SHARP ESTIMATE OF THE REMAINDER OF SOME ALTERNATING SERIES

Othman Echi, Adel Khalfallah* and Dhaker Kroumi

(Communicated by J. Jakšetić)

Abstract. For any two real numbers $\alpha>0$ and $\beta>-\alpha$, we show that the best constants a and b (the smallest a and the largest b) such that the inequalities

$$
\frac{1}{2 \alpha n+a}<\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{\alpha k+\beta}\right|<\frac{1}{2 \alpha n+b}
$$

hold for every $n \geqslant 1$ are $a=\left(\frac{1}{\alpha+\beta}-S(\alpha, \beta)\right)^{-1}-2 \alpha$ and $b=\alpha+2 \beta$, where $S(\alpha, \beta)=$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\alpha n+\beta}$. In particular, we recover the main result of [6] and answer a question, stated in [6], about the Gregory-Leibniz series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$. More precisely, we show that the best constants c and d such that the inequalities

$$
\frac{1}{4 n+c}<\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{2 k-1}\right|<\frac{1}{4 n+d}
$$

hold for every $n \geqslant 1$ are $c=\frac{4}{4-\pi}-4$ and $d=0$.

1. Introduction

Let $f:[1, \infty) \longrightarrow(0, \infty)$ be a function, satisfying the following properties:
(i) $f(n+1)<f(n)$, for all $n \in \mathbb{N}$.
(ii) $\lim _{n \longrightarrow \infty} f(n)=0$.

Throughout this paper, we denote by $g(n):=\frac{1}{f(n)}$.
Mathematics subject classification (2020): 40A25, 40A05.
Keywords and phrases: Alternating series, estimate of the remainder of a series, hypergeometric series. * Corresponding author.

Consider the Leibniz series $\sum_{n=1}^{\infty}(-1)^{n-1} f(n)$. We denote by

$$
\begin{gathered}
R_{n}=\sum_{k=1}^{\infty}(-1)^{n+k-1} f(n+k), \\
\Delta f(n):=f(n+1)-f(n)
\end{gathered}
$$

We assume $\Delta f(n)<\Delta f(n+1)$, then according to [2, Theorem 1.2], the following inequalities hold:

$$
\frac{f(n+1)}{2}<\left|R_{n}\right|<\frac{f(n)}{2}
$$

The above inequalities can be rewritten as follows:

$$
\frac{1}{2 g(n+1)}<\left|R_{n}\right|<\frac{1}{2 g(n)}
$$

A natural question is :which are the best constants ρ and σ (the largest ρ and the largest σ) such that the inequalities

$$
\begin{equation*}
\frac{1}{2 g(n+1)-\rho}<\left|R_{n}\right|<\frac{1}{2 g(n)+\sigma} \tag{1}
\end{equation*}
$$

hold, for every $n \geqslant 1$?
Similar questions have been stated (cf. [6]) for the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ and the Gregory-Leibniz series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1}$.

Indeed, in [5], the author proved that the inequalities:

$$
\begin{equation*}
\frac{1}{2 n+a}<\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{k}\right|<\frac{1}{2 n+b} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{4 n+c}<\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{2 k-1}\right|<\frac{1}{4 n+d} \tag{3}
\end{equation*}
$$

hold for every $n \geqslant 1$, where $a=2 \sqrt{7}-4, b=1, c=2 \sqrt{19}-8$ and $d=0$. In addition, in [6], the authors proved that $a=\frac{1}{1-\log 2}-2$ and $b=1$ are the best constants in Inequalities (2). The authors have also asked about the best constants c and d involved in (3).

More generally, let α, β be given real numbers such that $\alpha>0$ and $\beta>-\alpha$. The aim of this paper is to find the best constants ρ, σ involved in (1), for $g(n)=\alpha n+\beta$. As a consequence, we answer the question about the Gregory-Leibniz series stated in [6].

We also express the n-th remainder $\left|R_{n}\right|$ of alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\alpha n+\beta}$ in terms of hypergeometric functions. This enables us establishing an estimation of $\left|R_{n}\right|$.

2. The best constants ρ, σ such that $\frac{1}{2 g(n+1)-\rho}<\left|R_{n}\right|<\frac{1}{2 g(n)+\sigma}$

Let $\sum_{n=1}^{\infty}(-1)^{n-1} f(n)$ be a Leibniz series such that $\Delta f(n)<\Delta f(n+1)$, for all integers $n \geqslant 1$. Consider the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ defined by

$$
\begin{equation*}
\left|R_{n}\right|=\frac{1}{2 g(n)+x_{n}}=\frac{1}{2 g(n+1)-y_{n}} \tag{4}
\end{equation*}
$$

Then the best constants ρ, σ (the greatest ρ and greatest σ) such that

$$
\begin{equation*}
\frac{1}{2 g(n+1)-\rho}<\left|R_{n}\right|<\frac{1}{2 g(n)+\sigma} \tag{5}
\end{equation*}
$$

for all integers $n \geqslant 1$ are given by

$$
\rho=\inf \left\{y_{n}: n \geqslant 1\right\} \text { and } \sigma=\inf \left\{x_{n}: n \geqslant 1\right\}
$$

Hence in order to determine ρ and σ, it suffices to study the monotonicity of the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$.

THEOREM 1. The best constants ρ, σ of the Leibniz series $S(\alpha, \beta):=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\alpha n+\beta}$ are given by $\rho=2(2 \alpha+\beta)-\left(\frac{1}{\alpha+\beta}-S(\alpha, \beta)\right)^{-1}$ and $\sigma=\alpha$,

The proof is based on the following lemma.
LEMMA 1. For $g(n)=\alpha n+\beta$, the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ defined in Equality 4 satisfy the following properties.

1. $\left(x_{n}\right)$ is decreasing to α.
2. $\left(y_{n}\right)$ is increasing to α.

Proof. The monotonicity of the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are related to the sequence $\left(\theta_{n}\right)$ defined in [4] implicitly by the relation $\left|R_{n}\right|=\frac{f\left(n+\theta_{n}\right)}{2}$.

The inverse function $f^{-1}:\left(0, \frac{1}{\alpha+\beta}\right] \longrightarrow[1,+\infty)$ is given by $f^{-1}(x)=\frac{1}{x \alpha}-$ $\frac{\beta}{\alpha}$. Hence the function $\psi:[2, \infty) \longrightarrow \mathbb{R}$ defined in [4, Theorem 7] by

$$
\psi(x)=f^{-1}\left(\frac{f(x-1)+f(x)}{2}\right)
$$

can be simplified into

$$
\psi(x)=\frac{(x+r-1)(x+r)}{x+r-\frac{1}{2}}-r=x+r-\frac{1}{2}-\frac{1}{4\left(x+r-\frac{1}{2}\right)}-r
$$

where $r=\beta / \alpha$. As $\psi^{\prime \prime}(x)=\frac{-1}{2\left(x+r-\frac{1}{2}\right)^{3}}, r>-1$ and $x \geqslant 2$, we deduce that ψ is concave, and consequently the sequence $\left(\theta_{n}, n \geqslant 1\right)$ is decreasing by [4, Theorem 7].

On the other hand, as $\lim _{t \rightarrow \infty} \frac{f^{\prime}(t+1)}{f^{\prime}(t)}=1$, we deduce according to [4, Theorem 4] that $\lim _{n \rightarrow \infty} \theta_{n}=1 / 2$. Now, as $x_{n}=2 \alpha \theta_{n}$ and $y_{n}=2 \alpha\left(1-\theta_{n}\right)$, we conclude that $\left(x_{n}, n \geqslant 1\right)$ is decreasing to α and $\left(y_{n}, n \geqslant 1\right)$ is increasing to α.

As a result, we have $\sigma=\alpha$ and $\rho=y_{1}=2(2 \alpha+\beta)-\left(\frac{1}{\alpha+\beta}-S(\alpha, \beta)\right)^{-1}$. This enables us to extend the main result in [6].

Corollary 1. Let $\alpha>0$ and β be real numbers such that $\alpha+\beta>0$. Then the best constants a and b (the smallest a and the largest b) such that the inequalities

$$
\begin{equation*}
\frac{1}{2 \alpha n+a}<\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{\alpha k+\beta}\right|<\frac{1}{2 \alpha n+b} \tag{6}
\end{equation*}
$$

hold for every $n \geqslant 1$ are $a=\left(\frac{1}{\alpha+\beta}-S(\alpha, \beta)\right)^{-1}-2 \alpha$ and $b=\alpha+2 \beta$.
REMARK 1. ([6, Theorem (2)]) The best constants a and b such that the inequalities

$$
\begin{equation*}
\frac{1}{2 n+a}<\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{k}\right|<\frac{1}{2 n+b} \tag{7}
\end{equation*}
$$

hold for every $n \geqslant 1$ are $a=\frac{1}{1-\log 2}-2$ and $b=1$.
Corollary 1 provides an answer of a question stated in [6] concerning the GregoryLeibniz series.

Corollary 2. The best constants c and d such that the inequalities

$$
\begin{equation*}
\frac{1}{4 n+c}<\left|\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{2 k-1}\right|<\frac{1}{4 n+d} \tag{8}
\end{equation*}
$$

hold for every $n \geqslant 1$ are $c=\frac{4}{4-\pi}-4$ and $d=0$.

3. Integral representation of $\left|R_{n}\right|$

The goal of this section is to give an integral representation of $\left|R_{n}\right|$, using the Gauss hypergeometric function ${ }_{2} F_{1}$ defined as

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; x)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!} \tag{9}
\end{equation*}
$$

where $(a)_{n}$ is the Pochhammer's symbol defined by $(a)_{n}:=a(a+1) \ldots(a+n-1)$, for any $n \geqslant 1$ and $(a)_{0}=1$.

The Euler integral representation of ${ }_{2} F_{1}$ is formulated as follows (cf. [1, Theorem 2.2. page 651]: If $\operatorname{Re}(c)>\operatorname{Re}(b)>0$, then

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; x)=\frac{\Gamma(c)}{\Gamma(b)} \Gamma(c-b) \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-x t)^{-a} d t \tag{10}
\end{equation*}
$$

in the x-plane cut along the real axis from 1 to ∞ (with $\arg t=\arg (1-t)=0$, and $(1-x t)^{-a}$ has its principal value).

THEOREM 2. Let α, β be real numbers such that $\alpha>0$ and $\alpha+\beta>0$ and $R_{n}=\sum_{k=n+1}^{\infty} \frac{(-1)^{k-1}}{\alpha k+\beta}$. Then, we have

1. $\left|R_{n}\right|=\frac{1}{\alpha(n+1)+\beta}{ }_{2} F_{1}\left(1, n+\frac{\beta}{\alpha}+1 ; n+\frac{\beta}{\alpha}+2 ;-1\right)$,
2. $\left|R_{n}\right|=\int_{0}^{1} \frac{t^{\alpha(n+1)+\beta-1}}{1+t^{\alpha}} d t$,
3. $S(\alpha, \beta)=\frac{1}{\alpha+\beta}-\int_{0}^{1} \frac{t^{2 \alpha+\beta-1}}{1+t^{\alpha}} d t$.

Proof.

1. The series $\left|R_{n}\right|$ is given by

$$
\begin{aligned}
\left|R_{n}\right| & =\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{\alpha(n+k)+\beta} \\
& =\frac{1}{\alpha(n+1)+\beta} \sum_{k=1}^{\infty} \frac{\alpha(n+1)+\beta}{\alpha(n+k)+\beta}(-1)^{k-1} \\
& =\frac{1}{\alpha(n+1)+\beta} \sum_{k=1}^{\infty} \frac{n+\frac{\beta}{\alpha}+1}{n+\frac{\beta}{\alpha}+k}(-1)^{k-1} \\
& =\frac{1}{\alpha(n+1)+\beta} \sum_{k=0}^{\infty} \frac{(1)_{k}\left(n+\frac{\beta}{\alpha}+1\right)_{k}}{\left(n+\frac{\beta}{\alpha}+2\right)_{k}} \frac{(-1)^{k}}{k!} \\
& =\frac{1}{\alpha(n+1)+\beta}{ }_{2} F_{1}\left(1, n+\frac{\beta}{\alpha}+1 ; n+\frac{\beta}{\alpha}+2 ;-1\right) .
\end{aligned}
$$

2. By Euler integral representation, if $x>0$ and $c>b>1$, we have

$$
{ }_{2} F_{1}(1, b ; c ;-x)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{1+x t} d t
$$

so that

$$
\begin{aligned}
{ }_{2} F_{1}\left(1, n+\frac{\beta}{\alpha}+1 ; n+\frac{\beta}{\alpha}+2 ;-1\right) & =\frac{\Gamma\left(n+\frac{\beta}{\alpha}+2\right)}{\Gamma\left(n+\frac{\beta}{\alpha}+1\right) \Gamma(1)} \int_{0}^{1} \frac{t^{n+\frac{\beta}{\alpha}}}{1+t} d t \\
& =\left(n+\frac{\beta}{\alpha}+1\right) \int_{0}^{1} \frac{t^{n+\frac{\beta}{\alpha}}}{1+t} d t
\end{aligned}
$$

Consequently,

$$
\left|R_{n}\right|=\frac{1}{\alpha} \int_{0}^{1} \frac{t^{n+\frac{\beta}{\alpha}}}{1+t} d t=\left|R_{n}\right|=\int_{0}^{1} \frac{s^{\alpha(n+1)+\beta-1}}{1+s^{\alpha}} d s
$$

3. It is enough to remark that

$$
S(\alpha, \beta)=\frac{1}{\alpha+\beta}-\left|R_{1}\right|=\frac{1}{\alpha+\beta}-\int_{0}^{1} \frac{t^{2 \alpha+\beta-1}}{1+t^{\alpha}} d t
$$

As an application of Theorem 2-(3), we provide some examples of evaluation of the sum $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{a n+1}$.

Example 1. Let $a>1$ be a real number, then

$$
S(a, 1-a)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{a n+1}=\int_{0}^{1} \frac{d t}{1+t^{a}}
$$

- For $a=1$, we get $S(1,0)=\log 2$.
- For $a=2$, we get $S(2,-1)=\frac{\pi}{4}$.
- For $a=3$, we decompose $\frac{1}{1+t^{3}}$ into the sum of partial fractions as follows

$$
\frac{1}{1+t^{3}}=-\frac{t-2}{3\left(t^{2}-t+1\right)}+\frac{1}{3(t+1)},
$$

and we obtain

$$
S(3,-2)=\frac{\sqrt{3} \pi+3 \log 2}{9}
$$

In general, if $a \geqslant 3$ is an integer, then we need to decompose $\frac{1}{1+t^{a}}$ into partial fractions and then derive the sum $S(a, 1-a)$ (for instance, $S(4,-3)=\frac{\pi+2 \log (1+\sqrt{2})}{4 \sqrt{2}}$).

The following result gives an estimate of the remainder of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\alpha n+\beta}$.

THEOREM 3. Let α, β be real numbers such that $\alpha>0, \alpha+\beta>0$. We let $f(n)=\frac{1}{\alpha n+\beta}, g(n)=\frac{1}{f(n)}$ and $R_{n}=\sum_{k=1}^{\infty}(-1)^{n+k-1} f(n+k)$, then we have the following inequalities

$$
\begin{equation*}
\frac{1}{2 g(n+1)-\rho_{n}}<\left|R_{n}\right|<\frac{1}{2 g(n)+\sigma_{n}} \tag{11}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where

$$
\begin{aligned}
\rho_{n} & =\alpha\left(1-\left(n+\frac{\beta}{\alpha}+1\right)^{-1}\right) \\
\sigma_{n} & =\alpha\left(1+3\left[\left(n+\frac{\beta}{\alpha}+1\right)^{2}+3\left(n+\frac{\beta}{\alpha}+1\right)+3\right]^{-1}\right)
\end{aligned}
$$

Proof. Using Theorem 2, we have

$$
\left|R_{n}\right|=\frac{1}{\alpha(n+1)+\beta^{2}}{ }^{2 F_{1}}\left(1, n+\frac{\beta}{\alpha}+1 ; n+\frac{\beta}{\alpha}+2 ;-1\right) .
$$

Now, following [3, Page 338, Inequalities (4)], for $x>0$ and $c>b>1$, we have

$$
\frac{c}{c+b x}<{ }_{2} F_{1}(1, b ; c ;-x)<\frac{c(c+1)+(c-b) x}{c(c+1)+c(b+1) x} .
$$

Therefore we obtain:

$$
\left(\frac{1}{\alpha b}\right) \frac{b+1}{2 b+1}<\left|R_{n}\right|<\left(\frac{1}{\alpha b}\right) \frac{(b+1)(b+2)+1}{(b+1)(b+2)+(b+1)^{2}}
$$

where $b=n+\frac{\beta}{\alpha}+1$. The lower and upper bounds may be written as follows

$$
\begin{aligned}
& \left(\frac{1}{\alpha b}\right) \frac{b+1}{2 b+1}=\frac{1}{2 g(n+1)-\rho_{n}} \\
& \left(\frac{1}{\alpha b}\right) \frac{(b+1)(b+2)+1}{(b+1)(b+2)+(b+1)^{2}}=\frac{1}{2 g(n)+\sigma_{n}}
\end{aligned}
$$

4. Further estimates of $\left|R_{n}\right|$

As in the previous sections, we let $f:[1, \infty) \longrightarrow(0, \infty)$ be a function, satisfying the following properties:
(i) $f(n+1)<f(n)$, for all $n \in \mathbb{N}$.
(ii) $\lim _{n \longrightarrow \infty} f(n)=0$.
(iii) $\Delta f(n)<\Delta f(n+1)$, where $\Delta f(n):=f(n+1)-f(n)$.

We denote by $g(n):=\frac{1}{f(n)}$ and $R_{n}=\sum_{k \geqslant 1}(-1)^{n+k-1} f(n+k)$.
We consider the two quantities

$$
t_{n}=\sqrt{(\Delta g(n))^{2}+g(n+1)^{2}}-g(n)
$$

and

$$
\lambda_{n}=g(n+2)-\sqrt{(\Delta g(n+1))^{2}+g(n+1)^{2}}
$$

then using the recursive relation $\left|R_{n+1}\right|+\left|R_{n}\right|=\frac{1}{g(n+1)}$, we have the following result.
Proposition 4. Let n be a positive integer.

1. The following statements are equivalent:
(i) $x_{n+1}<x_{n}$;
(ii) $x_{n}>t_{n}$;
(iii) $x_{n+1}<t_{n}$;
(iv) $\left|R_{n}\right|<\frac{1}{2 g(n)+t_{n}}$;
(v) $\left|R_{n+1}\right|>\frac{1}{2 g(n+1)+t_{n}}$.
2. The following statements are equivalent:
(i) $y_{n+1}>y_{n}$;
(ii) $y_{n}<\lambda_{n}$;
(iii) $y_{n+1}<\lambda_{n}$;
(iv) $\left|R_{n}\right|<\frac{1}{2 g(n+1)-\lambda_{n}}$;
(v) $\left|R_{n+1}\right|>\frac{1}{2 g(n+2)-\lambda_{n}}$.

REMARK 2. Similar arguments may be used to show the equivalence between the reversed inequalities in the previous proposition.

For the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\alpha n+\beta}$, we have

$$
t_{n}=\sqrt{\alpha^{2}+(\alpha(n+1)+\beta)^{2}}-\alpha n-\beta
$$

and

$$
\lambda_{n}=\alpha(n+2)+\beta-\sqrt{\alpha^{2}+(\alpha(n+1)+\beta)^{2}}
$$

Combining Lemma 1 and Proposition 4 yields the following result.
THEOREM 5. The following inequalities hold.

$$
\frac{1}{\sqrt{\alpha^{2}+(\alpha n+\beta)^{2}}+\alpha(n+1)+\beta}<\left|R_{n}\right|<\frac{1}{\sqrt{\alpha^{2}+(\alpha(n+1)+\beta)^{2}}+\alpha n+\beta}
$$

for all $n \geqslant 2$.

REFERENCES

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, Cambridge University Press 71 (1999), 195-199.
[2] R. Johnsonbaugh, Summing an alternating series, Am. Math. Mon. 86 (1979), 637-648.
[3] D. KARP, S. M. Sitnik, Inequalities and monotonicity of ratios for generalized hypergeometric function, Journal of Approximation Theory 161 (2009), 337-352.
[4] V. Timofte, On Leibniz series defined by convex functions, J. Math. Anal. Appl. 300 (2004), 160171.
[5] L. Tóth, On a class of Leibniz series, Rev. Anal. Numér. Théor. Approx. 21 (1992), 195-199.
[6] L. Tóth, J. Bukor, On the alternating series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$, J. Math. Anal. Appl 282 (2003), 21-25.

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

