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A SUFFICIENT CONDITION FOR A COMPLEX POLYNOMIAL

TO HAVE ONLY SIMPLE ZEROS AND AN ANALOG OF

HUTCHINSON’S THEOREM FOR REAL POLYNOMIALS

KATERYNA BIELENOVA, HRYHORII NAZARENKO AND ANNA VISHNYAKOVA ∗

(Communicated by M. Praljak)

Abstract. We find the constant b∞ (b∞ ≈ 4.81058280) such that if a complex polynomial or
entire function f (z) = ∑ω

k=0 akzk, ω ∈ {2,3,4, . . .}∪{∞}, with nonzero coefficients satisfy the

conditions

∣∣∣∣ a2
k

ak−1ak+1

∣∣∣∣ > b∞ for all k = 1,2, . . . ,ω − 1, then all the zeros of f are simple. We

show that the constant b∞ in the statement above is the smallest possible. We also obtain an ana-
log of Hutchinson’s theorem for polynomials or entire functions with real nonzero coefficients.

1. Introduction

In this short note, we obtain a simple sufficient condition for a complex polynomial
to have only simple zeros in terms of its coefficients. To formulate our results, we define
the second quotients of coefficients for a polynomial.

Let us consider a complex polynomial (or entire function) f (z) = ∑ω
k=0 akzk , where

ak ∈ C\{0} and ω ∈ {2,3,4, . . .}∪{∞}. We define the second quotients of the Taylor
coefficients of f by the formula

qn( f ) =
a2

n−1

an−2an
, n � 2. (1)

It is easy to check that

an =
an

1

an−1
0 qn−1

2 qn−2
3 · . . . ·q2

n−1qn
, n � 2. (2)

One can see that the second quotients of Taylor coefficients are independent parameters
that define a function up to multiplication by a constant and changing z to λ z.

In 1926, J. I. Hutchinson found quite a simple sufficient condition for an entire
function with positive coefficients to have only real simple zeros.
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THEOREM A. (J. I. Hutchinson, [3]) Let f (z) = ∑∞
k=0 akzk , ak > 0 for all k, be

an entire function. Then the inequalities qn( f ) � 4 for all n � 2 hold if and only if the
following two conditions are fulfilled:

(i) The zeros of f are all real, simple and negative, and
(ii) the zeros of any polynomial ∑n

k=m akzk , m < n, formed by taking any number
of consecutive terms of f , are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [1], where, in par-
ticular, the following theorem is proved.

THEOREM B. (T. Craven and G. Csordas, [1]) Let N ∈N and (γk)N
k=0, γ0 = 1, be

a sequence of positive real numbers. Suppose that the inequalities γ2
n

γn−1γn+1
� α2 hold

for all n = 1,2, . . . ,N − 1 , where α = max(2,
√

2
2 (1+

√
1+ γ1) . Then the polynomial

Q(x) = ∑N
n=0 γn · x(x−1)·...·(x−n+1)

n! has only real, simple, negative zeros.

There are a number of works which deal with statements of the following kind:
there exists a constant d > 1 such that if a real polynomial P satisfies the condition
qk(P) > d for all k , then we can state something about the location of the zeros of P.
For example, in [2] the author proved that if for some constant d > 0 a real polynomial
P satisfies the condition qk(P) > d for all k, then all the zeros of P lie in a special
sector depending on d. In [5] the smallest possible constant d > 0 was found such that
if a real polynomial P satisfies the condition qk(P) > d for all k, then P is stable (all
the zeros of P lie in the left half-plane). In this paper, we study analogous questions
for complex polynomials and entire functions.

Hutchinson’s theorem inspired our investigations. The goal of this work is to find
sufficient conditions for complex polynomials or entire functions with non-zero coef-
ficients to have only simple zeros. More precisely, we answer the following question:
what is the smallest possible constant c > 0 such that for every complex polynomial P
with nonzero coefficients if the inequalities qn(P) > c hold for all n � 2, then all the
zeros of P are simple.

For x > 1 let us consider the function φ(x) = 1−2∑∞
k=1 x

−k2
2 . We observe that φ

is an increasing function on (0,∞), limx→1+0 φ(x) = −∞ and limx→+∞ φ(x) = 1. So,
the equation

1−2
∞

∑
k=1

x
−k2

2 = 0 (3)

has a unique positive root, which we denote by b∞ . One can check that b∞ ≈ 4.81058280.
For n ∈ N we also define b2n as the unique positive root of the equation

1−2
n

∑
k=1

x
−k2

2 = 0. (4)

One can see that (b2n)
∞
n=1 is an increasing sequence, limn→∞ b2n = b∞, and

b2 = 4, b4 ≈ 4.79753651. (5)

The constant b∞ firstly appeared in the paper [4] where some analogs of Hutchin-
son’s result were obtained for sign-independently hyperbolic polynomials.
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THEOREM C. (I. Karpenko and A. Vishnyakova, [4]) Let f (z) = ∑∞
k=0 akzk be

an entire function with positive coefficients. Suppose that qk( f ) � b∞ for all k � 2 .
Then for every n ∈ N, the n-th section Sn(z) := ∑n

k=0 akzk is a sign-independently
hyperbolic polynomial, meaning that it remains real-rooted after arbitrary sign changes
of its coefficients.

Our first result is the following theorem.

THEOREM 1.1. (i) Let n ∈ N be a given integer, and P2n(z) = ∑2n
k=0 akzk , ak ∈

C\ {0} for all k, be a polynomial. Suppose that the inequalities |qk(P2n)| > b2n hold
for all k = 2,3, . . . ,2n. Then all the zeros of P2n are simple. Moreover, the moduli of
all zeros of P2n are pairwise different.

(ii) Let n ∈ N be a given integer, and P2n+1(z) = ∑2n+1
k=0 akzk , ak ∈ C \ {0} for

all k, be a polynomial. Suppose that the inequalities |qk(P2n+1)| � b2n+2 hold for all
k = 2,3, . . . ,2n+1. Then all the zeros of P2n+1 are simple. Moreover, the moduli of all
zeros of P2n+1 are pairwise different.

(iii) Let f (z) = ∑∞
k=0 akzk , ak ∈ C\ {0} for all k, be an entire function. Suppose

that the inequalities |qk( f )| � b∞ hold for all k � 2. Then all the zeros of f are simple.
Moreover, the moduli of all zeros of f are pairwise different.

Since the sequence (b2n)∞
n=1 is monotonic and tends to b∞, we get the following

corollary.

COROLLARY 1.1. Let n � 2 be a given integer, and P be a complex polynomial
with nonzero coefficients of degree n. If the inequalities |qk(P)| � b∞ hold for all k =
2,3, . . . ,n, then all the zeros of P are simple. Moreover, the moduli of all zeros of P
are pairwise different.

The following statement shows the sharpness of Theorem 1.1 for entire functions
and polynomials of even degrees, and asymptotical sharpness of Theorem 1.1 for poly-
nomials of odd degrees.

THEOREM 1.2. (i) For every n ∈ N there exists a complex polynomial P2n(z) =
∑2n

k=0 akzk , ak ∈ C\ {0} for all k, such that the equalities |qk(P2n)| = b2n hold for all
k = 2,3, . . . ,2n, and P2n has a multiple root.

(ii) For every n ∈ N and every ε > 0 there exists a complex polynomial P2n+1,ε
with nonzero coefficients, degP2n+1,ε = 2n + 1, such that |qk(P2n+1,ε)| > b2n − ε for
all k = 2,3, . . . ,2n+1, and P2n+1,ε has a multiple root.

(iii) For every ε > 0 there exists an entire function fε(z) = ∑∞
k=0 ak(ε)zk , ak(ε) ∈

C \ {0} for all k, such that the inequalities |qk( fε )| > b∞ − ε hold for all k � 2, and
f has a multiple root.

In the following statement we find the sharp constant for polynomials of the third
degree.

THEOREM 1.3. (i) Let P3 be a complex polynomial with nonzero coefficients,

degP3 = 3, and suppose that |qk(P3)| >
√

9+6
√

3 for k = 2,3. Then all the zeros
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of P3 are simple. Moreover, the moduli of all zeros of P3 are pairwise different. Note

that
√

9+6
√

3 ≈ 4.4036695, and 4 = q2 <
√

9+6
√

3 < q4 ≈ 4.79753651.
(ii) There exists a complex polynomial Q3 with nonzero coefficients, degQ3 = 3,

such that |qk(Q3)| =
√

9+6
√

3 for k = 2,3, and Q3 has a multiple root.

Using Theorem1.1 and Theorem1.3 (i) we obtain the following analog of Hutchin-
son’s theorem for real polynomials.

THEOREM 1.4. (i) Let n ∈ N be a given integer, and P2n(z) = ∑2n
k=0 akzk , ak ∈

R \ {0} for all k, be a real polynomial. Suppose that the inequalities |qk(P2n)| � b2n

hold for all k = 2,3, . . . ,2n. Then all the zeros of P2n are real.
(ii) For every n ∈ N and every ε > 0 there exists a real polynomial P2n,ε with

nonzero coefficients, degP2n,ε = 2n, such that |qk(P2n,ε)|> b2n−ε for all k = 2,3, . . . ,2n,
and P2n,ε has nonreal roots.

(iii) Let n ∈ N be a given integer, and P2n+1(z) = ∑2n+1
k=0 akzk , ak ∈ R\{0} for all

k, be a real polynomial. Suppose that the inequalities |qk(P2n+1)| � b2n+2 hold for all
k = 2,3, . . . ,2n+1. Then all the zeros of P2n+1 are real.

(iv) For every n ∈ N and every ε > 0 there exists a real polynomial P2n+1,ε with
nonzero coefficients, degP2n+1,ε = 2n + 1, such that |qk(P2n+1,ε)| > b2n − ε for all
k = 2,3, . . . ,2n+1, and P2n+1,ε has nonreal roots.

(v) Let P3 be a real polynomial with nonzero coefficients, degP3 = 3, and suppose

that |qk(P3)| �
√

9+6
√

3 for k = 2,3. Then all the zeros of P3 are real.
(vi) For every ε > 0 there exists a real polynomial P3,ε with nonzero coefficients,

degP3,ε = 3, such that |qk(P3,ε)| >
√

9+6
√

3− ε for k = 2,3, and P3,ε has nonreal
roots.

We see that, unlike Hutchinson’s result, the sharp constant for the realrootedness
of a real polynomial depends on the degree of the polynomial.

2. Proof of Theorem 1.1

At first we consider the case of polynomials of even degrees. Let n ∈ N, P2n(z) =
∑2n

k=0 akzk , where ak ∈ C\ {0}, and suppose that the inequalities |qk(P2n)| > b2n hold
for all k = 2,3, . . . ,2n.

Without loss of generality, we can assume that a0 = a1 = 1, since we can consider
the function Q2n(z) = a−1

0 P2n(a0a
−1
1 z) instead of P2n, due to the fact that such a rescal-

ing of P2n preserves its property of having all simple zeros and preserves the second
quotients: qk(Q2n) = qk(P2n) for all k. During the proof we use the notation qk instead
of qk(P2n). So, we can write

P2n(z) = 1+ z+
z2

q2
+

z3

q2
2q3

+ . . .+
z2n

q2n−1
2 q2n−2

3 · . . . ·q2
2n−1q2n

.

We choose an arbitrary k = 1,2,3, . . . ,2n−1 and fix this k. Denote by

R1 :=
√
|q2|, Rk := |q2q3 . . .qk

√
qk+1|, k = 2,3, . . . ,2n−1. (6)
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We have

P2n(z) =
k−1

∑
j=0

z j

q j−1
2 q j−2

3 · . . . ·q j

+
zk

qk−1
2 qk−2

3 · . . . ·qk

+
2n

∑
j=k+1

z j

q j−1
2 q j−2

3 · . . . ·q j

=: S1,k(z)+S2,k(z)+S3,k(z).

We want to prove the inequality

min
|z|=Rk

|S2,k(z)| > max
|z|=Rk

(|S1,k(z)|+ |S3,k(z)|). (7)

We obtain for every z , |z| = Rk,

|S2,k(z)| = |q2q
2
3 · . . . ·qk−1

k qk/2
k+1|. (8)

Now we estimate from above |S1,k(z)| for |z| = Rk. We have

|S1,k(z)| �
k−1

∑
j=0

|z j|
|q j−1

2 q j−2
3 · . . . ·q j|

=
k−1

∑
j=0

∣∣∣∣∣q
j
2q

j
3 · . . . ·q j

kq
j/2
k+1

q j−1
2 q j−2

3 · . . . ·q j

∣∣∣∣∣
= |q2q

2
3 · . . . ·qk−2

k−1q
k−1
k q(k−1)/2

k+1 |+ |q2q
2
3 · . . . ·qk−3

k−2q
k−2
k−1q

k−2
k q(k−2)/2

k+1 |
+|q2q

2
3 · . . . ·qk−3

k−2q
k−3
k−1q

k−3
k q(k−3)/2

k+1 |+ . . .+ |q2q3 · . . . ·qk
√

qk+1|+1

(we rewrite the sum from the end to the beginning). Thus, we get

|S1,k(z)| � |q2q
2
3 · . . . ·qk−2

k−1q
k−1
k qk/2

k+1| ·
(∣∣∣∣∣ 1

q1/2
k+1

∣∣∣∣∣+
∣∣∣∣ 1
qkqk+1

∣∣∣∣+
∣∣∣∣∣ 1

qk−1q2
kq

3/2
k+1

∣∣∣∣∣
+ . . .+

∣∣∣∣∣∣
1

qk− j+1q2
k− j+2 · . . . ·q j−1

k−1q
j
kq

( j+1)/2
k+1

∣∣∣∣∣∣
+ . . .+

∣∣∣∣∣ 1

q3q2
4 · . . . ·qk−2

k q(k−1)/2
k+1

∣∣∣∣∣+
∣∣∣∣∣ 1

q2q2
3q

3
4 · . . . ·qk−1

k qk/2
k+1

∣∣∣∣∣
)

.

Using our assumption |qk(P2n)| > b2n for k = 2,3, . . . ,2n, we obtain

|S1,k(z)| <
∣∣∣q2q

2
3 · . . . ·qk−2

k−1q
k−1
k qk/2

k+1

∣∣∣ · k

∑
j=1

b
− j2
2

2n . (9)
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Now we estimate |S3,k(z)| from above for |z| = Rk. We have

|S3,k(z)| �
2n

∑
j=k+1

∣∣∣∣∣q
j
2q

j
3 · . . . ·q j

kq
j/2
k+1

q j−1
2 q j−2

3 · . . . ·q j

∣∣∣∣∣
= |q2q

2
3 · . . . ·qk−1

k q(k−1)/2
k+1 |+

∣∣∣∣∣q2q2
3 · . . . ·qk−1

k q(k−2)/2
k+1

qk+2

∣∣∣∣∣
+ . . .+

∣∣∣∣∣q2q2
3 · . . . ·qk−1

k q(2k− j)/2
k+1

q j−k−1
k+2 · . . . ·q2

j−1q j

∣∣∣∣∣+ . . .+

∣∣∣∣∣q2q2
3 · . . . ·qk−1

k q(2k−2n)/2
k+1

q2n−k−1
k+2 · . . . ·q2

2n−1q2n

∣∣∣∣∣
=
∣∣∣q2q

2
3 · . . . ·qk−2

k−1q
k−1
k qk/2

k+1

∣∣∣
(∣∣∣∣∣ 1

q1/2
k+1

∣∣∣∣∣+
∣∣∣∣ 1
qk+1qk+2

∣∣∣∣+ . . .

+

∣∣∣∣∣∣
1

q( j−k)/2
k+1 q j−k−1

k+2 · . . . ·q2
j−1q j

∣∣∣∣∣∣+ . . .+

∣∣∣∣∣ 1

q(2n−k)/2
k+1 q2n−k−1

k+2 · . . . ·q2
2n−1q2n

∣∣∣∣∣
⎞
⎠ .

Using our assumption |qk(P2n)| > b2n for k = 2,3, . . . ,2n, we obtain

|S3,k(z)| <
∣∣∣q2q

2
3 · . . . ·qk−2

k−1q
k−1
k qk/2

k+1

∣∣∣ · 2n−k

∑
j=1

b
− j2
2

2n . (10)

Thus, by virtue of (8), (9) and (10), the desired inequality (7) follows from

1−
k

∑
j=1

b
− j2
2

2n −
2n−k

∑
j=1

b
− j2

2
2n � 0. (11)

Since the summands in both sums in the above inequality are strictly decreasing in j
we have

1−
k

∑
j=1

b
− j2

2
2n −

2n−k

∑
j=1

b
− j2

2
2n � 1−2

n

∑
j=1

b
− j2

2
2n = 0 (12)

by the definition (4) of the constant b2n. We have proved that for every k = 1,2,3, . . . ,
2n−1 the inequality (7) is valid. Thus, by Rouché’s theorem, we obtain that for every
k = 1,2,3, . . . ,2n−1 the polynomial P2n has exactly k zeros in the circle {z : |z|< Rk}.
Whence, the polynomial P2n has one zero in the circle {z : |z| < R1}, one zero in the
annulus {z : R1 � |z|< R2}, one zero in the annulus {z : R2 � |z|< R3}, and so on, one
zero in the annulus {z : R2n−2 � |z| < R2n−1} and one zero in the set {z : |z| � R2n−1}.
We have proved that all the zeros of P2n are simple. Moreover, the moduli of all zeros
of P2n are pairwise different.

Now we consider the case of polynomials of odd degrees. Let n ∈ N and

P2n+1(z) = 1+ z+
z2

q2
+

z3

q2
2q3

+ . . .+
z2n+1

q2n
2 q2n−1

3 · . . . ·q2
2nq2n+1
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be a complex polynomial with nonzero coefficients. Suppose that the inequalities
|qk(P2n+1)|� b2n+2 hold for all k = 2,3, . . . ,2n+1. We choose an arbitrary k = 1,2,3,
. . . ,2n and fix this k. We use the same notation Rk as in (6). We have

P2n+1(z) =
k−1

∑
j=0

z j

q j−1
2 q j−2

3 · . . . ·q j

+
zk

qk−1
2 qk−2

3 · . . . ·qk

+
2n+1

∑
j=k+1

z j

q j−1
2 q j−2

3 · . . . ·q j

=: S1,k(z)+S2,k(z)+S3,k(z).

We want to prove the inequality

min
|z|=Rk

|S2,k(z)| > max
|z|=Rk

(|S1,k(z)|+ |S3,k(z)|). (13)

As in the previous case, this inequality follows from

1−
k

∑
j=1

b
− j2
2

2n+2−
2n+1−k

∑
j=1

b
− j2
2

2n+2 > 0. (14)

We have

1−
k

∑
j=1

b
− j2

2
2n+2−

2n+1−k

∑
j=1

b
− j2

2
2n+2 > 1−2

n+1

∑
j=1

b
− j2

2
2n+2 = 0 (15)

by the definition (4) of the constant b2n+2. Using Rouché’s theorem, we obtain that all
the zeros of P2n+1 are simple. Moreover, the moduli of all zeros of P2n+1 are pairwise
different.

It remains to consider the case of entire functions. Let f (z) = 1+ z+ z2
q2

+ z3

q2
2q3

+
z4

q3
2q

2
3q4

+ . . . be an entire function. Suppose that the inequalities |qk( f )| � b∞ hold for

all k � 2. For all k ∈ N we have

f (z) =
k−1

∑
j=0

z j

q j−1
2 q j−2

3 · . . . ·q j

+
zk

qk−1
2 qk−2

3 · . . . ·qk
+

∞

∑
j=k+1

z j

q j−1
2 q j−2

3 · . . . ·q j

=: S1,k(z)+S2,k(z)+S3,k(z).

We want to obtain the inequality

min
|z|=Rk

|S2,k(z)| > max
|z|=Rk

(|S1,k(z)|+ |S3,k(z)|). (16)

This inequality follows from

1−
k

∑
j=1

b
− j2
2∞ −

∞

∑
j=1

b
− j2
2∞ > 0. (17)

We have

1−
k

∑
j=1

b
− j2
2∞ −

∞

∑
j=1

b
− j2
2∞ > 1−2

∞

∑
j=1

b
− j2
2∞ = 0 (18)

by the definition (3) of the constant b∞. Using Rouché’s theorem, we obtain that all the
zeros of f are simple, moreover, the moduli of all zeros of f are pairwise different.

Theorem 1.1 is proved. �
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3. Proof of Theorem 1.2

At first we prove Theorem 1.2 (i). For every n ∈ N and c > 0 we consider the
following polynomial

P2n,c(z) =
2n

∑
k=0

ck(2n−k)/2zk −2cn2/2zn. (19)

Note that, for all k = 0,1, . . . ,2n the modulus of the k -th coefficient of P2n,c is equal to
ck(2n−k)/2, so that

|qk(P2n,c)| = c(k−1)(2n−k+1)

c(k−2)(2n−k+2)/2 · ck(2n−k)/2
= c (20)

for k = 2,3, . . . ,2n.
We observe that P2n,c(z) = z2n ·P2n,c( 1

z ) , so P2n,c is a self-reciprocal polynomial.
We have

P′
2n,c(z) = 2nz2n−1 ·P2n,c

(1
z

)
− z2nP′

2n,c

(1
z

) 1
z2 .

Thus, if P2n,c(1) = 0, we get

P′
2n,c(1) = −P′

2n,c(1).

It means that if P2n,c(1) = 0 then P′
2n,c(1) = 0, so 1 is a multiple root for this polyno-

mial. Now we consider the equation

P2n,c(1) =
2n

∑
k=0

ck(2n−k)/2−2cn2/2 = 0.

We rewrite it in the form 2∑n−1
k=0 ck(2n−k)/2−cn2/2 = 0. After dividing by −cn2/2 we get

1−2
n−1

∑
k=0

c−(n−k)2/2 = 0,

or, changing the index in the sum: n− k = j,

1−2
n

∑
j=1

c− j2/2 = 0.

The unique positive root of this equation is b2n (see (4)), so we get that the polynomial
P2n,b2n has a multiple root and |qk(P2n,b2n)| = b2n for all k = 2,3, . . . ,2n.

Let us fix an arbitrary n ∈ N and ε > 0. To prove Theorem 1.2 (ii) we use
the polynomial P2n,b2n. Let Q2n+1,d(z) = P2n,b2n(z) · (1 + z

d ), where d > 0. We have
degQ2n+1,d = 2n+1, and Q2n+1,d has a multiple root at the point 1 since P2n,b2n has a
multiple root at that point. Let P2n,b2n(z) = ∑2n

k=0 akzk, then

Q2n+1,d(z) = a0 +
(a0

d
+a1

)
z+
(a1

d
+a2

)
z2 + . . .+

(a2n−1

d
+a2n

)
z2n +

a2n

d
z2n+1.
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Thus, for all k = 3,4, . . . ,2n we have

qk(Q2n+1,d) =
( ak−2

d +ak−1)2

( ak−1
d +ak)(

ak−3
d +ak−2)

→ qk(P2n,b2n), d → ∞.

For k = 2 and k = 2n+1 we have

q2(Q2n+1,d) =
( a0

d +a1)2

a0(
a1
d +a2)

→ q2(P2n,b2n), d → ∞

and

q2n+1(Q2n+1,d) =
( a2n−1

d +a2n)2

a2n
d ( a2n−2

d +a2n−1)
→ ∞, d → ∞.

So, for d being large enoughwe obtain |qk(Q2n+1,d)|> b2n−ε for all k = 2,3, . . . ,2n+
1.

It remains to prove Theorem1.2 (iii). Let us fix an arbitrary ε > 0. Since limn→∞ b2n

= b∞, there exists n0 ∈ N such that b2n0 > b∞ − ε/3. We consider an entire function
of the form

fε (z) = P2n0,b2n0
(z)

∞

∏
j=1

(
1+

z
d j

)
,

where the polynomial P2n0,b2n0
is defined by (19), and positive constants (d j)∞

j=1, such

that ∑∞
j=1

1
d j

< ∞, will be chosen inductively. We see that fε has a multiple zero at the
point 1.

We know that |qk(P2n0,b2n0
)| > b∞ − ε/3 for all k = 2,3, . . . ,2n0. As we have

proved above, for d1 > 0 being large enough for the polynomial T1(z) := P2n0,b2n0
(z)(1+

z
d1

) we have |qk(T1)| > b∞ − ε/3− ε/4 for all k = 2,3, . . . ,2n0 + 1. We addition-
ally suppose that d1 > 2. We fix such d1, and now choose d2. For all d2 > 0 be-
ing large enough for the polynomial T2(z) := T1(z)(1+ z

d2
) we have |qk(T2)| > b∞ −

ε/3− ε/4− ε/8 for all k = 2,3, . . . ,2n0 + 2. We additionally suppose that d2 > 22.
Reasoning analogously, we construct a sequence of positive constants (d j)∞

j=1, such

that for every j the polynomial Tj(z) := P2n0,b2n0
(z)∏ j

l=1

(
1+ z

dl

)
has the property

|qk(Tj)|> b∞−ε/3−ε/4−ε/8− . . .−ε/2 j+1 for all k = 2,3, . . . ,2n0+ j, and d j > 2 j.
Thus, ∑∞

j=1
1
d j

< ∞, and fε is an entire function. We also observe that for every natural
k � 2

|qk( fε )| � b∞ − ε/3−
∞

∑
j=1

ε
2 j+1 = b∞ − ε/3− ε/2 > b∞ − ε.

Theorem 1.2 is proved. �

4. Proof of Theorem 1.3

We consider a complex polynomial of degree 3 with nonzero coefficients

P3,a,b(z) = 1+ z+
z2

a
+

z3

a2b
, a,b ∈ C\ {0},
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so that q2(P3,a,b) = a , q3(P3,a,b) = b. The polynomial P3,a,b has multiple roots if and
only if its discriminant is equal to zero. We recall that, if Q(z) = αz3 + β z2 + γz +
δ ∈ C[z], α 	= 0, then its discriminant is equal to D(Q) = −4β 3δ + β 2γ2 − 4αγ3 +
18αβ γδ −27α2δ 2. So we have

D(P3,a,b) = − 4
a3 +

1
a2 −

4
a2b

+
18
a3b

− 27
a4b2

= − 1
a4b2

(
4ab2−a2b2 +4a2b−18ab+27

)
.

Thus, P3,a,b has multiple roots if and only if

4ab2−a2b2 +4a2b−18ab+27= 0. (21)

Denote by S := {(a,b) : a,b ∈ C\ {0},4ab2−a2b2 +4a2b−18ab+27= 0}, and

c := sup
(a,b)∈S

(min(|a|, |b|).

By Theorem 1.1 (ii) we have c � b4. By the definition of c, if |a|> c and |b|> c then

all the zeros of P3,a,b are simple. We want to prove that c =
√

9+6
√

3.
We rewrite (21) in the form

(4a−a2)b2 +(4a2−18a)b+27= 0. (22)

By our assumption a 	= 0, consider now the case a = 4. Then we have b = 27
8 and

min(|a|, |b|) = 27
8 <

√
9+6

√
3.

Let (a0,b0) ∈ S, a0 	= 4, and |a0| 	= |b0|. Without loss of generality we suppose
that |a0| < |b0| since (21) is symmetric with respect to a,b. Let a0 = reiα , r > 0,
α ∈ R. For ε > 0 being small enough we denote by aε = (r+ ε)eiα , such that aε 	= 4.
We have |aε | > |a0|. Then we substitute aε in the equation (22) and find the solution
bε , such that (aε ,bε) ∈ S. By the continuity reasoning limε→0 bε = b0, so for ε > 0
being very small we have |bε | > |a0|. Thus, min(|a0|, |b0|) = |a0| < min(|aε |, |bε |).
Thus, we conclude that

c = sup
(a,b)∈S, |a|=|b|

(min(|a|, |b|).

Now let a ∈ C\ {0} , b = aeiγ , γ ∈ R. We substitute a,b into (21) and get

4a3e2iγ −a4e2iγ +4a3eiγ −18a2eiγ +27 = 0.

We are searching for the root of the last equation with the maximal possible modulus.
We rewrite the equation in the form

a4e2iγ −4a3(e2iγ + eiγ)+18a2eiγ −27 = 0,

or
a4e2iγ −8a3e

3iγ
2 cos

γ
2

+18a2eiγ −27 = 0.
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We denote by x such complex number that a = xe
−iγ
2 , and note that |a| = |x|, we also

denote by λ = cos γ
2 , λ ∈ [0,1]. After substituting in the last equation we get

x4−8λx3 +18x2−27 = 0, (23)

and we are searching for the root of the last equation with the maximal possible modu-
lus.

At first let us estimate the maximal real positive root. We have for λ ∈ [0,1]

x4−8λx3 +18x2−27 � x4 −8x3 +18x2−27 = (x+1)(x−3)3,

so for all λ ∈ [0,1] the maximal positive root of the equation (23) is less than or equal
to 3.

Now we estimate the minimal real negative root. We have for x = −y , y > 0, and
λ ∈ [0,1]

y4 +8λy3 +18y2−27 � y4 +18y2−27

= (y2 +6
√

3−9)(y+
√

9+6
√

3)(y−
√

9+6
√

3),

so for all λ ∈ [0,1] the maximal modulus of the negative root of the equation (23) is

less than or equal to
√

9+6
√

3.
Now we consider non-real roots of the equation (23). We will use the classical

Ferrari method to solve (23). For w ∈ C we rewrite the equation (23) in the form

(x2 −4λx+w)2− ((16λ 2 +2w−18)x2−8λwx+(w2 +27)
)
= 0. (24)

We want to find such w ∈ C, that the discriminant of the quadratic expression in the
brackets will be zero. We have the equation

D
4

= 16λ 2w2 − (w2 +27)(16λ 2 +2w−18)

= 16λ 2w2 −16λ 2w2 −2w3 +18w2−27 ·16λ 2−54w+27 ·18= 0,

or
w3 −9w2 +27w−27−27(8−8λ 2) = 0.

We get the equation
(w−3)3 = 27 ·8(1−λ 2) � 0.

Let us put w = 3+6 3
√

1−λ 2 and denote by t = 3
√

1−λ 2 , t ∈ [0,1], so that λ 2 = 1−t3 ,
w = 3+6t. For the second quadratic expression from (24) we have

(16λ 2 +2w−18)x2−λwx+(w2 +27)

= (16−16t3 +6+12t−18)x2−8
√

1− t3(3+6t)x+(9+36t+36t2 +27)

= (4−16t3 +12t)x2−8
√

1− t3(3+6t)x+(36+36t+36t2)
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=
4

1− t
·
(
(1− t)2(2t +1)2x2 −6(1− t)(1+2t)

√
1− t3x+9(1− t3)

)
=

4
1− t

·
(
(1− t)(2t +1)x−3

√
1− t3

)2
.

We substitute this in (24) and get

(x2 −4
√

1− t3x+3+6t)2−
( 2√

1− t

)2 ·
(
(1− t)(2t +1)x−3

√
1− t3

)2
= 0.

We write the last equation in the form(
x2−4

√
1− t3x+3+6t−2

√
1− t(2t +1)x+6

√
1+ t + t2

)

·
(
x2−4

√
1− t3x+3+6t+2

√
1− t(2t +1)x−6

√
1+ t + t2

)
= 0,

or (
x2− (4

√
1− t3−2

√
1− t(2t +1))x+(3+6t+6

√
1+ t + t2)

)
·
(
x2 − (4

√
1− t3 +2

√
1− t(2t +1))x+(3+6t−6

√
1+ t + t2)

)
= 0.

So, all 4 roots of the equation (23) are the roots of two quadratic equations above,
where t = 3

√
1−λ 2 , t ∈ [0,1]. Both of these quadratic equations have real coefficients.

Since 3+6t−6
√

1+ t + t2 < 0, the roots of the second equation are real, and we have

proved above that the moduli of the roots are less than or equal to
√

9+6
√

3. If the
roots of the first equation are real, then we have proved that the moduli of the roots
are less than or equal to

√
9+6

√
3. If the roots of the first equation are complex and

conjugate, then their moduli are equal to
√

3+6t +6
√

1+ t + t2. It remains to check
that for all t ∈ [0,1] we have√

3+6t +6
√

1+ t + t2 �
√

9+6
√

3,

that is obviously valid. So we have proved that

c = sup
(a,b)∈S

(min(|a|, |b|) =
√

9+6
√

3.

Theorem 1.3 (i) is proved. �
To prove Theorem 1.3 (ii) we consider the polynomial

Q3(z) = 1+ z+
z2√

9+6
√

3
− z3

(
√

9+6
√

3)3
,

so that degQ3 = 3, q2(Q3) =
√

9+6
√

3, q3(Q3) =−
√

9+6
√

3, whence |q2(Q3)|=
|q3(Q3)| =

√
9+6

√
3. We recall that a complex polynomial P3,a,b = 1+ z+ z2

a + z3

a2b
has multiple roots if and only if 4ab2 − a2b2 + 4a2b− 18ab+ 27 = 0 (see (21)). For
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the polynomial Q3 we have b = −a and the condition for having multiple roots takes
the form

4a3−a4−4a3 +18a2 +27 = 0 ⇔ a4−18a2−27 = 0.

It is easy to check that a =
√

9+6
√

3 is a root of this equation, so for such a the
polynomial Q3 has multiple roots. These multiple roots can be found explicitly, but the
expression is rather cumbersome.

Theorem 1.3 is proved. �

5. Proof of Theorem 1.4

Let n ∈ N be a given integer, and P2n(z) = ∑2n
k=0 akzk , ak ∈ R \ {0} for all k,

be a real polynomial. Suppose that the inequalities |qk(P2n)| � b2n hold for all k =
2,3, . . . ,2n. For an arbitrary λ , 0 < λ < 1, we consider a real polynomial P2n,λ (z) =

∑2n
k=0 ak ·λ k2

zk. We have for k = 2,3, . . . ,2n

qk(P2n,λ ) =
a2

k−1 ·λ 2(k−1)2

ak−2 ·λ (k−2)2 ·ak ·λ k2 =
qk(P2n)

λ 2 > b2n.

By Theorem 1.1 (i) the moduli of all zeros of P2n,λ are pairwise different. So, P2n,λ
can not have complex conjugate zeros, whence all the zeros of P2n,λ are real. Since
limλ→1 P2n,λ (z) = P2n(z), and this limit is uniform on the compacts in C, using the
Hurwitz’s theorem we obtain that all the zeros of P2n are real.

Theorem 1.4 (i) is proved. Using analogous reasoning we prove Theorem 1.4 (iii)
and Theorem 1.4 (v).

Statements (ii), (iv) and (vi) in Theorem 1.4 can be proved using an analogous
reasoning. To prove Theorem 1.4 (ii), for example, we fix an arbitrary n ∈ N and

ε > 0, and consider a polynomial P2n,b2n(z) = ∑2n
k=0 bk(2n−k)/2

2n zk − 2bn2/2
2n zn (see (19).

We recall that |qk(P2n,b2n)| = b2n for all k = 2,3, . . . ,2n (see (20)), and that P2n,b2n

has a double zero at the point 1. Since the sequence of coefficients of P2n,b2n has two
sign changes (all coefficients, except the n -th, are positive, and the n -th coefficient is
negative), we conclude, using Descartes’ rule of signs, that P2n,b2n has not more than
two positive zeros. So the polynomial P2n,b2n has exactly two positive zeros counting
multiplicities. Whence,

P2n,b2n � 0 for all x � 0.

Now for a small δ > 0 we consider a polynomial Q2n,δ (x) = P2n,b2n(x)+ δxn. Then
we get Q2n,δ (x) > 0 for all x � 0. We observe that qk(Q2n,δ ) = qk(P2n,b2n) for all k =
2,3, . . . ,n−1,n+3,n+4, . . .,2n, so that |qk(Q2n,δ )|= b2n for all k = 2,3, . . . ,n−1,n+
3,n+4, . . . ,2n. We also see that |qn(Q2n,δ )| > |qn(P2n,b2n)| = b2n and |qn+2(Q2n,δ )| >
|qn+2(P2n,b2n)| = b2n. Since limδ→0 |qn+1(Q2n,δ )| = |qn+1(P2n,b2n)| = b2n, we obtain
that |qn+1(Q2n,δ )|> b2n−ε for δ being small enough. Thus, |qk(Q2n,δ )|> b2n−ε for
all k = 2,3, . . . ,2n for δ being small enough. It remains to show that the polynomial
Q2n,δ has nonreal zeros. Suppose that all the zeros of Q2n,δ are real. Then, since
Q2n,δ (x) > 0 for all x � 0, we get that all the zeros of Q2n,δ are negative. Then all the
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coefficients of Q2n,δ have the same signs, but we know that all coefficients, except the
n -th, are positive, and the n -th coefficient is negative for δ being small enough. Thus,
we have proved that Q2n,δ has nonreal roots.

Theorem 1.4 is proved. �
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