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Abstract. Let α > −1 and let ϕ be a measurable function on (0,∞) such that
∫ ∞
0 tα |ϕ(t)|dt <

∞ . Denote by H1
|·|α (R) the power weighted Hardy space associated with the power weight |x|α

and Hϕ the Hausdorff operator associated with the kernel ϕ . Recently, it was showed in [11]
that there is a constant C > 0 such that

‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) � C
∫ ∞

0
tα |ϕ(t)|dt.

In this paper, we give a lower bound of ‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) by proving that

∣∣∣∣
∫ ∞

0
tα ϕ(t)dt

∣∣∣∣ � ‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) �
∫ ∞

0
tα |ϕ(t)|dt.

1. Introduction and main result

Let ϕ be a measurable function on (0,∞) . The Hausdorff operator Hϕ associated
with the kernel ϕ is defined for suitable functions f by

Hϕ f (x) =
∫ ∞

0
f
(x

t

) ϕ(t)
t

dt, x ∈ R.

The Hausdorff operator is an interesting operator in harmonic analysis. There are
many classical operators in analysis which are special cases of the Hausdorff operator
if one chooses suitable kernel functions ϕ , such as the classical Hardy operator, its
adjoint operator, the Cesàro type operators, the Riemann-Liouville fractional integral
operator,. . . See the survey article [6] and the references therein. In the recent years,
there is an increasing interest on the study of boundedness of the Hausdorff operator
on the unweighted Hardy spaces (see, for example, [1, 3, 5, 6, 7, 8]), on the power
weighted Hardy spaces (see, for example, [10, 11, 12, 15]), and on some spaces of
holomorphic functions (see, for example, [4, 9, 14]).
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Let 1 � p < ∞ . A nonnegative locally integrable function w : R → [0,∞) belongs
to the Muckenhoupt class Ap(R) , say w ∈ Ap(R) , if there exists a constant C > 0 so
that

1
|I|

∫
I
w(x)dx

(
1
|I|

∫
I
[w(x)]−

1
p−1

)p−1

� C, if 1 < p < ∞ ,

and
1
|I|

∫
I
w(x)dx � Cess-inf

x∈I
w(x), if p = 1 ,

for all intervals I ⊂ R . We say that w ∈ A∞(R) if w ∈ Ap(R) for some 1 � p < ∞ .

REMARK 1. Let α > −1 and let 1 < p < ∞ be such that α < p− 1. Then, the
power weight |x|α belongs to the Muckenhoup class Ap(R) .

Let α > −1 and let Φ be a function in the Schwartz space S (R) satisfying∫
R

Φ(x)dx �= 0. Set Φt(x) := t−1Φ(x/t) . Following Strömberg and Torchinsky [13], we
define the power weighted Hardy space H1

|·|α (R) as the space of functions f ∈ L1
|·|α (R)

such that
‖ f‖H1

|·|α
:= ‖MΦ f‖L1

|·|α
=

∫
R

MΦ f (x)|x|αdx < ∞,

where MΦ f is the smooth maximal function of f defined by

MΦ f (x) = sup
t>0

| f ∗Φt(x)|, x ∈ R.

Remark that ‖ ·‖H1
|·|α

defines a norm on H1
|·|α (R) , whose size depends on the choice of

Φ , but the space H1
|·|α (R) does not depend on this choice.

Let f ∈ L2(R) , we define the Hilbert transform H of f by

H f (x) =
1
π

p.v.

∫ ∞

−∞

f (x− y)
y

dy, x ∈ R.

When α >−1, from the power weight |x|α belongs to the Muckenhoupt class A∞(R) ,
it is classical (see [2, 13, 16]) that there exist 0 < c(α,Φ) < C(α,Φ) < ∞ such that

c(α,Φ)‖ f‖H1
|·|α

� ‖ f‖L1
|·|α

+‖H f‖L1
|·|α

� C(α,Φ)‖ f‖H1
|·|α

for all f ∈ H1
|·|α (R)∩L2(R) .

Let α >−1 and let ϕ be a measurable function on (0,∞) such that
∫ ∞
0 tα |ϕ(t)|dt

< ∞ . Then, it was showed in [11] that there is a constant C > 0 such that

‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) � C
∫ ∞

0
tα |ϕ(t)|dt.

The main purpose of this paper is to give a lower bound of ‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) .

Our main result is as follows.
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THEOREM 1. Let α > −1 and let ϕ be a measurable function on (0,∞) such
that

∫ ∞
0 tα |ϕ(t)|dt < ∞ . Then

(i) Hϕ is bounded on H1
|·|α (R) , moreover,

∣∣∣∣
∫ ∞

0
tα ϕ(t)dt

∣∣∣∣ � ‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) �
∫ ∞

0
tα |ϕ(t)|dt.

(ii) Hϕ commutes with the Hilbert transform H on H1
|·|α (R) .

COROLLARY 1. Let α > −1 and let ϕ be a nonnegative measurable function on
(0,∞) such that

∫ ∞
0 tα ϕ(t)dt < ∞ . Then Hϕ is bounded on H1

|·|α (R) , moreover,

‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) =
∫ ∞

0
tα ϕ(t)dt.

REMARK 2. (i) Although the above norm ‖ ·‖H1
|·|α

depends on the choice of Φ
but the lower bound and upper bound estimates

∣∣∣∣
∫ ∞

0
tαϕ(t)dt

∣∣∣∣ � ‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) �
∫ ∞

0
tα |ϕ(t)|dt

do not depend on this choice. Furthermore, the lower bound estimate

∣∣∣∣
∫ ∞

0
tαϕ(t)dt

∣∣∣∣ � ‖Hϕ‖(H1
|·|α (R),‖·‖∗)→(H1

|·|α (R),‖·‖∗)

holds for any norm ‖ ·‖∗ that is equivalent with ‖ ·‖H1
|·|α

on H1
|·|α (R) . See Corol-

lary 2 in Section 2.

(ii) Theorem 1 still holds when the norm ‖ · ‖H1
|·|α

is replaced by the equivalent norm

‖ f‖∗ = ‖ f‖L1
|·|α

+‖H f‖L1
|·|α

,

where H is the Hilbert transform. See Theorem 3 in the appendix.

(iii) In the case of one dimension, our main result generalizes and improves some
earlier results in [1, 3, 7, 8, 11].

Throughout the whole article, we denote by C a positive constant which is inde-
pendent of the main parameters, but it may vary from line to line. The symbol A � B
means that A � CB . If A � B and B � A , then we write A ∼ B . For any E ⊂ R , we
denote by χE its characteristic function.
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2. Proof of Theorem 1

Denote by C+ = {z = x + iy ∈ C : y > 0} the upper half-plane in the complex
plane. Following Garcia-Cuerva [2], we define the Hardy space H 1

|·|α (C+) as the set
of all holomorphic functions F on C+ such that

‖F‖H 1
|·|α (C+) := sup

y>0

∫ ∞

−∞
|F(x+ iy)| |x|αdx < ∞.

Let P be the Poisson kernel on R , that is, P(x) = 1
x2+1

for all x ∈ R . Denote by
Py(x) := y

x2+y2 for all x+ iy ∈ C+ . The Poisson maximal function MP f of a function

f ∈ L1
|·|α (R) is then defined by

MP f (x) = sup
y>0

|Py ∗ f (x)|, x ∈ R.

The below three lemmas are well-known and can be found in [2, 13, 16].

LEMMA 1. Let α > −1 and f ∈ L1
|·|α (R) . Then, the following conditions are

equivalent:

(i) f ∈ H1
|·|α (R) .

(ii) H f ∈ L1
|·|α (R) .

(iii) MP f ∈ L1
|·|α (R) .

Moreover, in that case,

‖ f‖H1
|·|α

∼ ‖ f‖L1
|·|α

+‖H f‖L1
|·|α

∼ ‖MP f‖L1
|·|α

.

LEMMA 2. Let α > −1 and F ∈ H 1
|·|α (C+) . Then, the boundary value function

f of F , which is defined by

f (x) = lim
y→0

F(x+ iy) a.e. x ∈ R,

is in H1
|·|α (R) . Moreover,

‖ f‖H1
|·|α

∼ ‖ f‖L1
|·|α

∼ ‖F‖H 1
|·|α (C+)

and F(x+ iy) = Py ∗ f (x) for all x+ iy ∈ C+ .

LEMMA 3. Let α > −1 and 1 < p < ∞ . Then, Lp(R)∩H1
|·|α (R) is dense in

H1
|·|α (R) .

In order to prove Theorem 1, we need the following lemma.
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LEMMA 4. Let α and ϕ be as in Theorem 1. Then, for every f ∈ L1
|·|α (R) ,

‖Hϕ f‖L1
|·|α

�
∫ ∞

0
tα |ϕ(t)|dt ‖ f‖L1

|·|α
.

Proof. Using the Fubini theorem, we obtain

‖Hϕ f‖L1
|·|α

�
∫

R

|x|αdx
∫ ∞

0

∣∣∣ f (x
t

)∣∣∣
∣∣∣∣ϕ(t)

t

∣∣∣∣dt =
∫ ∞

0
tα |ϕ(t)|dt ‖ f‖L1

|·|α
. �

Now we are ready to give the proof of Theorem 1.

Proof of Theorem 1. (i) For every f ∈ H1
|·|α (R) , Lemma 4 and the Fubini theorem

give

MΦ(Hϕ f )(x) = sup
r>0

∣∣∣∣
∫

R

dy
∫ ∞

0

1
r

Φ
(

x− y
r

)
f
(y

t

) ϕ(t)
t

dt

∣∣∣∣
= sup

r>0

∣∣∣∣
∫ ∞

0
Φr/t ∗ f

(x
t

) ϕ(t)
t

dt

∣∣∣∣
� H|ϕ|(MΦ f )(x)

for almost every x ∈ R . Therefore, by Lemma 4 again,

‖Hϕ f‖H1
|·|α

= ‖MΦ(Hϕ f )‖L1
|·|α

� ‖H|ϕ|(MΦ f )‖L1
|·|α

�
∫ ∞

0
tα |ϕ(t)|dt ‖MΦ( f )‖L1

|·|α
=

∫ ∞

0
tα |ϕ(t)|dt ‖ f‖H1

|·|α
.

This proves that Hϕ is bounded on H1
|·|α (R) , moreover,

‖Hϕ‖H1
|·|α (R)→H1

|·|α (R) �
∫ ∞

0
tα |ϕ(t)|dt. (1)

Let δ ∈ (0,1) be arbitrary. Denote by ϕδ (t) := ϕ(t)χ(δ ,1/δ )(t) for all t ∈ (0,∞) .
Then, by (1), we see that

‖Hϕδ ‖H1
|·|α (R)→H1

|·|α (R) �
∫ ∞

0
tα |ϕδ (t)|dt =

∫ 1/δ

δ
tα |ϕ(t)|dt < ∞

and
‖Hϕ −Hϕδ ‖H1

|·|α (R)→H1
|·|α (R) �

∫ ∞

0
tα |ϕ(t)−ϕδ (t)|dt

=
∫ δ

0
tα |ϕ(t)|dt +

∫ ∞

1/δ
tα |ϕ(t)|dt < ∞.

(2)

For any 0 < ε < 1, we define the function Fε : C+ → C as follows

Fε(z) =
1

(z+ i)1+α+ε .
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Then, it is easy to establish that

‖Fε‖H 1
|·|α (C+) ∼ ε−1,

where the constants C > 0 are independent of ε . Denote by fε the boundary value
function of Fε , that is, fε (x) = limy→0 Fε(x+ iy) . Then, by Lemma 2,

‖ fε‖H1
|·|α

∼ ‖Fε‖H 1
a (C+) ∼ ε−1, (3)

where the constants C > 0 are independent of ε .
For every z = x+ iy ∈ C+ , by the Fubini theorem and Lemma 2, we get

Py ∗
(

Hϕδ ( fε )− fε

∫ ∞

0
tα ϕδ (t)dt

)
(x)

=
∫ ∞

0

1
( z

t + i)1+α+ε
ϕδ (t)

t
dt− 1

(z+ i)1+α+ε

∫ ∞

0
tα ϕδ (t)dt

=
∫ 1/δ

δ
[φε,z(t)−φε,z(1)]tα ϕ(t)dt,

where φε,z(t) := tε

(z+ti)1+α+ε . For every t ∈ (δ ,1/δ ) and z ∈ C+ , the Lagrange mean

value theorem gives

|φε,z(t)−φε,z(1)| � |t −1| sup
s∈(δ ,1/δ )

|φ ′
ε,z(s)|

� (δ−1 −1)
(

εδ ε−1

|z+ δ i|1+α+ε +
(1+ α + ε)δ−ε

|z+ δ i|2+α+ε

)

� εδ−(3+α)

|z+ i|1+α+ε +
(2+ α)δ−(5+α)

|z+ i|2+α .

Therefore, by Lemma 1 and (3),∥∥Hϕδ ( fε )− fε
∫ ∞
0 tα ϕδ (t)dt

∥∥
H1
|·|α

‖ fε‖H1
|·|α

�

∥∥∥MP

(
Hϕδ ( fε )− fε

∫ ∞
0 tα ϕδ (t)dt

)∥∥∥
L1
|·|α

‖ fε‖H1
|·|α

�
∫ 1/δ

δ
tα |ϕ(t)|dt

⎡
⎢⎢⎣

∫
R

εδ−(3+α)|x|α dx√
|x|2+1

1+α+ε +
∫
R

(2+α)δ−(5+α)|x|α dx√
|x|2+1

2+α

ε−1

⎤
⎥⎥⎦ → 0

(4)

as ε → 0. As a consequence, we obtain∣∣∣∣
∫ 1/δ

δ
tαϕ(t)dt

∣∣∣∣ =
∣∣∣∣
∫ ∞

0
tα ϕδ (t)dt

∣∣∣∣ � ‖Hϕδ ‖H1
|·|α →H1

|·|α
.
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This, together with (2), allows us to conclude that

‖Hϕ‖H1
|·|α →H1

|·|α
�

∣∣∣∣
∫ ∞

0
tα ϕ(t)dt

∣∣∣∣−2

[∫ δ

0
tα |ϕ(t)|dt +

∫ ∞

1/δ
tα |ϕ(t)|dt

]

→
∣∣∣∣
∫ ∞

0
tα ϕ(t)dt

∣∣∣∣
as δ → 0 since

∫ ∞
0 tα |ϕ(t)|dt < ∞ . Thus, by (1),

∣∣∣∣
∫ ∞

0
tα ϕ(t)dt

∣∣∣∣ � ‖Hϕ‖H1(R)→H1(R) �
∫ ∞

0
tα |ϕ(t)|dt.

(ii) From α > −1, it follows that there exists p ∈ (1,∞) such that

α >
1
p
−1.

Therefore,
∫ ∞

0
t1/p−1|ϕδ (t)|dt =

∫ 1/δ

δ
t1/p−1|ϕ(t)|dt � δ 1/p−1−α

∫ ∞

0
tα |ϕ(t)|dt < ∞.

Hence, it follows from [4, Theorem 3.1] that

H(Hϕδ f ) = Hϕδ (H( f ))

for all f ∈ Lp(R)∩H1
|·|α (R) . Thus, by (2) and the boundedness of H on H1

|·|α (R) ,

‖H(Hϕ f )−Hϕ (H( f ))‖H1
|·|α

� ‖H(Hϕ f )−H(Hϕδ f )‖H1
|·|α

+‖Hϕ(H( f ))−Hϕδ (H( f ))‖H1
|·|α

� 2‖H‖H1
|·|α →H1

|·|α
‖ f‖H1

|·|α

[∫ δ

0
tα |ϕ(t)|dt +

∫ ∞

1/δ
tα |ϕ(t)|dt

]
→ 0

as δ → 0 since
∫ ∞
0 tα |ϕ(t)|dt < ∞ . Hence, H(Hϕ f ) = Hϕ (H( f )) for all f ∈ Lp(R)∩

H1
|·|α (R) . This, together with Lemma 3, allows us to conclude that

H(Hϕ f ) = Hϕ (H( f ))

for all f ∈ H1
|·|α (R) . This completes the proof of Theorem 1. �

COROLLARY 2. Let α and ϕ be as in Theorem 1. Assume that ‖ · ‖∗ is a norm
that is equivalent with ‖·‖H1

|·|α
on H1

|·|α (R) . Then, Hϕ is bounded on (H1
|·|α (R),‖·‖∗) ,

moreover, ∥∥Hϕ
∥∥

(H1
|·|α (R),‖·‖∗)→(H1

|·|α (R),‖·‖∗) �
∣∣∣∣
∫ ∞

0
tα ϕ(t)dt

∣∣∣∣ .

Proof. It follows directly from (2) and (4). �
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3. Appendix

The main purpose of this section is to show that Theorem 1 still holds even when
one replaces the norm ‖ f‖H1

|·|α
= ‖MΦ f‖L1

|·|α
by the norm ‖ f‖∗ = ‖ f‖L1

|·|α
+‖H( f )‖L1

|·|α
or some other maximal function norms on H1

|·|α (R) . Let ψ be a function in the
Schwartz space S (R) satisfying

∫
R

ψ(x)dx �= 0; or be the Poisson kernel P on R .
Then, for f ∈ L1

|·|α (R) , we define the nontangential maximal function Mψ f by

Mψ f (x) = sup
|x−y|<t

|ψt ∗ f (y)|, x ∈ R.

The following is well-known and can be found in [2, 13, 16].

THEOREM 2. Let α > −1 and f ∈ L1
|·|α (R) . Then, the following four conditions

are equivalent:

(i) f ∈ H1
|·|α (R) .

(ii) H( f ) ∈ L1
|·|α (R) .

(iii) Mψ f ∈ L1
|·|α (R) .

(iv) MP f ∈ L1
|·|α (R) .

Moreover, in that case,

‖ f‖H1
|·|α

∼ ‖ f‖L1
|·|α

+‖H( f )‖L1
|·|α

∼ ‖Mψ f‖L1
|·|α

∼ ‖MP f‖L1
|·|α

.

The main aim of this section is to establish the following.

THEOREM 3. Let α and ϕ be as in Theorem 1. Assume that ‖ · ‖∗ is one of the
four norms in Theorem 2. Then, Hϕ is bounded on (H1

|·|α (R),‖ · ‖∗) , moreover,

∣∣∣∣
∫ ∞

0
tαϕ(t)dt

∣∣∣∣ � ‖Hϕ‖(H1
|·|α (R),‖·‖∗)→(H1

|·|α (R),‖·‖∗) �
∫ ∞

0
tα |ϕ(t)|dt.

COROLLARY 3. Let α > −1 and ϕ be a nonnegative measurable function on
(0,∞) such that

∫ ∞
0 tα ϕ(t)dt < ∞ . Assume that ‖ · ‖∗ is one of the four norms in

Theorem 2. Then, Hϕ is bounded on (H1
|·|α (R),‖ · ‖∗) , moreover,

‖Hϕ‖(H1
|·|α (R),‖·‖∗)→(H1

|·|α (R),‖·‖∗) =
∫ ∞

0
tα ϕ(t)dt.

Proof of Theorem 3. By Corollary 2 and Theorem 2, it suffices to prove that

‖Hϕ‖(H1
|·|α (R),‖·‖∗)→(H1

|·|α (R),‖·‖∗) �
∫ ∞

0
tα |ϕ(t)|dt. (5)
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Case 1: ‖ f‖∗ = ‖ f‖L1
|·|α

+‖H( f )‖L1
|·|α

. By Lemma 4 and Theorem 1(ii),

‖Hϕ f‖L1
|·|α

�
∫ ∞

0
tα |ϕ(t)|dt ‖ f‖L1

|·|α

and

‖H(Hϕ f )‖L1
|·|α

= ‖Hϕ(H( f ))‖L1
|·|α

�
∫ ∞

0
tα |ϕ(t)|dt ‖H( f )‖L1

|·|α

for all f ∈ H1
|·|α (R) . This implies that (5) holds.

Case 2: ‖ f‖∗ = ‖Mψ f‖L1
|·|α

. For every f ∈ H1
|·|α (R) , Lemma 4 and the Fubini

theorem yield that

Mψ(Hϕ f )(x) = sup
|y−x|<r

∣∣∣∣
∫

R

dz
∫ ∞

0

1
r

ψ
(

y− z
r

)
f
(z

t

) ϕ(t)
t

dt

∣∣∣∣
= sup

|y−x|<r

∣∣∣∣
∫ ∞

0
ψr/t ∗ f

(y
t

) ϕ(t)
t

dt

∣∣∣∣
� H|ϕ|(Mψ f )(x)

for almost every x ∈ R . Therefore, by Lemma 4 again,

‖Hϕ f‖∗ = ‖Mψ(Hϕ f )‖L1
|·|α

� ‖H|ϕ|(Mψ f )‖L1
|·|α

�
∫ ∞

0
tα |ϕ(t)|dt‖Mψ f‖L1

|·|α
=

∫ ∞

0
tα |ϕ(t)|dt ‖ f‖∗,

which implies that (5) holds.

Case 3: ‖ f‖∗ = ‖MP f‖L1
|·|α

. For every f ∈ H1
|·|α (R) , Lemma 4 and the Fubini

theorem yield that

MP(Hϕ f )(x) = sup
r>0

∣∣∣∣
∫

R

dy
∫ ∞

0

1
r
P

(
x− y

r

)
f
(y

t

) ϕ(t)
t

dt

∣∣∣∣
= sup

r>0

∣∣∣∣
∫ ∞

0
Pr/t ∗ f

(x
t

) ϕ(t)
t

dt

∣∣∣∣
� H|ϕ|(MP f )(x)

for almost every x ∈ R . Therefore, by Lemma 4 again,

‖Hϕ f‖∗ = ‖MP(Hϕ f )‖L1
|·|α

� ‖H|ϕ|(MP f )‖L1
|·|α

�
∫ ∞

0
tα |ϕ(t)|dt ‖MP( f )‖L1

|·|α
=

∫ ∞

0
tα |ϕ(t)|dt ‖ f‖∗.

This proves that (5) holds, and thus ends the proof of Theorem 3. �
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