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Abstract. In this paper, we obtain some inequalities for the central moments of discrete and
continuous distributions, which, in turn, gives some lower bounds for the spread of a matrix when
all of its eigenvalues are real. Likewise, we obtain lower bounds for the span of a polynomial
equation.

1. Introduction

Let r1,r2, . . . ,rn be real numbers. Then the arithmetic mean r of the numbers
r1,r2, . . . ,rn is defined as

r =
1
n

∑n
i=1 ri (1)

and their k -th central moment is defined as

mk =
1
n

∑n
i=1 (ri − r)k . (2)

Let m = mini ri , and M = maxi ri . Then the k -th central moment of a random variable
R in [m,M] for the discrete and continuous cases, respectively, are defined as

μk = ∑n
i=1 pi (ri − μ ′

1)
k ; μ ′

1 = ∑n
i=1 piri (3)

and

μk =
∫ M

m

(
r− μ ′

1

)k ψ (r)dr; μ ′
1 =

∫ M

m
rψ (r)dr

where pi ’s and ψ (r) are corresponding probability functions and probability densities
such that

n

∑
i=1

pi = 1,

∫ M

m
ψ (r)dr = 1.
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In [11], Popoviciu proved that

μ2 � 1
4

(M−m)2 . (4)

It is shown in [14] that

μ4 � 1
12

(M−m)4 . (5)

In [15], Sharma et al. proved the following inequality:

1
4

(
μ4 +3μ2

2

)
� 1

16
(M−m)4 . (6)

(4), (5), and (6) provide lower bounds for the range M−m of the random variable in
terms of its central moments. In literature, these inequalities are used to derive lower
bounds for the spread of a matrix, and span of a polynomial equation. For related work
see [1, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15].

In the present context we also need the following two inequalities, [2, 15]:

μ2 � −αβ (7)

and

μ2μ4 � 4
243

(M−m)6 (8)

where
α = m− μ ′

1 and β = M− μ ′
1. (9)

We here discuss some further improvements, refinements, and applications of the above
inequalities to the theory of polynomial equations and matrix analysis.

In Section 2, the first two results give upper bounds for the fourth central moments
(see Theorem 1 and Corollary 1, below). We present inequalities involving M −m ,
μ2 and μ4 (Corollary 2 and Theorem 2); an inequality involving M−m , m2 and m3

(Corollary 3); an inequality involving M−m and μ6 (Theorem 3). In Section 3, we
obtain several lower bounds for the spread of a matrix in terms of the traces of a matrix
(Theorem 4); and it is also shown that some inequalities for the spreads can be extended
to positive linear functionals (Theorem 5). In Section 4, we give the application of
Section 2 to the theory of polynomial equation where we present several lower bounds
for the span of a polynomial (Theorem 6). We also include an example (Example 1).

2. Inequalities for central moments

We prove the following results for the case when R is a discrete random variable
and taking finitely many values r1,r2, . . . ,rn with probabilities p1, p2, . . . , pn , respec-
tively. The arguments are similar to the case when R is a continuous random variable.

THEOREM 1. Let α and β be defined as in (9). Then for m � ri � M, i =
1,2, . . . ,n,

μ4 � −αβ (α2 + β 2 + αβ ). (10)
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Proof. We have, for α � s � β ,

(s−α)(s−β )
(

s+
1
2

(α + β )
)2

� 0. (11)

Applying (11) to n numbers si ’s, α � si � β ; we obtain

s4
i �

(
3
4

(α + β )2−αβ
)

s2
i +
(

1
4

(α + β )3−αβ (α + β )
)

si − 1
4

αβ (α + β )2

(12)
for all i = 1,2, . . . ,n . By multiplying (12) by pi � 0 and summing over i from 1 to n ,
we get

n
∑
i=1

pis4
i �

(
3
4

(α + β )2 −αβ
)

n
∑
i=1

pis2
i +
(

1
4

(α + β )3 −αβ (α + β )
)

n
∑
i=1

pisi

−1
4

αβ (α + β )2 .

(13)
By substituting si = ri−μ ′

1 in (13), and then using (3), a simple calculation shows that

μ4 �
(

3
4

(α + β )2−αβ
)

μ2− 1
4

αβ (α + β )2. (14)

By combining (7) and (14), we deduce the desired inequality (10). �
We present an improvement of (5) in the following corollary.

COROLLARY 1. With the conditions as in Theorem 1, we have

μ4 � 1
16

(M−m)4. (15)

Proof. Using the arithmetic-geometric mean inequality, we have

−αβ � 1
4
(M−m)2. (16)

Inserting the values of α and β from (9) in (10), and then combining with (16), we
find that

μ4 � 1
4
(M−m)2

(
(m− μ ′

1)
2 +(M− μ ′

1)
2)+ (m− μ ′

1)(M− μ ′
1)
)
. (17)

The right-hand side of (17) achieves its minimum in the interval m � μ ′
1 � M at μ ′

1 =
1
2

(m+M) , where its value is
1
16

(M−m)4 . This completes the proof. �

By using the inequality μ4 � μ2
2 , (15) may be written as

μ2
2 � μ4 � 1

16
(M−m)4

which gives the refinement of (4).
We present a refinement of (6) in the following corollary.
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COROLLARY 2. With the conditions as in Theorem 1, we have

1
4

(
μ4 +3μ2

2

)
� 1

2

(
μ4 + μ2

2

)
� 1

16
(M−m)4 . (18)

Proof. By (10), we have

μ4 + α2β 2 � −αβ
(
α2 + β 2

)
. (19)

The right-hand side inequality in (18) now follows on combining (7) with (19), and
using the arithmetic-geometric mean inequality:

−αβ
(
α2 + β 2)� 1

8
(α −β )4 =

1
8

(M−m)4 .

The left-hand side inequality in (18) holds because μ4 � μ2
2 . �

We present a lower bound for the range M −m in terms of μ2 and μ4 in the
following inequality.

THEOREM 2. For m � ri � M, i = 1,2, . . . ,n, we have

μ3
2 + μ2μ4 � 1

32
(M−m)6. (20)

Proof. We find from (10) that

μ2μ4 � −αβ (α2 + β 2 + αβ )μ2. (21)

By combining (7) and (21), a simple calculation shows that

μ3
2 + μ2μ4 � α2β 2(α2 + β 2). (22)

Also, since 0 � μ2 � −αβ � 1
4
(M−m)2 , therefore (22) gives

μ3
2 + μ2μ4 � 1

16
(M−m)4(α2 + β 2). (23)

The right-hand side of (23) achieves its minimum in the interval m � μ ′
1 � M at μ ′

1 =
m+M

2 where its value is
1
32

(M−m)6 . This proves the theorem. �

By using the inequality μ4 � μ2
2 , (20) may be written as

μ3
2 � 1

2

(
μ3

2 + μ2μ4
)

� 1
64

(M−m)6

which proves the refinement of (4) for both discrete and continuous distributions.
Using a similar argument, one can find from (4) and (15) that

μ3
2 � μ2μ4 � 1

64
(M−m)6 (24)

which gives an improvement of (8).
We present a relation between m2, m3 and M−m in the following corollary.
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COROLLARY 3. With the conditions as in Theorem 2, we have

m2
3 +2m3

2 � 1
32

(M−m)6. (25)

Proof. Pearson [10] proves the relation between the skewness and the kurtosis of
a distribution, that is,

m2
3

m3
2

+1 � m4

m2
2

. (26)

By combining (20) and (26), we immediately get (25). �
We present a lower bound for the range M−m in terms of μ6 in the following

theorem.

THEOREM 3. With the conditions as in Theorem 1, we have

μ6 � 1
16

(M−m)6. (27)

Proof. We have, for α � s � β ,

(s−α)(s−β )
(

s2 + 1
2 (α + β )s− 1

4
(α −β )2

)2

� 0. (28)

Applying (28) to n numbers si ’s, α � si � β , and then resulting inequalities multiply-
ing by pi � 0 and summing over i from 1 to n ; a simple calculation shows that

n
∑
i=1

pis6
i � 1

4
(5α2 +5β 2−2αβ )

n
∑
i=1

pis4
i

− 1
16

(
5α4 +5β 4 +22α2β 2−8αβ (α2 + β 2)

) n
∑
i=1

pis2
i −

1
16

αβ (α −β )4 .

(29)
By substituting si = ri − μ ′

1 in (29), and then using (3), we get

μ6 � 1
4
(5α2 +5β 2−2αβ )μ4− 1

16

(
5α4 +5β 4 +22α2β 2 −8αβ (α2 + β 2)

)
μ2

− 1
16

αβ (α −β )4 .

(30)

Since μ2 � 0 and
1
16

(
5α4 +5β 4 +22α2β 2−8αβ (α2 + β 2)

)
� 0, therefore (30) can

be written as

μ6 � 1
4
(5α2 +5β 2−2αβ )μ4− 1

16
αβ (α −β )4 . (31)

By combining (15), (16), and (31), and then insert the values of α and β from (9) in
the resulting inequality; we obtain

μ6 � 1
64

(M−m)4(5α2 +5β 2−6αβ ). (32)
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The right-hand side of (32) achieves its minimum in the interval m � μ ′
1 � M at μ ′

1 =
m+M

2 where its value is (M−m)6
16 . This proves the theorem. �

Note that (30) gives an upper bound for μ6 in terms of m , M , r , μ2 , and μ4 .

3. Bounds for spreads of matrices

Let Mn denotes the algebra of all n×n complex matrices. We denote the trace of
an n× n matrix by tr (A) . Let A ∈ Mn , and let λ1(A) , λ2(A) , . . . , λn(A) be the
eigenvalues of A . The term spread of a matrix A was introduced by Mirsky [9],
and defined by: spd (A) = maxi, j

∣∣λi(A)−λ j(A)
∣∣ . For real eigenvalues, spd (A) =

λmax(A)−λmin(A) , where λmin(A) = mini λi(A) and λmax(A) = maxi λi(A) . We now
present several lower bounds for spd (A) .

THEOREM 4. If the eigenvalues of A ∈ M(n) are all real, then

spd (A) �
(

16
n

tr
(
B4
)) 1

4

, (33)

spd (A) �
[
32

((
1
n
tr
(
B2
))3

+
1
n2 tr

(
B2
)
tr
(
B4
))] 1

6

(34)

and

spd (A) �
(

16
n

tr
(
B6
)) 1

6
(35)

where B = A− 1
n tr (A) I .

Proof. Let λ1(A) , λ2(A) , . . . , λn(A) be the eigenvalues of A . Then the arithmetic
mean of the eigenvalues λi(A) can be written as λ (A) = 1

n ∑n
i=1 λi(A) = 1

n tr (A) ; and
their second, fourth, and sixth central moment can be expressed in terms of tr

(
B2
)
,

tr
(
B4
)
, and tr

(
B6
)

respectively, that is,

m2 =
1
n
tr
(
B2
)
, m4 =

1
n
tr
(
B4
)

and m6 =
1
n
tr
(
B6
)
. (36)

The inequalities (33), (34), and (35) follow by Corollary 1, Theorem 2 and Theorem 3

where m2 , m4 and m6 are substituted by (36) and r = λ (A) =
1
n
tr (A) in (15), (20),

and (27), respectively. �

Likewise, from the inequality (24), we have

spd (A) �
(

64
n2 tr

(
B2
)
tr
(
B4
)) 1

6

. (37)
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Under the conditions of Theorem 4, it is shown respectively in [14] and [15] that

spd (A) �
(

12
n

tr
(
B4
)) 1

4
(38)

and

spd (A) �
(

243
4n2 tr

(
B2
)
tr
(
B4
)) 1

6

. (39)

Note that the inequalities (33) and (37) provide improvement of (38) and (39), respec-
tively.

A linear functional ϕ : M(n) → C is called positive if ϕ (A) � 0 whenever A � O
and unital if ϕ (I) = 1, see [3, 14]. We now show that the above inequalities can be
extended for positive linear functionals.

THEOREM 5. Let ϕ : Mn → C be a unital positive linear functional and let A be
any Hermitian element of Mn . Then

spd (A) � 2
(
ϕ
(
B4
)) 1

4 (40)

where B = A−ϕ (A) I .

Proof. By the spectral theorem, for k = 1,2, . . . , we have

Ak = ∑n
i=1 λ k

i (A)Pi and Bk = ∑n
i=1 (λi (A)−ϕ (A))k Pi (41)

where Pi are corresponding projections, Pi � O and ∑n
i=1 Pi = I .

By applying ϕ , we find from (41) that

ϕ
(
Ak
)

= ∑n
i=1 λ k

i (A)ϕ (Pi) and ϕ
(
Bk
)

= ∑n
i=1 (λi (A)−ϕ (A))k ϕ (Pi)

with ∑n
i=1 ϕ (Pi) = 1.

Also, we observe that ϕ (A) , ϕ
(
B2
)
, ϕ
(
B4
)
, and ϕ

(
B6
)

are respectively the
arithmetic mean, second, fourth, and sixth central moments of the eigenvalues λi (A)
with respective weights ϕ (Pi) , i = 1,2, . . . ,n . Therefore, we can apply Corollary 1,
and the inequality (40) follows immediately from (15). �

On using similar arguments one can easily obtain from Theorem 2 and Theorem 3
that

spd (A) �
[
32
((

ϕ
(
B2
))3 + ϕ

(
B2
)

ϕ
(
B4
))] 1

6

and

spd (A) �
(
16ϕ

(
B6
)) 1

6

respectively.
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4. Bounds for spans of polynomial equations

In [14], Sharma et al. have considered some bounds for the span of a polynomial
equation when all its roots are real. We here present some more bounds for the span in
terms of the coefficients of the polynomial equation.

Let r1, r2, . . . ,rn denote the roots of the monic polynomial equation

f (r) = rn +a2rn−2 +a3rn−3 + . . .+an−1r+an = 0. (42)

We assume that all the roots of f (r) are real. On using the relations between roots and
coefficients of a polynomial, one can see that the arithmetic mean r of the ri ’s equals
zero. The second, fourth, and sixth central moment can respectively be written as

m2 = −2
n
a2, m4 =

2
n

(
a2

2−2a4
)

(43)

and

m6 =
1
n

(−2a3
2 +3a2

3 +6a2a4−6a6
)
. (44)

Now we apply the results of Section 2 to the case in which distribution is uniform.
Note that for a uniform distribution, pi = 1

n for all i = 1,2, . . . ,n , and therefore in this
case μ ′

1 = r and μk = mk .

THEOREM 6. If roots of the polynomial (42) are all real, then

spn( f ) �
(

32
n

(a2
2−2a4)

) 1
4

, (45)

spn( f ) � 2

(
−2(n+2)

n3 a3
2 +

4
n2 a2a4

) 1
6

(46)

and

spn( f ) �
(

16
n

(−2a3
2 +3a2

3 +6a2a4−6a6
)) 1

6

. (47)

Proof. Apply Corollary 1, Theorem 2 and Theorem 3; the inequalities (45), (46),
and (47) follow on substituting the values of m2 , m4 , and m6 from (43) and (44), r = 0
in (15), (20) and (27), respectively. �

On using similar arguments one can easily obtain from the right-hand side inequal-
ity in (18) that

spn( f ) �
(

16
n2 (n+2)a2

2−
32
n

a4

) 1
4

. (48)
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EXAMPLE 1. Let

f (r) = r5−138r3 +916r2−1921r+
3321

4
.

So, a2 = −138, a3 = 916 and a4 = −1921. From the Popoviciu inequality (4), we

have spn( f ) �
√
− 8

5a2
∼= 14.859, and from the Sharma et al. bound, [15], that is,

spn( f ) �
(

8
n2 (n+6)a2

2−
16
n

a4

) 1
4

we have spn( f ) � 16.448 while from (48) we have a better estimate spn( f ) � 17.676.
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