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ANOTHER IDENTITY RELATING TO HARDY’S INEQUALITY FOR /¢,

GRAHAM J. O. JAMESON

(Communicated by J. Jakseti¢)

Abstract. Let C denote the Cesaro operator on {5, I the identity and ||x|| the ¢;-norm of x.
Complementing an earlier result, an exact expression is derived for ||(C —I)x||>. Implications
include the inequalities ﬁ“x“ <(C—D)x|| < ||x|| and [|(C—I)x| = ||ICT —1)x]|.

In this note we present a companion identity to one that was established in [2].

Denote by C the Cesaro (alias averaging) operator. For a (real) sequence x = (x,),
write X, = 2;?:1)@-. Then Cx =y, where y, = X,,/n.

Note that the transposed operator CT is defined by CTx =y, where y, = 35 (x/k).

We denote by ||x|| the £,-norm (¥, x2)'/2. For an operator A, we denote by
|A|l the norm of A as an operator on ¢,. The nth unit vector will be denoted by e, .

It was observed in [ 1] that CCT equates to the matrix having 1/max(j,k) in place
(j,k). Hence CCT = C+C" — Ay, where A is the diagonal matrix with entries 1.
Equivalently,

(C—D)(CT—I)=1-A,.

This, of course, implies that |CT —1|| = ||C —1|| = 1, and hence the case p =2 in
Hardy’s inequality: ||C|| < 2. Further, it implies the following identity for x in ¢5:

- 1
e =3, (1= )2 m

n=2

An analogous identity relating to (C —I)x was established in [2]: if (C—I)x =z, then

oo =

T 2=V )

Zn
n=2 n—1 n=1

This again implies that ||C —I|| < 1, and also that ||(C —I)x|| > (1/+/2)]|x|| for x € 5.
(Equality occurs in the case (C—1)(e; —e2) =e3.)

Here we present an identity for ||(C —I)x||? itself, albeit a rather more complicated
one. We remark first that there can be no identity of the form ||(C —I)x||> = ¥, 8,x2,
since this would imply that ||(C—1)(|x|)|| = ||(C—1I)x||: the case x = ¢; — e, is enough
to show that this is not true. Our identity actually takes the form

o 1 o
lC—Dx|*=7Y, (1—;))@%4— S Xy

n=2 n=1
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for a certain sequence (c,). Note that, with (1), this will imply that ||(C—1I)x|| >
I(CT = Dx]|.

To identify the only possible candidate for ¢, if this statement is to hold, take
x =ep—epr1. Then X, =1 and X, = 0 for other r, so the right-hand side is 2 — &+ —
m +1 + ¢, Meanwhile, Cx = en, so the left-hand side is (1 — —) + 1. We deduce that

¢, canonly be 1/[n (n+1)].

THEOREM 1. Write X, = Z?lej. For all x in 0>, we have

le—nap=3 (1-1) ey X _ &)
n) " S nl(n+1)

n=2

Continue to write Cx =y and y —x = z. It is essential to recognise that (3), like
(2), applies strictly to infinite sequences. In fact, if x; =1 for 1 < j <n, then z; =0
for 1 < j < n. We clarify what (3) actually says for x of the form (xy,x2,...,x,,0,...).
For such x, we have z; =y; =X,/ for j > n, hence

o =
2 2
D 5=X Y 5
j=nr1 je=n+1J
Meanwhile,
- 2
71' X2
JEntWAVADY ,%11 (J+1
Now
1 1
A AG+HD G+

and ¥, 1/[j(j+1)]=1/(n+1),s0 (3) becomes

i i(l——) +2 ) “4)

Jj=1 = Jj= IJ

We will prove that (4) holds for all x in ¢, (not just x with finitely many non-zero
terms). To deduce (3), we then need the following elementary lemma [2, Lemma 1].

LEMMA 1. For x € {5, we have X2 /n— 0 as n — .

Proof of Theorem ] For a given x in ¢, we prove (4) by induction. For n =1,
both sides of (4) are 2x1 (note that z; = 0). Assume that (4) holds for n — 1, where
n > 2. To deduce that it holds for n, we require

X2 X? 1 X2
2 n n—1 2 n
5] 1 - ° 5
S n ( )x" n?(n+1) ®)
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Since z, = %(X,, —nx,) and X,,—1 = X,, — x,,, the left-hand side of (5) equals

2 2 2
X, X X, — Xn 1 1 1 1
I R . ) Y (LY —— )X+ (1—=)x
n n+1 n n? n+l n n

X2
- n2(n+1)

The first term of the second series in (3) is %x%, S0 an instant consequence is the

following Corollary.
COROLLARY 1.1. For x € {5, we have |(C—D)x||> > ||(CT — D)x|* + 3x3.

Again, equality occurs for x =e; —e>.
Another instant consequence of Theorem 1 is:

COROLLARY 1.2. For x € £y, we have ||(C—1)(|x])|| = [|[(C—1)x]|.

Clearly, (3) implies (again) that [|(C—I)x||> > 1 [x||?. The inequality [|(C—1)x|| <
||| can be deduced from (3) using the fact that X7 < n¥i_;x7 (but of course this
inequality follows more easily from (2)).

An alternative, but less self-contained, proof of Theorem 1 is by deduction from
Theorem 1 of [2], which states that CCT = CTA,C, where A, is the diagonal matrix
with nth term n/(n+1). We deduce that

(€ —nEC-1)-(C-D(C"-1=C"I-n)C,
hence ||(C—I)x||> — ||CT — D)x||> = ((I — A2)Cx,Cx) = X7 y2/(n+1).
Finally, as noted in [2, section 5], simple pointwise reasoning shows that Theorem

1 extends to the case where the x; are themselves elements of a Hilbert space (in par-
ticular, complex numbers), in the following form: if X, y,, z, are defined as before,

then 5
= S = %)
2 2 n
nll” = 1—— ) ||lxnll” + —_—
3 Jl 22( n)n P+ 3 o

REFERENCES

[11 A. BROWN, P. R. HALMOS AND A. L. SHIELDS, Cesaro operators, Acta Sci. Math. 26 (1965),

125-137.
[2] G.J.O.JAMESON, An equality underlying Hardy’s inequality, American Math. Monthly 129 (2022),
582-586.
(Received June 9, 2022) Graham J. O. Jameson

Department of Mathematics and Statistics
Lancaster University
Lancaster LAl 4YF, UK

e-mail: g.jameson@lancaster.ac.uk

Mathematical Inequalities & Applications
v ele-math.com

e-math.com



