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ON GENERALIZED CSISZÁR ( f ,g)–DIVERGENCE

WITH AN APPLICATION FOR p–MAJORIZATION

MAREK NIEZGODA

(Communicated by M. Praljak)

Abstract. In this note, we develop some ideas from [8]. We introduce and investigate generalized
Csiszár ( f ,g) -divergence generated by a convex function f and a concave function g . We
derive a Csiszár-Körner type inequality for such ( f ,g) -divergences. We also study some special
cases of the obtained inequality. In particular, we give a result for p -majorization.

1. Introduction

Given a convex function f : R+ → R and vectors p = (p1, . . . , pn) ∈ R++ and
q = (q1, . . . ,qn) ∈ R+ , the Csiszár f -divergence is defined by

Cf (p,q) =
n

∑
i=1

pi f

(
qi

pi

)
(1)

(see [1, 2, 3]).
The Csiszár-Körner inequality says that

n

∑
i=1

pi f

(
∑n

i=1 qi

∑n
i=1 pi

)
� Cf (p,q) (2)

(see [2, 6]). In the special case ∑n
i=1 qi = ∑n

i=1 pi with f (1) = 0, inequality (2) implies
that

0 � Cf (p,q) . (3)

As noted in [4], definition (1) can be extended as follows.
Let f : R+ → R be a convex function on R+ , and p = (p1, . . . , pn) ∈ R

n
++ , q =

(q1, . . . ,qn) ∈ R
n
+ , r = (r1, . . . ,rn) ∈ R

n
+ . Then the generalized Csiszár f -divergence

is defined by

Cf (p,q;r) =
n

∑
i=1

ripi f

(
qi

pi

)
. (4)

Evidently, Cf (p,q;e) = Cf (p,q) with e = (1, . . . ,1) ∈ R
n .
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A real matrix A = (ai j) of size k× l is called column-stochastic, if ai j � 0 for

i = 1, . . . ,k and j = 1, . . . , l , and, in addition,
k
∑
i=1

ai j = 1 for j = 1, . . . , l (cf. [5, p. 29]).

In this paper, we develop some results of [8] by applying both convex and concave
functions. To do so, we give further extension of (1) and (4). Namely, we introduce the
notion of generalized Csiszár ( f ,g)-divergence induced by a convex function f and
a concave function g . Furthermore, we show a generalization of the Csiszár-Körner
inequality (2) for such ( f ,g)-divergences. To this end, we employ positive (entrywise)
matrices, column stochastic matrices, and vectors related by Sherman type conditions
[10]. We also consider some special cases of the obtained inequality. Finally, we give
an application for p-stochastic matrices (see [5, p. 585], [9]).

2. Generalized Csiszár ( f ,g)-divergence

In this section we introduce and study a generalization of Csiszár divergences (1)
and (4) induced by two functions.

Let f : R+ → R be a convex function and g : R+ → R be a concave func-
tion. Let p = (p1, . . . , pn) ∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , r = (r1, . . . ,rn) ∈ R

n
+ ,

s = (s1, . . . ,sn) ∈ R
n
++ . We define the generalized Csiszár ( f ,g)-divergence by

Cf ,g (p,q;s,r) =
n

∑
i=1

sig

(
ri

si

)
pi f

(
qi

pi

)
. (5)

If, in particular, s = (1, . . . ,1) ∈ R
n and g = id is the identity function on [0,∞) ,

then Cf , id (p,q;s,r) =Cf (p,q;r) .
In the sequel, for two vectors x = (x1, . . . ,xk) ∈ R

k and y = (y1, . . . ,yk) ∈ R
k , we

define
x ◦ y = (x1y1, . . . ,xkyk)

x
y

=
(

x1

y1
, . . . ,

xk

yk

)
, with y ∈ R

k
++ .

For vectors x = (x1, . . . ,xk) ∈ R
k
+ and y = (y1, . . . ,yl) ∈ R

l
++ , we introduce a

transformation Tx,y of a real matrix A = (ai j) of size k× l , as follows

Tx,yA =

⎛
⎜⎝

x1a11
y1

. . . x1a1l
yl

... · · · ...
xkak1

y1
. . . xkakl

yl

⎞
⎟⎠ .

It is important that if y = xA then the matrix Tx,yA is column-stochastic.
It is not hard to verify by a routine algebra that for any entrywise nonnegative

(or positive, if necessary) vectors x = (x1, . . . ,xk) , y = (y1, . . . ,yl) , z = (z1, . . . ,zk) ,
v = (v1, . . . ,vl) of appropriate sizes and any (entrywise) nonnegative matrix A , the
following identities hold:

(y ◦ v)(Tx,yA)T = x ◦ (vAT), (6)
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zA
y

=
z
x

Tx,yA, (7)

(x ◦ z)A = y ◦ (zTx,yA) . (8)

Hereafter real n -tuples (i.e, row vectors of R
n ) are thought of as 1×n matrices. Also,

juxtaposition of matrices means their standard matrix product. In particular, juxtaposi-
tion of an n -tuple and an n× l matrix means their standard matrix product.

For functions f : R+ → R , g : R+ → R and for a vector z = (z1, . . . ,zl) ∈ R
l
+ we

define
f (z) = ( f (z1), . . . , f (zl)) and g(z) = (g(z1), . . . ,g(zl)).

In the forthcoming theorem we present a comparison of two generalized Csiszár
( f ,g)-divergences with a convex function f and a concave function g (cf. [8]).

THEOREM 1. Let f : R+ → R be a convex function on R+ and g : R+ → R be
a concave function on R+ . Let p = (p1, . . . , pn) ∈ R

n
++ , q = (q1, . . . ,qn) ∈ R

n
+ , s =

(s1, . . . ,sm)∈R
m
++ , r = (r1, . . . ,rm)∈R

m
+ , p̃ = (p̃1, . . . , p̃m)∈R

m
++ , q̃ = (q̃1, . . . , q̃m)∈

R
m
+ , s̃ = (s̃1, . . . , s̃n) ∈ R

n
++ , r̃ = (r̃1, . . . , r̃n) ∈ R

n
+ . Assume f

(
q
p

)
� 0 and g

( r
s

)
� 0 .

Let S = (si j) and R = (r ji) be matrices with nonnegative entries of sizes n×m
and m×n, respectively, such that ST � R (in the entrywise order � ).

If
p̃ = pS , q̃ = qS, (9)

s̃ = sR , r̃ = rR, (10)

then
Cf ,g (p̃, q̃;s,r) � Cf ,g (p,q; s̃, r̃) . (11)

Proof. According to (5) we have to prove that

m

∑
j=1

s jg

(
r j

s j

)
p̃ j f

(
q̃ j

p̃ j

)
�

n

∑
i=1

s̃ig

(
r̃i

s̃i

)
pi f

(
qi

pi

)
,

that is, 〈
s◦ g

(r
s

)
, p̃◦ f

(
q̃
p̃

)〉
�

〈
s̃◦ g

(
r̃
s̃

)
,p◦ f

(
q
p

)〉
, (12)

where 〈·, ·〉 denotes the standard inner product (on R
m and R

n , respectively).
On account of (7) we have

q̃
p̃

=
q
p

Tp,p̃S. (13)

Therefore,〈
s◦ g

(r
s

)
, p̃◦ f

(
q̃
p̃

)〉
=

〈
p̃◦ s◦ g

(r
s

)
, f

(
q̃
p̃

)〉
=

〈
p̃◦ s◦ g

(r
s

)
, f

(
q
p

Tp,p̃S
)〉

�
〈

p̃◦ s◦ g
(r

s

)
,

(
f

(
q
p

))
Tp,p̃S

〉
=

〈(
p̃◦ s◦ g

(r
s

))
(Tp,p̃S)T , f

(
q
p

)〉
. (14)
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The last inequality follows from the statement

f

(
q
p

Tp,p̃S
)

�
(

f

(
q
p

))
Tp,p̃S (entrywise),

because f is convex, the matrix Tp,p̃S is column stochastic, and, in addition, p̃ ◦ s ◦
g
( r

s

)
� 0 (entrywise).
We find from (6) that

(p̃◦ v)(Tp,p̃S)T = p◦ (vST ) for v ∈ R
m
+ . (15)

Hence, by putting v = s◦ g
( r

s

)
, we deduce that

〈(
p̃◦ s◦ g

(r
s

))
(Tp,p̃S)T , f

(
q
p

)〉
=

〈
p◦

(
(s◦ g

(r
s

)
)ST

)
, f

(
q
p

)〉

=
〈(

s◦ g
(r

s

))
ST ,p◦ f

(
q
p

)〉
. (16)

But ST � R , so we obtain〈(
s◦ g

(r
s

))
ST ,p◦ f

(
q
p

)〉
�

〈(
s◦ g

(r
s

))
R,p◦ f

(
q
p

)〉
, (17)

because p◦ f
(

q
p

)
� 0 and

(
s◦ g

( r
s

))
ST �

(
s◦ g

(r
s

))
R with s◦ g

(r
s

)
� 0.

By virtue of (8) we can write(
s◦ g

(r
s

))
R = s̃◦

(
g
(r

s

)
Ts,̃sR

)
. (18)

Therefore we get〈(
s◦ g

(r
s

))
R,p◦ f

(
q
p

)〉
=

〈
s̃◦

(
g
(r

s

)
Ts,̃sR

)
,p◦ f

(
q
p

)〉
. (19)

The function g is concave and the matrix Ts,̃sR is column-stochastic, so we derive
the inequality (

g
(r

s

))
Ts,̃sR � g

(r
s
Ts,̃sR

)
. (20)

Clearly, s̃ � 0 and p◦ f
(

q
p

)
� 0. In consequence, by (20), we have

〈
s̃◦

((
g
(r

s

))
Ts,̃sR

)
,p◦ f

(
q
p

)〉
�

〈
s̃◦ g

(r
s
Ts,̃sR

)
,p◦ f

(
q
p

)〉

=
〈

s̃◦ g

(
r̃
s̃

)
,p◦ f

(
q
p

)〉
. (21)
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The last equality holds by the equality

r
s
Ts,̃sR =

r̃
s̃

(22)

(see (7)).
By combining (14), (16), (17), (19) and (21), we get the required assertions (12)

and (11). This completes the proof. �

COROLLARY 1. With the assumptions of Theorem 1, let s = r and g(1)> 0 . Then

m

∑
j=1

s j p̃ j f

(
q̃ j

p̃ j

)
�

n

∑
i=1

s̃i pi f

(
qi

pi

)
. (23)

Proof. Since s = r , we also have s̃ = r̃ by (10). Hence we get
r j
s j

= 1 and r̃i
s̃i

= 1
for j = 1, . . . ,m and i = 1, . . . ,n . Therefore (11) holds and reduces to

m

∑
j=1

s jg(1) p̃ j f

(
q̃ j

p̃ j

)
�

n

∑
i=1

s̃ig(1) pi f

(
qi

pi

)
. (24)

However, g(1) > 0, so (24) leads to (23). �

COROLLARY 2. With the assumptions of Theorem 1, let S and R be matrices of
ones of sizes n×m and m×n, respectively.

Then

n

∑
i=1

pi f

⎛
⎜⎜⎝

n
∑
i=1

qi

n
∑
i=1

pi

⎞
⎟⎟⎠ m

∑
j=1

s jg

(
r j

s j

)
�

m

∑
j=1

s jg

⎛
⎜⎜⎝

m
∑
j=1

r j

m
∑
j=1

s j

⎞
⎟⎟⎠ n

∑
i=1

pi f

(
qi

pi

)
. (25)

Proof. Because S = (si j) with si j = 1 and R = (r ji) with r ji = 1 for j = 1, . . . ,m ,

i = 1, . . . ,n , conditions (9) and (10) imply that p̃ j =
n
∑
i=1

pi , q̃ j =
n
∑
i=1

qi for j = 1, . . . ,m ,

and s̃i =
m
∑
j=1

s j , r̃i =
m
∑
j=1

r j for i = 1, . . . ,n . It is now sufficient to apply inequality (11)

in Theorem 1. �

Given an m-tuple p = (p1, . . . , pm) ∈ R
m
++ , an m×m matrix S with nonnegative

entries is said to be p-stochastic, if

(i) p = pS ,

(ii) e = eST , where e = (1, . . . ,1) ∈ R
m
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(see [5, Definition B.1., p. 585]).
An m-tuple q̃∈ R

m is said to be p-majorized by an m-tuple q∈ R
m (abbreviated

as q̃≺p q), if q̃ = qS for some p-stochastic matrix S (see [5, Definition B.2., p. 585]).
It is not hard to check that if p = e is the tuple of ones, then all p-stochastic

matrices are usual doubly stochastic matrices [5, p. 29]. For this reason, the relation ≺e
of e-majorization is the standard majorization ≺ on R

m [5, p. 8].
It is known that the relation q̃ ≺p q is characterized by the inequality

m

∑
i=1

pi f

(
q̃i

pi

)
�

m

∑
i=1

pi f

(
qi

pi

)
(26)

for all continuous convex functions f : R+ → R , where q = (q1, . . . ,qm) ∈ R
m
++ and

q̃ = (q̃1, . . . , q̃m)∈R
m
++ (cf. [5, Proposition B.4., pp. 586–587] and [9, Proposition 4.2]).

In the next corollary we show an extension of the inequality (26).

COROLLARY 3. Let f : R+ → R be a convex function on R+ and g : R+ → R be
a concave function on R+ . Let p = (p1, . . . , pm) ∈ R

m
++ , q = (q1, . . . ,qm) ∈ R

m
+ , r =

(r1, . . . ,rm) ∈ R
m
+ , q̃ = (q̃1, . . . , q̃m) ∈ R

m
+ , r̃ = (r̃1, . . . , r̃m) ∈ R

m
+ . Assume f

(
q
p

)
� 0

and g(r) � 0 .
If

q̃ = qS, (27)

r̃ = rST (28)

for some p-stochastic matrix S of size m×m, then

Cf ,g (p, q̃;e,r) � Cf ,g (p,q;e, r̃) , (29)

i.e.,
m

∑
i=1

g(ri)pi f

(
q̃i

pi

)
�

m

∑
i=1

g(r̃i)pi f

(
qi

pi

)
. (30)

Proof. We use Theorem 1 with m = n , R = ST , p̃ = p and s̃ = s = e = (1, . . . ,1)∈
R

m . Then p̃ = pS and s̃ = sR , which together with (27) and (28) gives (9) and (10).
So, we are allowed to apply inequality (11). However, in the present situation, (11)
takes the form (29). This completes the proof. �

We finish this section with the observation that if p = e = (1, . . . ,1) ∈ R
m , and

g(t) = t is the identity function on R+ , then inequality (30) reduces Sherman’s in-
equality [10, 7].
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