ANOTHER IDENTITY RELATING TO HARDY'S INEQUALITY FOR ℓ_{2}

Graham J. O. Jameson

(Communicated by J. Jakšetić)

Abstract

Let C denote the Cesàro operator on ℓ_{2}, I the identity and $\|x\|$ the ℓ_{2}-norm of x. Complementing an earlier result, an exact expression is derived for $\|(C-I) x\|^{2}$. Implications include the inequalities $\frac{1}{\sqrt{2}}\|x\| \leqslant\|(C-I) x\| \leqslant\|x\|$ and $\left.\|(C-I) x\| \geqslant \| C^{T}-I\right) x \|$.

In this note we present a companion identity to one that was established in [2].
Denote by C the Cesàro (alias averaging) operator. For a (real) sequence $x=\left(x_{n}\right)$, write $X_{n}=\sum_{j=1}^{n} x_{j}$. Then $C x=y$, where $y_{n}=X_{n} / n$.

Note that the transposed operator C^{T} is defined by $C^{T} x=y$, where $y_{n}=\sum_{k=n}^{\infty}\left(x_{k} / k\right)$.
We denote by $\|x\|$ the ℓ_{2}-norm $\left(\sum_{n=1}^{\infty} x_{n}^{2}\right)^{1 / 2}$. For an operator A, we denote by $\|A\|$ the norm of A as an operator on ℓ_{2}. The nth unit vector will be denoted by e_{n}.

It was observed in [1] that $C C^{T}$ equates to the matrix having $1 / \max (j, k)$ in place (j, k). Hence $C C^{T}=C+C^{T}-\Delta_{1}$, where Δ_{1} is the diagonal matrix with entries $\frac{1}{n}$. Equivalently,

$$
(C-I)\left(C^{T}-I\right)=I-\Delta_{1} .
$$

This, of course, implies that $\left\|C^{T}-I\right\|=\|C-I\|=1$, and hence the case $p=2$ in Hardy's inequality: $\|C\| \leqslant 2$. Further, it implies the following identity for x in ℓ_{2} :

$$
\begin{equation*}
\left\|\left(C^{T}-I\right) x\right\|^{2}=\sum_{n=2}^{\infty}\left(1-\frac{1}{n}\right) x_{n}^{2} \tag{1}
\end{equation*}
$$

An analogous identity relating to $(C-I) x$ was established in [2]: if $(C-I) x=z$, then

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n}{n-1} z_{n}^{2}=\sum_{n=1}^{\infty} x_{n}^{2} \tag{2}
\end{equation*}
$$

This again implies that $\|C-I\| \leqslant 1$, and also that $\|(C-I) x\| \geqslant(1 / \sqrt{ } 2)\|x\|$ for $x \in \ell_{2}$. (Equality occurs in the case $(C-I)\left(e_{1}-e_{2}\right)=e_{2}$.)

Here we present an identity for $\|(C-I) x\|^{2}$ itself, albeit a rather more complicated one. We remark first that there can be no identity of the form $\|(C-I) x\|^{2}=\sum_{n=1}^{\infty} \delta_{n} x_{n}^{2}$, since this would imply that $\|(C-I)(|x|)\|=\|(C-I) x\|$: the case $x=e_{1}-e_{2}$ is enough to show that this is not true. Our identity actually takes the form

$$
\|(C-I) x\|^{2}=\sum_{n=2}^{\infty}\left(1-\frac{1}{n}\right) x_{n}^{2}+\sum_{n=1}^{\infty} c_{n} X_{n}^{2}
$$

Mathematics subject classification (2020): 26D15, 47B37.
Keywords and phrases: Cesàro, Hardy, inequality.
for a certain sequence $\left(c_{n}\right)$. Note that, with (1), this will imply that $\|(C-I) x\| \geqslant$ $\left\|\left(C^{T}-I\right) x\right\|$.

To identify the only possible candidate for c_{n} if this statement is to hold, take $x=e_{n}-e_{n+1}$. Then $X_{n}=1$ and $X_{r}=0$ for other r, so the right-hand side is $2-\frac{1}{n}-$ $\frac{1}{n+1}+c_{n}$. Meanwhile, $C x=\frac{1}{n} e_{n}$, so the left-hand side is $\left(1-\frac{1}{n}\right)^{2}+1$. We deduce that c_{n} can only be $1 /\left[n^{2}(n+1)\right]$.

THEOREM 1. Write $X_{n}=\sum_{j=1}^{n} x_{j}$. For all x in ℓ_{2}, we have

$$
\begin{equation*}
\|(C-I) x\|^{2}=\sum_{n=2}^{\infty}\left(1-\frac{1}{n}\right) x_{n}^{2}+\sum_{n=1}^{\infty} \frac{X_{n}^{2}}{n^{2}(n+1)} \tag{3}
\end{equation*}
$$

Continue to write $C x=y$ and $y-x=z$. It is essential to recognise that (3), like (2), applies strictly to infinite sequences. In fact, if $x_{j}=1$ for $1 \leqslant j \leqslant n$, then $z_{j}=0$ for $1 \leqslant j \leqslant n$. We clarify what (3) actually says for x of the form $\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots\right)$. For such x, we have $z_{j}=y_{j}=X_{n} / j$ for $j>n$, hence

$$
\sum_{j=n+1}^{\infty} z_{j}^{2}=X_{n}^{2} \sum_{j=n+1}^{\infty} \frac{1}{j^{2}}
$$

Meanwhile,

$$
\sum_{j=n+1}^{\infty} \frac{X_{j}^{2}}{j^{2}(j+1)}=X_{n}^{2} \sum_{j=n+1}^{\infty} \frac{1}{j^{2}(j+1)}
$$

Now

$$
\frac{1}{j^{2}}-\frac{1}{j^{2}(j+1)}=\frac{1}{j(j+1)}
$$

and $\sum_{j=n+1}^{\infty} 1 /[j(j+1)]=1 /(n+1)$, so (3) becomes

$$
\begin{equation*}
\sum_{j=1}^{n} z_{j}^{2}+\frac{X_{n}^{2}}{n+1}=\sum_{j=2}^{n}\left(1-\frac{1}{j}\right) x_{j}^{2}+\sum_{j=1}^{n} \frac{X_{j}^{2}}{j^{2}(j+1)} \tag{4}
\end{equation*}
$$

We will prove that (4) holds for all x in ℓ_{2} (not just x with finitely many non-zero terms). To deduce (3), we then need the following elementary lemma [2, Lemma 1].

LEMmA 1. For $x \in \ell_{2}$, we have $X_{n}^{2} / n \rightarrow 0$ as $n \rightarrow \infty$.
Proof of Theorem 1. For a given x in ℓ_{2}, we prove (4) by induction. For $n=1$, both sides of (4) are $\frac{1}{2} x_{1}^{2}$ (note that $z_{1}=0$). Assume that (4) holds for $n-1$, where $n \geqslant 2$. To deduce that it holds for n, we require

$$
\begin{equation*}
z_{n}^{2}+\frac{X_{n}^{2}}{n+1}-\frac{X_{n-1}^{2}}{n}=\left(1-\frac{1}{n}\right) x_{n}^{2}+\frac{X_{n}^{2}}{n^{2}(n+1)} \tag{5}
\end{equation*}
$$

Since $z_{n}=\frac{1}{n}\left(X_{n}-n x_{n}\right)$ and $X_{n-1}=X_{n}-x_{n}$, the left-hand side of (5) equals

$$
\begin{aligned}
\left(\frac{X_{n}}{n}-x_{n}\right)^{2}+\frac{X_{n}^{2}}{n+1}-\frac{\left(X_{n}-x_{n}\right)^{2}}{n} & =\left(\frac{1}{n^{2}}+\frac{1}{n+1}-\frac{1}{n}\right) X_{n}^{2}+\left(1-\frac{1}{n}\right) x_{n}^{2} \\
& =\frac{X_{n}^{2}}{n^{2}(n+1)}+\frac{n-1}{n} x_{n}^{2}
\end{aligned}
$$

The first term of the second series in (3) is $\frac{1}{2} x_{1}^{2}$, so an instant consequence is the following Corollary.

Corollary 1.1. For $x \in \ell_{2}$, we have $\|(C-I) x\|^{2} \geqslant\left\|\left(C^{T}-I\right) x\right\|^{2}+\frac{1}{2} x_{1}^{2}$.
Again, equality occurs for $x=e_{1}-e_{2}$.
Another instant consequence of Theorem 1 is:
Corollary 1.2. For $x \in \ell_{2}$, we have $\|(C-I)(|x|)\| \geqslant\|(C-I) x\|$.
Clearly, (3) implies (again) that $\|(C-I) x\|^{2} \geqslant \frac{1}{2}\|x\|^{2}$. The inequality $\|(C-I) x\| \leqslant$ $\|x\|$ can be deduced from (3) using the fact that $X_{n}^{2} \leqslant n \sum_{j=1}^{n} x_{j}^{2}$ (but of course this inequality follows more easily from (2)).

An alternative, but less self-contained, proof of Theorem 1 is by deduction from Theorem 1 of [2], which states that $C C^{T}=C^{T} \Delta_{2} C$, where Δ_{2} is the diagonal matrix with nth term $n /(n+1)$. We deduce that

$$
\left(C^{T}-I\right)(C-I)-(C-I)\left(C^{T}-I\right)=C^{T}\left(I-\Delta_{2}\right) C,
$$

hence $\left.\|(C-I) x\|^{2}-\| C^{T}-I\right) x \|^{2}=\left\langle\left(I-\Delta_{2}\right) C x, C x\right\rangle=\sum_{n=1}^{\infty} y_{n}^{2} /(n+1)$.
Finally, as noted in [2, section 5], simple pointwise reasoning shows that Theorem 1 extends to the case where the x_{j} are themselves elements of a Hilbert space (in particular, complex numbers), in the following form: if X_{n}, y_{n}, z_{n} are defined as before, then

$$
\sum_{n=1}^{\infty}\left\|z_{n}\right\|^{2}=\sum_{n=2}^{\infty}\left(1-\frac{1}{n}\right)\left\|x_{n}\right\|^{2}+\sum_{n=1}^{\infty} \frac{\left\|X_{n}\right\|^{2}}{n^{2}(n+1)}
$$

REFERENCES
[1] A. Brown, P. R. Halmos And A. L. Shields, Cesàro operators, Acta Sci. Math. 26 (1965), 125-137.
[2] G. J. O. Jameson, An equality underlying Hardy's inequality, American Math. Monthly 129 (2022), 582-586.

