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Abstract. For any two real numbers α > 0 and β > −α , we show that the best constants a and
b (the smallest a and the largest b ) such that the inequalities

1
2αn+a

<

∣∣∣∣∣
∞

∑
k=n+1

(−1)k−1

αk+β

∣∣∣∣∣< 1
2αn+b

hold for every n � 1 are a =
(

1
α +β

−S(α ,β)
)−1

− 2α and b = α + 2β , where S(α ,β) =

∞

∑
n=1

(−1)n−1

αn+β
. In particular, we recover the main result of [6] and answer a question, stated in [6],

about the Gregory-Leibniz series
∞

∑
n=1

(−1)n−1

2n−1
. More precisely, we show that the best constants

c and d such that the inequalities

1
4n+ c

<

∣∣∣∣∣
∞

∑
k=n+1

(−1)k−1

2k−1

∣∣∣∣∣< 1
4n+d

hold for every n � 1 are c =
4

4−π
−4 and d = 0.

1. Introduction

Let f : [1,∞) −→ (0,∞) be a function, satisfying the following properties:

(i) f (n+1) < f (n) , for all n ∈ N .

(ii) lim
n−→∞

f (n) = 0.

Throughout this paper, we denote by g(n) :=
1

f (n)
.
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Consider the Leibniz series
∞

∑
n=1

(−1)n−1 f (n) . We denote by

Rn =
∞

∑
k=1

(−1)n+k−1 f (n+ k),

Δ f (n) := f (n+1)− f (n).

We assume Δ f (n) < Δ f (n + 1) , then according to [2, Theorem 1.2], the following
inequalities hold:

f (n+1)
2

< |Rn| < f (n)
2

.

The above inequalities can be rewritten as follows:

1
2g(n+1)

< |Rn| < 1
2g(n)

.

A natural question is :which are the best constants ρ and σ (the largest ρ and the
largest σ ) such that the inequalities

1
2g(n+1)−ρ

< |Rn| < 1
2g(n)+ σ

(1)

hold, for every n � 1?
Similar questions have been stated (cf. [6]) for the alternating harmonic series

∞

∑
n=1

(−1)n−1

n
and the Gregory-Leibniz series

∞

∑
n=1

(−1)n−1

2n−1
.

Indeed, in [5], the author proved that the inequalities:

1
2n+a

<

∣∣∣∣∣
∞

∑
k=n+1

(−1)k−1

k

∣∣∣∣∣< 1
2n+b

(2)

and
1

4n+ c
<

∣∣∣∣∣
∞

∑
k=n+1

(−1)k−1

2k−1

∣∣∣∣∣< 1
4n+d

(3)

hold for every n � 1, where a = 2
√

7−4, b = 1, c = 2
√

19−8 and d = 0. In addition,

in [6], the authors proved that a =
1

1− log2
−2 and b = 1 are the best constants in In-

equalities (2). The authors have also asked about the best constants c and d involved
in (3).

More generally, let α,β be given real numbers such that α > 0 and β >−α . The
aim of this paper is to find the best constants ρ ,σ involved in (1), for g(n) = αn+ β .
As a consequence, we answer the question about the Gregory-Leibniz series stated in
[6].

We also express the n -th remainder |Rn| of alternating series
∞

∑
n=1

(−1)n−1

αn+ β
in

terms of hypergeometric functions. This enables us establishing an estimation of |Rn| .
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2. The best constants ρ ,σ such that
1

2g(n+1)−ρ
< |Rn| < 1

2g(n)+ σ

Let
∞

∑
n=1

(−1)n−1 f (n) be a Leibniz series such that Δ f (n) < Δ f (n + 1) , for all

integers n � 1. Consider the sequences (xn) and (yn) defined by

|Rn| = 1
2g(n)+ xn

=
1

2g(n+1)− yn
. (4)

Then the best constants ρ ,σ (the greatest ρ and greatest σ ) such that

1
2g(n+1)−ρ

< |Rn| < 1
2g(n)+ σ

, (5)

for all integers n � 1 are given by

ρ = inf{yn : n � 1} and σ = inf{xn : n � 1}.
Hence in order to determine ρ and σ , it suffices to study the monotonicity of the

sequences (xn) and (yn) .

THEOREM 1. The best constants ρ ,σ of the Leibniz series S(α,β ) :=
∞

∑
n=1

(−1)n−1

αn+ β

are given by ρ = 2(2α + β )−
(

1
α + β

−S(α,β )
)−1

and σ = α ,

The proof is based on the following lemma.

LEMMA 1. For g(n) = αn+ β , the sequences (xn) and (yn) defined in Equality
4 satisfy the following properties.

1. (xn) is decreasing to α .

2. (yn) is increasing to α .

Proof. The monotonicity of the sequences (xn) and (yn) are related to the se-

quence (θn) defined in [4] implicitly by the relation |Rn| = f (n+ θn)
2

.

The inverse function f−1 :

(
0,

1
α + β

]
−→ [1,+∞) is given by f−1(x) =

1
xα

−
β
α

. Hence the function ψ : [2,∞) −→ R defined in [4, Theorem 7] by

ψ(x) = f−1
(

f (x−1)+ f (x)
2

)
can be simplified into

ψ(x) =
(x+ r−1)(x+ r)

x+ r− 1
2

− r = x+ r− 1
2
− 1

4

(
x+ r− 1

2

) − r,
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where r = β/α . As ψ ′′(x) =
−1

2

(
x+ r− 1

2

)3 , r > −1 and x � 2, we deduce that ψ

is concave, and consequently the sequence (θn,n � 1) is decreasing by [4, Theorem 7].

On the other hand, as lim
t→∞

f ′(t +1)
f ′(t)

= 1, we deduce according to [4, Theorem

4] that lim
n→∞

θn = 1/2. Now, as xn = 2αθn and yn = 2α(1− θn) , we conclude that

(xn,n � 1) is decreasing to α and (yn,n � 1) is increasing to α . �

As a result, we have σ = α and ρ = y1 = 2(2α + β )−
(

1
α + β

−S(α,β )
)−1

.

This enables us to extend the main result in [6].

COROLLARY 1. Let α > 0 and β be real numbers such that α + β > 0 . Then
the best constants a and b (the smallest a and the largest b) such that the inequalities

1
2αn+a

<

∣∣∣∣∣
∞

∑
k=n+1

(−1)k−1

αk+ β

∣∣∣∣∣< 1
2αn+b

(6)

hold for every n � 1 are a =
(

1
α + β

−S(α,β )
)−1

−2α and b = α +2β .

REMARK 1. ([6, Theorem (2)]) The best constants a and b such that the in-
equalities

1
2n+a

<

∣∣∣∣∣
∞

∑
k=n+1

(−1)k−1

k

∣∣∣∣∣< 1
2n+b

(7)

hold for every n � 1 are a =
1

1− log2
−2 and b = 1.

Corollary 1 provides an answer of a question stated in [6] concerning the Gregory-
Leibniz series.

COROLLARY 2. The best constants c and d such that the inequalities

1
4n+ c

<

∣∣∣∣∣
∞

∑
k=n+1

(−1)k−1

2k−1

∣∣∣∣∣< 1
4n+d

(8)

hold for every n � 1 are c =
4

4−π
−4 and d = 0.

3. Integral representation of |Rn|

The goal of this section is to give an integral representation of |Rn| , using the
Gauss hypergeometric function 2F1 defined as

2F1 (a,b;c;x) =
∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
, (9)
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where (a)n is the Pochhammer’s symbol defined by (a)n := a(a+1) . . . (a+n−1) , for
any n � 1 and (a)0 = 1.

The Euler integral representation of 2F1 is formulated as follows (cf. [1, Theorem
2.2. page 651]: If Re(c) > Re(b) > 0, then

2F1 (a,b;c;x) =
Γ(c)
Γ(b)

Γ(c−b)
∫ 1

0
tb−1(1− t)c−b−1(1− xt)−a dt (10)

in the x -plane cut along the real axis from 1 to ∞ (with argt = arg(1− t) = 0, and
(1− xt)−a has its principal value).

THEOREM 2. Let α,β be real numbers such that α > 0 and α + β > 0 and

Rn =
∞

∑
k=n+1

(−1)k−1

αk+ β
. Then, we have

1. |Rn| = 1
α(n+1)+ β 2F1

(
1,n+

β
α

+1;n+
β
α

+2;−1

)
,

2. |Rn| =
∫ 1

0

tα(n+1)+β−1

1+ tα dt ,

3. S(α,β ) =
1

α + β
−
∫ 1

0

t2α+β−1

1+ tα dt .

Proof.

1. The series |Rn| is given by

|Rn| =
∞

∑
k=1

(−1)k−1

α(n+ k)+ β

=
1

α(n+1)+ β

∞

∑
k=1

α(n+1)+ β
α(n+ k)+ β

(−1)k−1

=
1

α(n+1)+ β

∞

∑
k=1

n+
β
α

+1

n+
β
α

+ k
(−1)k−1

=
1

α(n+1)+ β

∞

∑
k=0

(1)k

(
n+

β
α

+1

)
k(

n+
β
α

+2

)
k

(−1)k

k!

=
1

α(n+1)+ β 2F1

(
1,n+

β
α

+1;n+
β
α

+2;−1

)
.
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2. By Euler integral representation, if x > 0 and c > b > 1, we have

2F1 (1,b;c;−x) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0

tb−1(1− t)c−b−1

1+ xt
dt,

so that

2F1

(
1,n+

β
α

+1;n+
β
α

+2;−1

)
=

Γ
(
n+ β

α +2
)

Γ
(
n+ β

α +1
)

Γ(1)

∫ 1

0

tn+ β
α

1+ t
dt

=
(

n+
β
α

+1

)∫ 1

0

tn+ β
α

1+ t
dt.

Consequently,

|Rn| = 1
α

∫ 1

0

tn+ β
α

1+ t
dt = |Rn| =

∫ 1

0

sα(n+1)+β−1

1+ sα ds.

3. It is enough to remark that

S(α,β ) =
1

α + β
−|R1| = 1

α + β
−
∫ 1

0

t2α+β−1

1+ tα dt. �

As an application of Theorem 2-(3) , we provide some examples of evaluation of

the sum
∞

∑
n=0

(−1)n

an+1
.

EXAMPLE 1. Let a > 1 be a real number, then

S(a,1−a) =
∞

∑
n=0

(−1)n

an+1
=
∫ 1

0

dt
1+ ta

.

• For a = 1, we get S(1,0) = log2.

• For a = 2, we get S(2,−1) =
π
4

.

• For a = 3, we decompose
1

1+ t3
into the sum of partial fractions as follows

1
1+ t3

= − t−2
3(t2− t +1)

+
1

3(t +1)
,

and we obtain

S(3,−2) =
√

3π +3log2
9

.
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In general, if a � 3 is an integer, then we need to decompose
1

1+ ta
into partial frac-

tions and then derive the sum S(a,1−a) (for instance, S(4,−3)=
π +2log(1+

√
2)

4
√

2
).

The following result gives an estimate of the remainder of the series
∞

∑
n=1

(−1)n−1

αn+ β
.

THEOREM 3. Let α,β be real numbers such that α > 0 , α + β > 0 . We let

f (n) =
1

αn+ β
, g(n) =

1
f (n)

and Rn =
∞

∑
k=1

(−1)n+k−1 f (n+ k) , then we have the fol-

lowing inequalities
1

2g(n+1)−ρn
< |Rn| < 1

2g(n)+ σn
, (11)

for all n ∈ N , where

ρn = α

(
1−
(

n+
β
α

+1

)−1
)

,

σn = α

⎛
⎝1+3

[(
n+

β
α

+1

)2

+3

(
n+

β
α

+1

)
+3

]−1
⎞
⎠ .

Proof. Using Theorem 2, we have

|Rn| = 1
α(n+1)+ β 2F1

(
1,n+

β
α

+1;n+
β
α

+2;−1

)
.

Now, following [3, Page 338, Inequalities (4)], for x > 0 and c > b > 1, we have

c
c+bx

< 2F1 (1,b;c;−x) <
c(c+1)+ (c−b)x
c(c+1)+ c(b+1)x

.

Therefore we obtain:(
1

αb

)
b+1
2b+1

< |Rn| <
(

1
αb

)
(b+1)(b+2)+1

(b+1)(b+2)+ (b+1)2 ,

where b = n+
β
α

+1. The lower and upper bounds may be written as follows

(
1

αb

)
b+1
2b+1

=
1

2g(n+1)−ρn
,(

1
αb

)
(b+1)(b+2)+1

(b+1)(b+2)+ (b+1)2 =
1

2g(n)+ σn
. �
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4. Further estimates of |Rn|

As in the previous sections, we let f : [1,∞) −→ (0,∞) be a function, satisfying
the following properties:

(i) f (n+1) < f (n) , for all n ∈ N .

(ii) lim
n−→∞

f (n) = 0.

(iii) Δ f (n) < Δ f (n+1) , where Δ f (n) := f (n+1)− f (n) .

We denote by g(n) :=
1

f (n)
and Rn = ∑

k�1

(−1)n+k−1 f (n+ k) .

We consider the two quantities

tn =
√

(Δg(n))2 +g(n+1)2−g(n)

and

λn = g(n+2)−
√

(Δg(n+1))2 +g(n+1)2,

then using the recursive relation |Rn+1|+ |Rn| = 1
g(n+1) , we have the following result.

PROPOSITION 4. Let n be a positive integer.

1. The following statements are equivalent:

(i) xn+1 < xn ;

(ii) xn > tn ;

(iii) xn+1 < tn ;

(iv) |Rn| < 1
2g(n)+ tn

;

(v) |Rn+1| > 1
2g(n+1)+ tn

.

2. The following statements are equivalent:

(i) yn+1 > yn ;

(ii) yn < λn ;

(iii) yn+1 < λn ;

(iv) |Rn| < 1
2g(n+1)−λn

;

(v) |Rn+1| > 1
2g(n+2)−λn

.



SHARP ESTIMATE OF THE REMAINDER OF SOME ALTERNATING SERIES 91

REMARK 2. Similar arguments may be used to show the equivalence between the
reversed inequalities in the previous proposition.

For the series
∞

∑
n=1

(−1)n−1

αn+ β
, we have

tn =
√

α2 +(α(n+1)+ β )2−αn−β

and

λn = α(n+2)+ β −
√

α2 +(α(n+1)+ β )2.

Combining Lemma 1 and Proposition 4 yields the following result.

THEOREM 5. The following inequalities hold.

1√
α2 +(αn+ β )2 + α(n+1)+ β

< |Rn| < 1√
α2 +(α(n+1)+ β )2 + αn+ β

,

for all n � 2 .
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