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Abstract. In the present paper, we obtain sharper analogues of the Hardy-Littlewood-Stein in-
equalities for double trigonometric series. We also establish a new unified version of the Hardy-
Littlewood-Stein inequalities for Fourier series in regular systems, which covers the whole range
1 < p < ∞ including the critical case p = 2 .

1. Introduction

The Hardy-Littlewood inequality plays an important role in the theory of orthog-
onal Fourier series. Indeed it reveals the essence of the connection between integral
properties of functions and summability of its Fourier coefficients.

Historically, Hardy and Littlewood established an estimate for the norm of a func-
tion f ∈ Lp[0,2π ], 2 < p < ∞, in terms of its Fourier coefficients in the trigonomet-
ric system. Subsequently, Paley extended the Hardy-Littlewood inequality to arbitrary
bounded complete orthonormal systems {ϕk}k∈N .

Let us briefly recall these results. Let Φ = {ϕk(x)}∞
k=1 be a bounded complete

orthogonal system in L2[0,1]n . Let a = {ak}k∈N be a sequence such that for its non-
increasing rearrangement a∗ = {a∗k}∞

k=1 the following series converges

∞

∑
k=1

kp−2a∗p
k < ∞, 2 � p < ∞. (1)

Then there exists f ∈ Lp[0,1]n with its Fourier coefficients

ak =
∫

[0,1]n
f (x)ϕk(x)dx
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corresponding to the system Φ and

‖ f‖p
Lp[0,1]n � c

∞

∑
k=1

kp−2(a∗k)
p. (2)

On the other hand, if 1 < p � 2 and f is from the space Lp[0,1]n , then the sequence
of its Fourier coefficients {ak}∞

k=1 satisfies (1) and

∞

∑
k=1

kp−2(a∗k)
p � c‖ f‖p

Lp[0,1]n . (3)

Let f be a measurable function on [0,1]n . A function

f ∗(t) = inf{σ : μ{x ∈ Ω : | f (x)| > σ} � t}
is called a non-increasing rearrangement of the function f .

A Lorentz space Lp,q[0,1]n , 0 < p < ∞, is a set of all measurable functions f
such that

‖ f‖Lp,q =
(∫ 1

0
(t1/p f ∗(t))q dt

t

)1/q

< ∞

for 1 � q < ∞ , and
‖ f‖Lp,∞ = sup

t>0
t1/p f ∗(t) < ∞

for q = ∞ .
Correspondingly, for the discrete Lorentz space we use the notation lp,q , which is

a set of sequences a = {ak}∞
k=1 such that

‖a‖lp,q =

(
∞

∑
k=1

kq/p−1(a∗k)
q

)1/q

< ∞,

where {a∗k}∞
k=1 is a non-increasing rearrangement of the sequence {|ak|}∞

k=1 . When
q = ∞ , we have

‖a‖lp,∞ = sup
k∈N

k1/pa∗k < ∞.

The Hardy-Littlewood inequality was extended to the Lorentz space by Stein [18]:
Let f ∼ ∑∞

k=1 akϕk and 0 < q � ∞ . Then we have

‖ f‖Lp,q � c‖a‖lp′,q (4)

for 2 < p < ∞, and
‖ f‖Lp,q � c‖a‖lp′,q (5)

for 1 < p < 2.
Note that in the critical case p = 2 analogues of the Hardy-Littlewood-Stein in-

equalities have different forms [3, 8, 19]. For more general Lorentz spaces, the Hardy-
Littlewood-Stein inequalities were obtained in [4, 7, 12, 11, 14, 15].
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Let both {ϕk(x1)}∞
k=1 and {ψk(x2)}∞

k=1 be bounded complete orthonormal sys-
tems in L2[0,1] . Then the system {ζk1k2(x1,x2)}∞,∞

k1=1,k2=1 with

ζk1k2(x1,x2) = ϕk1(x1)ψk2(x2), k1,k2 ∈ N,

is a bounded complete orthonormal system in L2[0,1]2 .
For multiple Fourier series, analogues of the Hardy-Littlewood-Stein inequalities

in anisotropic Lorentz spaces Lp,q[0,1]n, p = (p1, . . . , pn), q = (q1, . . . ,qn), (see [2])
were obtained by the first author in [9, 10]. In a particular case, for the double series

f ∼
∞

∑
k1=1

∞

∑
k2=1

ak1k2ϕk1(x1)ψk2(x2),

we have (
∞

∑
k2=1

∞

∑
k1=1

kp−2
1 kp−2

2 (a∗1∗2
k1k2

)p

)1/p

� c‖ f‖Lp[0,1]2 (6)

for 1 < p < 2, and

‖ f‖Lp[0,1]2 � c

(
∞

∑
k2=1

∞

∑
k1=1

kp−2
1 kp−2

2 (a∗1∗2
k1k2

)p

)1/p

(7)

for 2 < p < ∞ , where a∗ = {a∗1∗2
k1k2

}(k1,k2)∈N2 is a repeated non-increasing rearrangement
of a = {am1m2}(m1,m2)∈N2 .

For multiple Fourier series, inequalities (6) and (7) are sharper than (2) and (3),
i.e. from (6) and (7) follow (2) and (3), respectively, but the converse argument does
not hold.

The main aim of this paper is to obtain inequalities, which are sharper than the
Hardy-Littlewood-Stein inequalities (4) and (5) for the double trigonometric series. We
also establish a new inequality of the form (5) for double Fourier series in regular sys-
tems, but for the whole range 1 < p < ∞ .

The present paper is organized as follows: In Section 2 we develop prelimi-
nary tools for our analysis. In Section 3, we prove sharper analogues of the Hardy-
Littlewood-Stein inequalities for double trigonometric series. In Section 4, we discuss
a new unified version of the Hardy-Littlewood-Stein inequalities for Fourier series in
regular systems, which covers the whole range 1 < p < ∞ including the critical case
p = 2.

2. lp,q(Λ) and np,q(G) spaces

Let a = {am1m2}(m1,m2)∈N2 be a bounded sequence with a unique limit point 0 , that
is, every neighborhood around 0 contains infinitely many terms of the sequence. By
{a∗1

k1m2
}∞

k1
we denote a non-increasing rearrangement of the sequence {|am1m2 |}∞

m1=1

for a fixed parameter m2 ∈ N . Now let us fix a parameter k1 ∈ N, then {a∗1∗2
k1k2

}k2∈N is

a non-increasing rearrangement of the sequence {a∗1
k1m2

}m2∈N.
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We define the systems of sets Λ = {Λn}∞
n=0 and G = {Gn}∞

n=0 by

Λn = ∪m1+m2=n
0�mi

{(k1,k2) : 2mi � ki < 2mi+1, i = 1,2}

and
Gn = ∪n

r=0Λr = ∪m1+m2�n
0�mi

{(k1,k2) : 2mi � ki < 2mi+1, i = 1,2},

respectively. Note that Gn is called a step hyperbolic gross of order n .

LEMMA 1. Let a = {am1m2}(m1,m2)∈N2 be a sequence such that |am1m2 | → 0 when
m1 +m2 → ∞ . Then for any n ∈ N we have

2n

∑
k=1

(a∗k)
2 � ∑

(r1,r2)∈Gn

(a∗1∗2
r1r2 )2, (8)

and

∑
(r1,r2)∈Λn

(a∗1∗2
r1r2 )2 �

∞

∑
k=2n−1

(a∗k)
2, (9)

where {a∗k}∞
k=1 is a non-increasing rearrangement of the sequence {|am1m2 |}(m1,m2)∈N2 .

Proof. Note that all the sets

{a∗k}∞
k=1, {a∗1∗2

m1m2
}(m1,m2)∈N2 and {|am1m2 |}(m1,m2)∈N2

consist of the same elements.
Let (k1,k2) /∈ Gn . Then k1 ·k2 � 2n , and we get a∗1∗2

k1k2
� a∗1∗2

m1m2 for m1 � k1,m2 �
k2 . The number of the elements a∗1∗2

k1k2
is at least k1 · k2 , so we have a∗1∗2

k1k2
� a∗2n .

This means that the sum ∑(r1,r2)∈Gn(a
∗1∗2
r1r2 )2 contains all terms of ∑2n

k=1(a
∗
k)

2 . Hence,
inequality (8) is valid.

For the same reason, the sum ∑∞
2n−1(a∗k)

2 contains all terms of the sum

∑
(r1,r2)∈Λn

(a∗1∗2
r1r2 )2.

Thus, inequality (9) also holds. �
We define sets a(Λ) = {ak(Λ)} and a(G) = {ak(G)} for double sequence a =

{am1m2}(m1,m2)∈N2 by

an(Λ) =

(
1
2n ∑

(m1,m2)∈Λn

(
a∗1∗2

m1m2

)2) 1
2

, n ∈ N,

and

an(G) = sup
r�n

1
2r

∣∣∣∣∣ ∑
(m1,m2)∈Gr

am1m2

∣∣∣∣∣ , n ∈ N,
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respectively.
For 0 < q, p � ∞ , the spaces lp,q(Λ) and np,q(G) can be defined in terms of quasi-

norms

‖a‖lp,q(Λ) =

(
∞

∑
n=1

(
2

n
p an(Λ)

)q
) 1

q

,

and

‖a‖np,q(G) =

(
∞

∑
n=1

(
d

1
p
n an(G)

)q
) 1

q

,

respectively. Here dn = 2n

n .
For q = ∞, 0 < p � ∞ , we have

‖a‖lp,∞(Λ) = sup
n∈N

2
n
p an(Λ),

and

‖a‖np,∞(G) = sup
n∈N

d
1
p
n an(G).

Note that in the one-dimensional case n = 1 the space lp,q(Λ) coincides with the
Lorentz space lp,q .

Although the Lorentz-type space lp,q(Λ) and the net-type space np,q(G) may look
similar, these spaces are essentially different (see, e.g. [13]):

EXAMPLE 1. Let 1 < p < ∞ and 0 < q � ∞. The sequence

a = {(−1)m1+m2}(m1,m2)∈N2

is an element of np,q(G), at the same time the sequence |a| = {|(−1)m1+m2 |} = {1}
does belong to np,q(G).

The following version of Hardy’s inequality from [16] will be useful in our anal-
ysis. For further discussions related to Hardy’s inequality, we refer to the recent book
[17] (see, e.g. the preface of the book).

LEMMA 2. [16] Let α > 0 and 0 < q,h � ∞ . Assume that a sequence {dk}k∈N

satisfies
dk+1

dk
� δ , k = 2,3, . . . , (10)

for some δ > 1 . Then we have the Hardy inequalities

⎛
⎝ ∞

∑
k=0

⎛
⎝d−α

k

(
k

∑
r=0

|br|h
) 1

h
⎞
⎠

q⎞
⎠

1
q

� cα ,q

(
∞

∑
k=0

(
d−α

k |bk|
)q) 1

q
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and ⎛
⎝ ∞

∑
k=0

⎛
⎝dα

k

(
∞

∑
r=k

|br|h
) 1

h
⎞
⎠

q⎞
⎠

1
q

� cα ,q

(
∞

∑
k=0

(dα
k |bk|)q

) 1
q

.

Now we present some useful properties of spaces lp,q(Λ) and np,q(G) .

LEMMA 3. a) If 0 < q < q1 � ∞ and 1 < p � ∞, then

lp,q(Λ) ↪→ lp,q1(Λ) and np,q(G) ↪→ np,q1(G).

b) If 0 < p < p1 < ∞ and 0 < q,q1 � ∞, then

lp,q(Λ) ↪→ lp1,q1(Λ) and np,q(G) ↪→ np1,q1(G).

Proof. These properties are proved similarly as the proofs of analogous properties
of the (classical) Lorentz spaces lp,q (see [13]). �

LEMMA 4. Let 0 < q � ∞ . We have the embedding

lp,q ↪→ lp,q (Λ) (11)

for 1 < p < 2 , and
lp,q (Λ) ↪→ lp,q (12)

for 2 < p < ∞ .

Proof. Let 1 < p < 2, a ∈ lp,q . By using the relation (9) from Lemma 1 we get

‖a‖lp,q(Λ) =

⎛
⎝ ∞

∑
n=0

⎛
⎝2

n
p

(
1
2n ∑

(m1,m2)∈Λn

(a∗1∗2
m1m2

)2

) 1
2
⎞
⎠

q⎞
⎠

1
q

� c

⎛
⎝ ∞

∑
n=0

⎛
⎝2

n
p

(
1
2n

∞

∑
r=2n

(a∗r )
2

) 1
2
⎞
⎠

q⎞
⎠

1
q

= c

(
∞

∑
n=0

(
2n( 1

p− 1
2 )
( ∞

∑
r=n

(br)2
) 1

2
)q) 1

q

,

where

br =

(
2r+1−1

∑
m=2r

(a∗m)2

) 1
2

.

Furthermore, by using Hardy’s inequality (Lemma 2) we obtain (11).
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Let 2 < p < ∞, a ∈ lp,q(Λ) . By using the relation (9) we get

‖a‖lp,q 	
(

∞

∑
n=0

(
2

n
p

(
1
2n

2n

∑
r=1

a∗r

))q) 1
q

�

⎛
⎝ ∞

∑
n=0

⎛
⎝2

n
p

(
1
2n

2n

∑
r=1

(a∗r )
2

) 1
2
⎞
⎠

q⎞
⎠

1
q

�

⎛
⎝ ∞

∑
n=0

⎛
⎝2

n
p

(
1
2n ∑

(m1,m2)∈Gn

(a∗1∗2
m1m2

)2

) 1
2
⎞
⎠

q⎞
⎠

1
q

=

⎛
⎝ ∞

∑
n=0

⎛
⎝2n( 1

p− 1
2 )

(
n

∑
r=0

u2
r

) 1
2
⎞
⎠

q⎞
⎠

1
q

,

where

ur =

(
∑

(m1,m2)∈Λr

(a∗1∗2
m1m2

)2

) 1
2

.

Finally, by using Hardy’s inequality (Lemma 2) we arrive at

‖a‖lp,q � c‖a‖lp,q(Λ). �

Let (A0,A1) be compatible pair of Banach spaces (see, e.g. [1]). Let

K(t,a;A0,A1) = inf
a=a0+a1

(‖a0‖A0 + t‖a1‖A1), a ∈ A0 +A1, t > 0,

be a Peetre functional.
We have

(A0,A1)θ ,q =

⎧⎪⎨
⎪⎩a ∈ A0 +A1 : ‖a‖(A0,A1)θ ,q

=

⎛
⎝ ∞∫

0

(t−θ K(t,a))q dt
t

⎞
⎠

1
q

< ∞

⎫⎪⎬
⎪⎭

for 0 < q < ∞ and 0 < θ < 1, as well as

(A0,A1)θ ,∞ =
{

a ∈ A0 +A1 : ‖a‖(A0,A1)θ ,∞ = sup
0<t<∞

t−θ K(t,a) < ∞
}

when q = ∞ .
The following interpolation theorem holds for the spaces lp,q(Λ) .
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THEOREM 1. Let 0 < p0 < p1 < ∞, 0 < q0,q1,q � ∞ and 1 < θ < ∞. Then we
have (

lp0,q0(Λ), lp1,q1(Λ)
)

θ ,q ↪→ lp,q(Λ), (13)

and (
np0,q0(G), np1,q1(G)

)
θ ,q ↪→ np,q(G), (14)

where 1/p = (1−θ )/p0 + θ/p1 .

Proof. Let a = {am1m2}(m1,m2)∈N2 ∈ (lp0,∞(Λ), lp1,∞(Λ)
)

θ ,q . Let a = u+ v be a

representation, where u ∈ lp0,∞(Λ) and v ∈ lp1,∞(Λ) .
Let n ∈ N . Since

(u+ v)∗1∗2
k1k2

� u∗1∗2[
k1
2

][
k2
2

]+ v∗1∗2[
k1
2

][
k2
2

]

for n > 1, we get

(
1
2n ∑

(r1,r2)∈Λn

(
a∗1∗2

r1r2

)2) 1
2

�
(

2
2n−2 ∑

(r1,r2)∈Λn−2

(
u∗1∗2

r1r2

)2) 1
2

+

(
2

2n−2 ∑
(r1,r2)∈Λn−2

(
v∗1∗2
r1r2

)2) 1
2

� 2
1
2 2

(
− n−2

p0

) [
‖u‖lp0,∞(Λ) +2

(n−2)
(

1
p0

− 1
p1

)
‖v‖lp1,∞(Λ)

]
,

and (
1
2n ∑

(r1,r2)∈Λn

(
a∗1∗2

r1r2

)2) 1
2

� 2(u∗1∗2
11 + v∗1∗2

11 )

for 0 � n � 1.
Since a = u+ v is arbitrary representation, we have

2
n
p0

(
1
2n ∑

(r1,r2)∈Λn

(a∗1∗2
r1r2 )2

) 1
2

� cK

(
2

(n−2)( 1
p0

− 1
p1

)
,a; lp0,∞(Λ), lp1,∞(Λ)

)
.

It yields

‖a‖lp,q(Λ) � c

(
∞

∑
k=1

(
2

k( 1
p− 1

p0
)
K

(
2

k( 1
p0

− 1
p1

)
,a; lp0,∞(Λ), lp1,∞(Λ)

))q
) 1

q

	
(∫ ∞

1

(
t−θ K

(
t,a; lp0,∞(Λ), lp1,∞(Λ)

))q dt
t

) 1
q

� ‖a‖(lp0,∞(Λ), lp1,∞(Λ))θ ,q
.

Combining this with the embedding lpi,qi(Λ) ↪→ lpi,∞(Λ), i = 0,1, we obtain (13). The
relation (14) is proved similarly. �



HLS INEQUALITIES FOR DOUBLE TRIGONOMETRIC SERIES 9

3. Hardy-Littlewood-Stein inequalities

LEMMA 5. Let 0 < p < 2 . Then we have

⎛
⎝ ∑

(k1,k2)∈N2

(
k

1
p′
1 k

1
p′
2 a∗1∗2

k1k2

)2 1
k1

1
k1

⎞
⎠

1/2

�

⎛
⎝ ∑

(k1,k2)∈N2

(k1k2)
p−2
(
a∗1∗2

k1k2

)p

⎞
⎠

1/p

.

Proof. A direct computation gives

⎛
⎝ ∑

(k1,k2)∈N2

(
k

1
p′
1 k

1
p′
2 a∗1∗2

k1k2

)2
1
k1

1
k1

⎞
⎠

1/2

=

⎛
⎝ ∑

(k1,k2)∈N2

(
k

1
p′
1 k

1
p′
2 a∗1∗2

k1k2

)p(
k

1
p′
1 k

1
p′
2 a∗1∗2

k1k2

)2−p 1
k1

1
k1

⎞
⎠

1/2

�
(

sup
ki∈N

k
1
p′
1 k

1
p′
2 a∗1∗2

k1k2

)1− p
2
⎛
⎝ ∑

(k1,k2)∈N2

(k1k2)p−2(a∗1∗2
k1k2

)p

⎞
⎠

1/2

. (15)

On the other hand, we have (k1k2)
1
p′ 	

(
∑k1

r1=1 ∑k1
r1=1(r1r2)p−2

)1/p
. Thus, we get

sup
ki∈N

k
1
p′
1 k

1
p′
2 a∗1∗2

k1k2
�

⎛
⎝ ∑

(r1,r2)∈N2

(r1r2)p−2(a∗1∗2
r1r2 )p

⎞
⎠

1/p

.

Substituting this in (15) we obtain the desired result. �

THEOREM 2. Let Φ = {ϕk}∞
k=1 and Ψ = {ψk}∞

k=1 be bounded orthonormal sys-
tems in L2[0,1] . Let 1 � q � ∞ . If 1 < p < 2, f ∈ Lp,q[0,1]2 and

f ∼ ∑∞
k1=1 ∑∞

k2=1 ak1k2ϕk1(x1)ψk2(x2), then a = {ak1k2} ∈ lp′,q(Λ) and

‖a‖lp′,q(Λ) � c‖ f‖Lp,q[0,1]2 . (16)

If 2 < p < ∞, f ∼∑∞
k1=1 ∑∞

k2=1 ak1k2ϕk1(x1)ψk2(x2) and a∈ lp′,q(Λ), then f ∈Lp,q[0,1]2

and
‖ f‖Lp,q[0,1]2 � c‖a‖lp′,q(Λ). (17)

Proof. Assuming 1 < p � 2, first we show

‖a‖lp′,∞(Λ) � cp‖ f‖Lp (18)
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Let f ∈ Lp[0,1]2 , f ∼ ∑∞
k1=1 ∑∞

k2=1 ak1k2ϕk1k2 , and n ∈ N . A direct computation gives

2
n
p′ an(Λ) = 2

n
p′

(
1
2n ∑

(m1,m2)∈Λn

(
a∗1∗2

m1m2

)2) 1
2

� 2

(
∑

(k1,k2)∈Λn

(
k

1
p′
1 k

1
p′
2 a∗1∗2

k1k2

)2 1
k1

1
k1

)1/2

� 2

⎛
⎝ ∑

(k1,k2)∈N2

(
k

1
p′
1 k

1
p′
2 a∗1∗2

k1k2

)2 1
k1

1
k1

⎞
⎠

1/2

.

By using Lemma 5, and using the fact that n is arbitrary parameter, we get

‖a‖lp′,∞(Λ) �

⎛
⎝ ∑

(k1,k2)∈N2

(k1k2)
p−2
(
a∗1∗2

k1k2

)p 1
k1

1
k1

⎞
⎠

1/p

.

Thus, by using the inequality (6), we obtain (18).
Now we consider the case 1 < p < 2. Then there exist p0, p1,θ ∈ (0,1) such that

1 < p0 < p < p1 < 2,
1
p

=
1−θ

p0
+

θ
p1

.

Form (18) it follows that

‖a‖lp′0,∞(Λ) � cp0‖ f‖Lp0 [0,1]2 ,

and

‖a‖lp′1,∞(Λ) � cp1‖ f‖Lp1 [0,1]2 .

So, according to the real interpolation method, we get

‖a‖(
lp′0,∞(Λ),lp′1,∞(Λ)

)
θ ,q

� c(cp0)
1−θ (cp1)

θ‖ f‖(Lp0 [0,1]2,Lp1 [0,1]2)θ ,q
.

Thus, taking into account Theorem 1 and the fact that (see [1])

(
Lp0 [0,1]2,Lp1 [0,1]2

)
θ ,q = Lp,q[0,1]2,

we obtain (16).



HLS INEQUALITIES FOR DOUBLE TRIGONOMETRIC SERIES 11

Let 2 < p < ∞, f ∼ ∑∞
k1=1 ∑∞

k2=1 ak1k2ϕk1(x1)ψk2(x2) and a ∈ lp′,q . By using the
dual representation of the norm of the Lorentz space and Parseval’s equality, we get

‖ f‖Lp,q 	 sup
‖g‖Lp′q′ =1

∫ 1

0

∫ 1

0
f (x1,x2)g(x1,x2)dx1dx2 = sup

‖g‖Lp′,q′=1

∞

∑
k1=1

∞

∑
k2=1

ak1k2bk1k2

� sup
‖g‖Lp′,q′ =1

∞

∑
k=1

∞

∑
k2=1

a∗1∗2
k1k2

b∗1∗2
k1k2

= sup
‖g‖Lp′,q′ =1

∞

∑
n=1

∑
(k1,k2)∈Λn

a∗1∗2
k1k2

b∗1∗2
k1k2

� sup
‖g‖Lp′,q′ =1

∞

∑
n=1

(
∑

(k1,k2)∈Λn

(
a∗1∗2

k1k2

)2
) 1

2
(

∑
(k1,k2)∈Λn

(
b∗1∗2

k1k2

)2
) 1

2

� sup
‖g‖Lp′,q′ =1

⎛
⎜⎝ ∞

∑
n=1

⎛
⎝2

n
(

1
p− 1

2

)(
∑

(k1,k2)∈Λn

(
b∗1∗2

k1k2

)2
) 1

2
⎞
⎠

q′⎞⎟⎠
1
q′

×
⎛
⎝ ∞

∑
n=1

⎛
⎝2

n
(

1
p′ −

1
2

)(
∑

(k1,k2)∈Λn

(
a∗1∗2

k1k2

)2
) 1

2
⎞
⎠

q⎞
⎠

1
q

.

Since 2 < p < ∞ , we have 1 < p′ < 2. This allows us to apply inequality (16), that is,

∞

∑
n=1

⎛
⎝2

n
(

1
p− 1

2

)(
∑

(k1,k2)∈Λn

(
b∗1∗2

k1k2

)2
) 1

2
⎞
⎠

q′

� c‖g‖q′
Lp′,q′

.

Thus, we arrive at

‖ f‖q
Lp,q

� c
∞

∑
n=1

⎛
⎝2

n
p′

(
1
2n ∑

(k1,k2)∈Λn

(
a∗1∗2

k1k2

)2
) 1

2
⎞
⎠

q

. �

REMARK 1. From Lemma 3, it follows that inequalities (16) and (17) imply in-
equalities (4) and (5), respectively. Let us show that the converse argument is not valid.

Let n be an arbitrary natural number. We consider the function

f (x1,x2) = ∑
(k1,k2)∈Gn

ϕk1(x1)ψk2(x2)

Inequalities (16) and (17) imply the estimates

2
n
p′ n

1
2 � c‖ f‖Lp,q , 1 < p < 2,

and
‖ f‖Lp,q � c2

n
p′ n

1
2 , 2 < p < ∞.
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Meanwhile, inequalities (4) and (5) lead us to estimates of a different order

2
n
p′ n

1
p′ � ‖ f‖Lp,q , 1 < p < 2,

and

‖ f‖Lp,q � c2
n
p′ n

1
p′ , 2 < p < ∞,

which are essentially less accurate.

4. Inequality for Fourier series in regular systems

A complete orthonormal system Φ = {φk(x)}∞
k=1 is called regular (see, e.g. [9]) if

there exists a constant B such that:
1) For any segment e from [0,1] and any k ∈ N we have∣∣∣∣

∫
e
φk(x)dx

∣∣∣∣� Bmin(|e|,1/k).

2) For any segment w from N and any t ∈ [0,1] we have(
∑
k∈w

φk(·)
)∗

(t) � Bmin(|w|,1/t),

where (∑k∈w φk(·))∗ (t) is the non-increasing rearrangement of the function ∑k∈w φk(x) .
For example, trigonometric, Walsh and Price systems are regular.

We recall the following statement which is a special case of [9, Theorem 9].

LEMMA 6. Let 2 � p < ∞ and 1 � q � ∞ . Let Φ and Ψ be regular systems. Let
f ∼ ∑∞

k1=1 ∑∞
k2=1 ak1k2ϕk1(x1)ψk2(x2) . If for some A > 0

sup
n1,n2∈N

n
1
p′
1 n

1
p′
2 |an1n2 | � A,

sup
n1∈N

n
1
p′
1

(
∞

∑
k2=1

kp−1
2 |an1k2+1−an1k2 |p

) 1
p

� A,

sup
n2∈N

n
1
p′
2

(
∞

∑
k1=1

kp−1
1 |ak1+1n2 −ak1n2 |p

) 1
p

� A,

(
∞

∑
k2=1

∞

∑
k1=1

(k1k2)p−1|ak1+1k2+1−ak1+1k2 −ak1k2+1 +ak1k2 |p
) 1

p

� A,

then we have f ∈ Lp[0,1]2 and

‖ f‖Lp[0,1]2 � cpA,

where the constant cp depends only on p.
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Note that, in addition to [9], Lemma 6 was studied in a more general case in
the papers [5] and [6]. We refer to these papers and references therein for further
discussions in this direction.

THEOREM 3. Let 1 < p < ∞ and 1 < q � ∞ . Let Φ and Ψ be regular systems.
For any f ∼ ∑∞

k1=1 ∑∞
k2=1 ak1k2ϕk1(x1)ψk2(x2), we have

‖a‖np′q(G) � c‖ f‖Lp,q[0,1]2 .

Proof. Let us first show the weak inequality

‖a‖np′,∞(G) � c‖ f‖Lp .

Let f ∼ ∑∞
k1=1 ∑∞

k2=1 ak1k2ϕk1(x1)ψk2(x2) and Gn be the step hyperbolic cross with
n ∈ N . Consider∣∣∣∣∣ ∑

(m1,m2)∈Gn

am1m2

∣∣∣∣∣=
∣∣∣∣
∫

[0,1]2
f (x1,x2)DGn(x1,x2)dx1dx2

∣∣∣∣ .
Using the Hölder inequality, we have∣∣∣∣∣ ∑

(m1,m2)∈Gn

am1m2

∣∣∣∣∣� ‖ f‖Lp‖DGn‖Lp′ ,

where DGn(x1,x2) = ∑(k1,k2)∈Gn ϕk1(x1)ψk2(x2) . Furthermore, using Lemma 6, we ob-
tain

‖DGn‖Lp′ � 2
n
p n

1
p′ .

It yields

‖a‖np′,∞(G) = sup
n

(
2n

n

) 1
p′

a(Gn)

� sup
n

1

n
1
p′ 2

n
p

∣∣∣∣∣ ∑
(m1,m2)∈Gn

am1m2

∣∣∣∣∣� ‖ f‖Lp .

Thus, we arrive at
‖a‖np′,∞(G) � c‖ f‖Lp

for 1 < p < ∞ .
Similarly as in the proof of Theorem 2, by using Theorem 1 and the interpolation

properties of the Lebesgue spaces we establish the inequality

‖a‖np′,q(G) � c‖ f‖Lp,q

for 1 < p < ∞ and 0 < q � ∞ . �
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REMARK 2. For 1 < p < 2 both inequalities (16) and (18) are valid. These in-
equalities are independent of each other. Indeed, let us consider

f (x1,x2) = ∑
(k1,k2)∈Gn

ϕk1(x1)ψk2(x2)

and
g(x1,x2) = ∑

(k1,k2)∈Gn

(−1)k1+k2ϕk1(x1)ψk2(x2).

Inequality (16) implies the estimates

2
n
p′ n

1
2 � cp,q‖ f‖Lp,q ,

and
2

n
p′ n

1
2 � cp,q‖g‖Lp,q .

However, inequality (18) yields

2
n
p′ n

1
p � cp,q‖ f‖Lp,q ,

and
1 � cp,q‖g‖Lp,q.

Thus, for the function f inequality (18) is sharper than inequality (16), but for the
function g inequality (16) is sharper.
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