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Abstract. For any two real numbers o >0 and 8 > —o, we show that the best constants a and
b (the smallest a and the largest ) such that the inequalities

1
20n+a

o (=D
ke Ok+P

1
2on+b

1
hold for every n > 1 are a = < B S, /3)) —20and b = o+ 2f3, where S(e,f) =

5 (1!
2 on+f

n=1

. In particular, we recover the main result of [6] and answer a question, stated in [6],

( 1))171

about the Gregory-Leibniz series z

. More precisely, we show that the best constants

= 2n—1
¢ and d such that the inequalities
1 & (=1)kt 1
dntc | A= 2k—1 4n+d

4
hold for every n > larec—n—4andd 0.

1. Introduction
Let f:[1,00) — (0,e0) be a function, satisfying the following properties:
(i) f(n+1)< f(n),forall neN.
(i1) ,,lemf (n) =
1
70
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Throughout this paper, we denote by g(n) :=
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Consider the Leibniz series Y (— 1"~ £(n). We denote by

n=1

Ry= Y (=1 f(n+k),
k=1
Af(n):= f(n+1)—f(n).
We assume Af(n) < Af(n+ 1), then according to [2, Theorem 1.2], the following
inequalities hold:
f(n)

2

fln+1)
2
The above inequalities can be rewritten as follows:

<|Rn| <

1
——— <Ry < ——.
2 1)~ S 2
A natural question is :which are the best constants p and ¢ (the largest p and the
largest ©) such that the inequalities

1

25+ 1)—p W

<|R)| < =————

IRl 2g(n)+o
hold, for every n > 1?

Similar questions have been stated (cf. [6]) for the alternating harmonic series

= (1 n—1 < (1 n—1
D (=1 and the Gregory-Leibniz series Y (=1 )
=l n = 2n—1
Indeed, in [5], the author proved that the inequalities:

1 s (=)t 1
< < 2
2n+a k%—l k 2n+b @
and
1 > (=)t 1
3
e S| 2 1| S and ©)

hold for every n > 1, where a=2V7T—4,b=1,c=2v/19—8 and d =0. In addition,

in [6], the authors proved that a = —2 and b =1 are the best constants in In-

1 —log2
equalities (2). The authors have also asked about the best constants ¢ and d involved
in (3).

More generally, let o, 8 be given real numbers such that &z >0 and 3 > —o. The
aim of this paper is to find the best constants p, o involved in (1), for g(n) = an+f3.
As a consequence, we answer the question about the Gregory-Leibniz series stated in

[6].
. . & (=t
We also express the n-th remainder |R,| of alternating series Z
= on+f
terms of hypergeometric functions. This enables us establishing an estimation of |R,|.

in
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2. The best constants p,c such that <|Rn| <

1
2g(n+1)—p 2¢(n)+o

=3

Let Y (—1)""'f(n) be a Leibniz series such that Af(n) < Af(n+ 1), for all

n=1
integers n > 1. Consider the sequences (x,) and (y,) defined by
1 1
nl = _= 4
Rl 2g(n)+x, 2gn+1)— X
Then the best constants p, o (the greatest p and greatest ¢ ) such that
—————— < |Ry| < ———, 5
2¢(n+1)—p IRl 2g(n)+o )

for all integers n > 1 are given by
=inf{y, :n>1} and o = inf{x, : n > 1}.

Hence in order to determine p and o, it suffices to study the monotonicity of the
sequences (x,) and (y,).

< (-1 n—1
THEOREM 1. The best constants p, 6 of the Leibniz series S(a, ) := Y. (a ?1-[3
n

n=1
1
aregivenbyp=2(2a+[3)—< B S(a, [5)) and o = «,
The proof is based on the following lemma.
LEMMA 1. For g(n) = an+ B, the sequences (x,) and (y,) defined in Equality
4 satisfy the following properties.
1. (x,) is decreasing to o.

2. (yn) is increasing to .

Proof. The monotonicity of the sequences (x,) and (y,) are related to the se-

f(n+6y)

—

The inverse function f~!: <0 ;} — [1,4o0) is given by f~!(x) = .
"a+ B ’ xo

quence (6,) defined in [4] implicitly by the relation |R,| =

g. Hence the function y : [2,00) — R defined in [4, Theorem 7] by

W(x) :ffl <f(x_ 12)+f(x))
can be simplified into

—1 1 1

pogo Sz v v,
1 2 1
x—l—r—z 4{x+r—=
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where r= /0. As y'(x) = , —1 and x > 2, we deduce that y
o

is concave, and consequently the sequence (6,,n > 1) is decreasing by [4, Theorem 7].
fi+1)

On the other hand, as hm 120
4] that lim 6, = 1/2. Now, as x, =206, and y, = 2a(l — 6,), we conclude that
Nn—oo

= 1, we deduce according to [4, Theorem

(xn,n > 1) is decreasing to ¢« and (y,,n > 1) is increasing to oc. O

-1
As aresult, we have 0 = o and p =y; =220+ ) — ( B S(a, B)) .

This enables us to extend the main result in [6].

COROLLARY 1. Let o > 0 and B be real numbers such that oc+ 3 > 0. Then
the best constants a and b (the smallest a and the largest b) such that the inequalities
A
ok+ B

1
<
20n+a

1
<
20n+b

(6)

k=n+1
-1

1
hold for every n > 1 are a-(Tﬂ—S(mﬁ)) —20and b= o +2p.

REMARK 1. ([6, Theorem (2)]) The best constants a and b such that the in-
equalities

1 = (—1)kt 1
7
ra |2, k|2t @
1
hold forevery n > 1 are a= ———— —2and b = 1.
1 —log2

Corollary 1 provides an answer of a question stated in [6] concerning the Gregory-
Leibniz series.

COROLLARY 2. The best constants ¢ and d such that the inequalities

s (-
Z 2k—1

k=n+1

1
dn+c

1

Sdntd ®)

4
hold for every n > 1 are ¢ = 4——4andd 0.

3. Integral representation of |R,|

The goal of this section is to give an integral representation of |R,|, using the
Gauss hypergeometric function »F; defined as

oo

2F| (a,b;cx) = 2 C 9)
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where (a), is the Pochhammer’s symbol defined by (a), :=a(a+1)...(a+n—1), for
any n > 1 and (a)p = 1.

The Euler integral representation of ,F; is formulated as follows (cf. [1, Theorem
2.2. page 651]: If Re(c) > Re(b) > 0, then

r :
2mw$mw:—32(—m/'b%L%V*”O—ﬂYWt (10)
I(b)
in the x-plane cut along the real axis from 1 to oo (with args = arg(l—¢) =0, and
(1 —xt)~“ has its principal value).

THEOREM 2. Let o, 3 be real numbers such that o > 0 and o+ > 0 and
e (_l)k—l

R, =
" ak+ B

. Then, we have
k=n+1

1 B B
1. |R)|=——oF (1 T lin+E=42-1,
IR | a(n+1)+ﬁzl<,n+a+ et )
1 ta(n+1)+/3—1
2. |R,| = ——dt,
IRl /o 1+1¢

t2a+/3 1

S(erB) = a+B / 1+za

Proof.

1. The series |R,| is given by

(Rl :kg‘l an+k)+p

o 1 hd (X(n+1)+ﬁ(_1)k,1
o+ 1)+ BE an+k)+p

1 0o n—l—g—f—l .
= (=1)

B B )
R N S T T A
>+ﬁ21< o o
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2. By Euler integral representation, if x >0 and ¢ > b > 1, we have

r‘(c) ltb—l(l _t)c—b—l
Fi(1,b;¢c;—x) = dt,
21 (1B =) F(b)F(c—b)/() 1+ xt !
so that
B B F<n+ g +2>

tn-‘r—
Sl (1,n—|———|—1;n+——|—2;—1)= / dt
o o r(n+§+1)r(1) 0o 1+1

B
L yntg

(n—|—é—|—1> dt.
o o 141t

Consequently,

1 lz"+§ 1 go(nt1)+p~1
R|—— dt =R :/ . s
Rl =5 Jo Tt =Rl = ) a4

3. It is enough to remark that

1 1t206+ﬁ 1
S(mﬁ):m IRi| = a+B / T

As an application of Theorem 2-(3), we provide some examples of evaluation of
e (="

the sum .
santl

EXAMPLE 1. Let a > 1 be a real number, then

e For a=1, we get S(1,0) =log2.

e Fora=2,weget S(2,—1)=-.

I . . .
e For a =3, we decompose s into the sum of partial fractions as follows

1 =2 1
1+13 3(2—t+1) 3(t+1)

and we obtain
V3r+3log 2

S(3,-2) = 5
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into partial frac-

In general, if a > 3 is an integer, then we need to decompose T
_ m+2log(14+V2)

tions and then derive the sum S(a, 1 —a) (for instance, S(4,—3) = Wi

(="
an+p

The following result gives an estimate of the remainder of the series 2
n=1
THEOREM 3. Let o, 3 be real numbers such that o0 >0, o+ > 0. We let
1 1 ad
fln)= ,g(n)=— and R, = Y (—1)""™ L f(n+k), then we have the fol-
on+f f(n) kg‘l

lowing inequalities
1
< |Ry| <

2g(n+1)—p, 2g(n) + oy,

(11)

)

forall n € N, where

Pn=a<l—<n+§+l>l>7

<n+§+1>2+3<n+g+1)+3

-1

o,=0o|1+3

Proof. Using Theorem 2, we have
1
|Ry| = ——————F2F1 | I,n+ E+ l;n—i-é +2;-1].
on+1)+p o o
Now, following [3, Page 338, Inequalities (4)], for x > 0 and ¢ > b > 1, we have
c(c+1)+(c—b)x

c
—_— Fi(1,b;c;— .
c—l—bx<2 1(1bie x)<c(c+l)+c(b+l)x

Therefore we obtain:
1 b+1<|R\ 1 b+1)(b+2)+1
ab) 2b+1 " (b+1)(b+2)+ (b+1)%

ab
where b =n -+ E + 1. The lower and upper bounds may be written as follows

1\ b+1 1
<£)2b+1:2g(n+1)—pn’
(1)( b+1)(b+2)+1 L

ab) (b+1)(b+2)+(b+1)2  2g(n)+on
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4. Further estimates of |R,|

As in the previous sections, we let f :[1,00) — (0,00) be a function, satisfying
the following properties:

(i) f(n+1)< f(n),forall neN.
(i1) nli_n}mf (n) =
(iii) Af(n) <Af(n+1), where Af(n):=f(n+1)— f(n).

We denote by g(n) := ﬁ and R, = Y (—1)"" 1 f(n+k).
k=1

We consider the two quantities

and

M:gm+zy—¢mgn+uy+gm+u%

1

then using the recursive relation |R,+1|+ |R,| = o

2 e have the following result.

PROPOSITION 4. Let n be a positive integer.

1. The following statements are equivalent:

@) Xny1 <Xns

(1) x, >1,;
(i) xup1 <ta;
1
iv) Ry < ———;
1
(V) |Rn+l‘ >

2g(n+1)+1,
2. The following statements are equivalent:

(1) Vst > Yns
(i) yu < Aus
(i) yur1 < Aus

1

i R < —————;

O P P Y
1

V) |[Rpy1] > e t2)—
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REMARK 2. Similar arguments may be used to show the equivalence between the
reversed inequalities in the previous proposition.

) oo (_l)nfl
For the series 2 —_—

= an+p

, we have

b= /o2 + (a(n+ 1)+ B — on— B

and

an+2)+ /o2 + (an+1) + B)2.

Combining Lemma 1 and Proposition 4 yields the following result.

THEOREM 5. The following inequalities hold.

1 1
< |Rn| <

o2+ (on+ PP +a(n+1)+B Vo2 (@n 1)+ B+ ant B

foralln>?2
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