence $x = (x_n)$, write $X_n = \sum_{i=1}^n x_i$. Then Cx = y, where $y_n = X_n/n$.

Note that the transposed operator C^T is defined by $C^T x = y$, where $y_n = \sum_{k=n}^{\infty} (x_k/k)$. We denote by ||x|| the ℓ_2 -norm $(\sum_{n=1}^{\infty} x_n^2)^{1/2}$. For an operator A, we denote by ||A|| the norm of A as an operator on ℓ_2 . The *n*th unit vector will be denoted by e_n .

It was observed in [1] that CC^T equates to the matrix having $1/\max(j,k)$ in place (j,k). Hence $CC^T = C + C^T - \Delta_1$, where Δ_1 is the diagonal matrix with entries $\frac{1}{n}$. Equivalently,

$$(C-I)(C^T-I) = I - \Delta_1.$$

This, of course, implies that $||C^T - I|| = ||C - I|| = 1$, and hence the case p = 2 in Hardy's inequality: $||C|| \le 2$. Further, it implies the following identity for x in ℓ_2 :

$$\|(C^T - I)x\|^2 = \sum_{n=2}^{\infty} \left(1 - \frac{1}{n}\right) x_n^2,\tag{1}$$

An analogous identity relating to (C-I)x was established in [2]: if (C-I)x = z, then

$$\sum_{n=2}^{\infty} \frac{n}{n-1} z_n^2 = \sum_{n=1}^{\infty} x_n^2.$$
 (2)

This again implies that $||C-I|| \le 1$, and also that $||(C-I)x|| \ge (1/\sqrt{2})||x||$ for $x \in \ell_2$. (Equality occurs in the case $(C-I)(e_1-e_2) = e_2$.)

Here we present an identity for $||(C-I)x||^2$ itself, albeit a rather more complicated one. We remark first that there can be no identity of the form $||(C-I)x||^2 = \sum_{n=1}^{\infty} \delta_n x_n^2$, since this would imply that ||(C-I)(|x|)|| = ||(C-I)x||: the case $x = e_1 - e_2$ is enough to show that this is not true. Our identity actually takes the form

$$\|(C-I)x\|^{2} = \sum_{n=2}^{\infty} \left(1 - \frac{1}{n}\right) x_{n}^{2} + \sum_{n=1}^{\infty} c_{n} X_{n}^{2}$$

© CENT, Zagreb Paper MIA-25-70

Mathematics subject classification (2020): 26D15, 47B37. *Keywords and phrases*: Cesàro, Hardy, inequality.

for a certain sequence (c_n) . Note that, with (1), this will imply that $||(C-I)x|| \ge ||(C^T - I)x||$.

To identify the only possible candidate for c_n if this statement is to hold, take $x = e_n - e_{n+1}$. Then $X_n = 1$ and $X_r = 0$ for other r, so the right-hand side is $2 - \frac{1}{n} - \frac{1}{n+1} + c_n$. Meanwhile, $Cx = \frac{1}{n}e_n$, so the left-hand side is $(1 - \frac{1}{n})^2 + 1$. We deduce that c_n can only be $1/[n^2(n+1)]$.

THEOREM 1. Write $X_n = \sum_{i=1}^n x_i$. For all x in ℓ_2 , we have

$$\|(C-I)x\|^2 = \sum_{n=2}^{\infty} \left(1 - \frac{1}{n}\right) x_n^2 + \sum_{n=1}^{\infty} \frac{X_n^2}{n^2(n+1)}.$$
(3)

Continue to write Cx = y and y - x = z. It is essential to recognise that (3), like (2), applies strictly to *infinite* sequences. In fact, if $x_j = 1$ for $1 \le j \le n$, then $z_j = 0$ for $1 \le j \le n$. We clarify what (3) actually says for x of the form $(x_1, x_2, ..., x_n, 0, ...)$. For such x, we have $z_j = y_j = X_n/j$ for j > n, hence

$$\sum_{j=n+1}^{\infty} z_j^2 = X_n^2 \sum_{j=n+1}^{\infty} \frac{1}{j^2}.$$

Meanwhile,

$$\sum_{j=n+1}^{\infty} \frac{X_j^2}{j^2(j+1)} = X_n^2 \sum_{j=n+1}^{\infty} \frac{1}{j^2(j+1)}.$$

Now

$$\frac{1}{j^2} - \frac{1}{j^2(j+1)} = \frac{1}{j(j+1)}$$

and $\sum_{j=n+1}^{\infty} 1/[j(j+1)] = 1/(n+1)$, so (3) becomes

$$\sum_{j=1}^{n} z_j^2 + \frac{X_n^2}{n+1} = \sum_{j=2}^{n} \left(1 - \frac{1}{j}\right) x_j^2 + \sum_{j=1}^{n} \frac{X_j^2}{j^2(j+1)}.$$
(4)

We will prove that (4) holds for all x in ℓ_2 (not just x with finitely many non-zero terms). To deduce (3), we then need the following elementary lemma [2, Lemma 1].

LEMMA 1. For $x \in \ell_2$, we have $X_n^2/n \to 0$ as $n \to \infty$.

Proof of Theorem 1. For a given x in ℓ_2 , we prove (4) by induction. For n = 1, both sides of (4) are $\frac{1}{2}x_1^2$ (note that $z_1 = 0$). Assume that (4) holds for n - 1, where $n \ge 2$. To deduce that it holds for n, we require

$$z_n^2 + \frac{X_n^2}{n+1} - \frac{X_{n-1}^2}{n} = \left(1 - \frac{1}{n}\right)x_n^2 + \frac{X_n^2}{n^2(n+1)}.$$
(5)

Since $z_n = \frac{1}{n}(X_n - nx_n)$ and $X_{n-1} = X_n - x_n$, the left-hand side of (5) equals

$$\left(\frac{X_n}{n} - x_n\right)^2 + \frac{X_n^2}{n+1} - \frac{(X_n - x_n)^2}{n} = \left(\frac{1}{n^2} + \frac{1}{n+1} - \frac{1}{n}\right) X_n^2 + \left(1 - \frac{1}{n}\right) x_n^2$$
$$= \frac{X_n^2}{n^2(n+1)} + \frac{n-1}{n} x_n^2. \quad \Box$$

The first term of the second series in (3) is $\frac{1}{2}x_1^2$, so an instant consequence is the following Corollary.

COROLLARY 1.1. For $x \in \ell_2$, we have $||(C-I)x||^2 \ge ||(C^T - I)x||^2 + \frac{1}{2}x_1^2$.

Again, equality occurs for $x = e_1 - e_2$.

Another instant consequence of Theorem 1 is:

COROLLARY 1.2. For $x \in \ell_2$, we have $||(C-I)(|x|)|| \ge ||(C-I)x||$.

Clearly, (3) implies (again) that $||(C-I)x||^2 \ge \frac{1}{2}||x||^2$. The inequality $||(C-I)x|| \le ||x||$ can be deduced from (3) using the fact that $X_n^2 \le n \sum_{j=1}^n x_j^2$ (but of course this inequality follows more easily from (2)).

An alternative, but less self-contained, proof of Theorem 1 is by deduction from Theorem 1 of [2], which states that $CC^T = C^T \Delta_2 C$, where Δ_2 is the diagonal matrix with *n*th term n/(n+1). We deduce that

$$(C^{T} - I)(C - I) - (C - I)(C^{T} - I) = C^{T}(I - \Delta_{2})C,$$

hence $||(C-I)x||^2 - ||C^T - I|x||^2 = \langle (I - \Delta_2)Cx, Cx \rangle = \sum_{n=1}^{\infty} y_n^2 / (n+1).$

Finally, as noted in [2, section 5], simple pointwise reasoning shows that Theorem 1 extends to the case where the x_j are themselves elements of a Hilbert space (in particular, complex numbers), in the following form: if X_n , y_n , z_n are defined as before, then

$$\sum_{n=1}^{\infty} \|z_n\|^2 = \sum_{n=2}^{\infty} \left(1 - \frac{1}{n}\right) \|x_n\|^2 + \sum_{n=1}^{\infty} \frac{\|X_n\|^2}{n^2(n+1)}.$$

REFERENCES

- A. BROWN, P. R. HALMOS AND A. L. SHIELDS, Cesàro operators, Acta Sci. Math. 26 (1965), 125–137.
- [2] G. J. O. JAMESON, An equality underlying Hardy's inequality, American Math. Monthly 129 (2022), 582–586.

(Received June 9, 2022)

Graham J. O. Jameson Department of Mathematics and Statistics Lancaster University Lancaster LA1 4YF, UK e-mail: g.jameson@lancaster.ac.uk