SHARP, DOUBLE INEQUALITIES BOUNDING THE FUNCTION $(1+x)^{1 / x}$ AND A REFINEMENT OF CARLEMAN'S INEQUALITY

Vito Lampret

(Communicated by S. Varošanec)
Abstract. In the expansion

$$
(1+x)^{1 / x}=e \cdot \sum_{j=0}^{\infty}(-1)^{j} B_{j} \cdot\left(\frac{x}{x+2}\right)^{j}, \quad \text { for }-1<x \neq 0
$$

the sequence B_{n} is monotonically decreasing, bounded as $\frac{7}{10}<\lim _{n \rightarrow \infty} B_{n}<B_{n}<\frac{8}{10}$, for $n \geqslant 4$, and is given recursively as

$$
B_{0}=1 \quad \text { and } \quad B_{2 m}=B_{2 m+1}=\frac{1}{m} \sum_{j=1}^{m} \frac{4 j+1}{4 j+2} B_{2 m-2 j}, \quad \text { for } \quad m \geqslant 1 .
$$

For any integers $m, n \geqslant 1$, the double inequality

$$
e \cdot \sum_{j=0}^{2 m-1}(-1)^{j} \frac{B_{j}}{(2 n+1)^{j}}<\left(1+\frac{1}{n}\right)^{n}<e \cdot \sum_{j=0}^{2 m}(-1)^{j} \frac{B_{j}}{(2 n+1)^{j}}
$$

holds, together with improved Carleman's inequality

$$
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}<e \cdot \sum_{n=1}^{\infty}\left(1-\sum_{j=1}^{2 m}(-1)^{j+1} \frac{B_{j}}{(2 n+1)^{j}}\right) x_{n}
$$

true for every sequence $x_{n} \geqslant 0$ such that $0<\sum_{n=1}^{\infty} x_{n}<\infty$.

1. Introduction

In 1922 the Swedish mathematician Carleman [1] presented the inequality

$$
\begin{equation*}
x_{1}+\left(x_{1} x_{2}\right)^{1 / 2}+\left(x_{1} x_{2} x_{3}\right)^{1 / 3}+\cdots+\left(x_{1} x_{2} x_{3} \cdots x_{n}\right)^{1 / n}+\cdots<e\left(x_{1}+x_{2}+x_{3}+\cdots\right), \tag{1}
\end{equation*}
$$

valid for $x_{n} \geqslant 0$ with $0<x_{1}+x_{2}+x_{3}+\ldots<\infty$. It is now called Carleman's inequality.
First important generalization of (1) was done in 1925 by the English mathematician Hardy [8]. Later, in 1926 the Hungarian mathematician Pólya [12], in his proof of (1), derived the crucial improvement

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} \leqslant \sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n} x_{n} \tag{2}
\end{equation*}
$$

Mathematics subject classification (2020): 26D20, 41A17 (41A30).
Keywords and phrases: Approximation, double inequality, estimate, expansion, exponential function, monotonicity, number e, sequence.
true for $x_{n} \geqslant 0$ such that $0<\sum_{n=1}^{\infty} x_{n}<\infty$. Until recently, many authors provided various generalizations/improvements of (1), see e.g. [7].

Over the last twenty years, many articles have addressed strengthening (1) by using (2). This was done mostly on the basis of several estimates of the sequence $(1+1 / n)^{n}$, which continued with the search for an accurate estimate of $(1+x)^{1 / x}$, for $0<x \leqslant 1$, or equivalently, an estimate of $\left(1+\frac{1}{x}\right)^{x}$, for $x \geqslant 1$. For example, in 1999, Yang [16], using the left estimate of his inequality $e /(2 x+2)<e-(1+1 / x)^{x}<e /(2 x+1)$, valid for $x>0$, improved (1) by the estimate $\sum_{n=1}^{\infty}\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}<e \cdot \sum_{n=1}^{\infty}(1-1 /(2 n)) x_{n}$, true for $x_{n} \geqslant 0$ such that $0<\sum_{n=1}^{\infty} x_{n}<\infty$. In fact, most authors sought as accurate estimates of the function $(1+x)^{1 / x}$ as possible, see e.g. [2, 3, 4, 5, 9, 10, 11, 13, 14, 16, 17].

In 2002 H.-W. Chen [2, Theorem 1] provided the expansion

$$
\begin{equation*}
\left(1+\frac{1}{x}\right)^{x}=e \cdot\left(1-\sum_{j=1}^{\infty} \frac{b_{j}^{* *}}{(1+x)^{j}}\right) \quad(x>0) \tag{3}
\end{equation*}
$$

where $b_{n}^{* *}>0$, for $n \in \mathbb{N}, b_{1}^{* *}=1 / 2$, and $b_{n}^{* *}=\frac{1}{n}\left(\frac{1}{n+1}-\sum_{j=1}^{n-1} \frac{b_{j}^{* *}}{n+1-j}\right)$, for $n \geqslant 2$.
Just recently [6], the authors presented their study of the function $x \mapsto(1+x)^{1 / x}$, for $x>0$. They found the expansion

$$
\begin{equation*}
(1+x)^{1 / x}=e \sum_{j=0}^{\infty}(-1)^{j} b_{j} x^{j} \quad(-1<x \leqslant 1) \tag{4}
\end{equation*}
$$

where the sequence b_{n} is monotonically decreasing, converging to 0 , and is defined recursively as

$$
\begin{equation*}
b_{0}=1 \quad \text { and } \quad b_{n}=\frac{1}{n} \sum_{j=1}^{n} \frac{j}{j+1} b_{n-j}, \text { for } n \geqslant 1 \tag{5}
\end{equation*}
$$

Unfortunately, the convergence in (4) is extremely poor in the left immediate neighborhood of the point $x=1$ as it is seen in Figure 1, where the graph of the function $x \mapsto$ $(1+x)^{1 / x}$, together with the graphs of its approximations $\sigma_{n}(x):=e \sum_{j=0}^{n}(-1)^{j} b_{j} x^{j}$ and $\sigma_{n+1}(x)$, for $n \in\{2,10\}$, are plotted. This deficiency motivates our contribution.

Figure 1: Illustration of the double inequality $\sigma_{n+1}(x)<(1+x)^{1 / x}<\sigma_{n}(x)$, for $\sigma_{n}(x):=$ $e \sum_{j=0}^{n}(-1)^{j} b_{j} x^{j}, x \in(0,1]$ and $n \in\{2,10\}$.

2. Discussion

We have

$$
(1+x)^{1 / x}=\exp \left(\frac{1}{x} \ln (1+x)\right), \quad \text { for } x>-1
$$

where, according to Maclaurin's expansion,

$$
\ln (1+t)=\sum_{j=0}^{\infty}(-1)^{j} \frac{t^{j}}{j+1}, \quad \text { for } t \in(-1,1] \backslash\{0\}
$$

we have the expansion

$$
\begin{equation*}
\ln \left(\frac{1+t}{1-t}\right)=\ln (1+t)-\ln (1-t)=2 \sum_{j=1}^{\infty} \frac{t^{2 j-1}}{2 j-1}, \quad \text { for }|t|<1 \tag{6}
\end{equation*}
$$

Using in (6) the substitution

$$
\begin{equation*}
\frac{1+t}{1-t}=1+x, \quad \text { i.e } \quad t=\frac{x}{2+x}, \quad \text { i.e } \quad x=\frac{2 t}{1-t}=: x(t) \tag{7}
\end{equation*}
$$

for $x \in(-1, \infty) \backslash\{0\}$, or equivalently, for $t \in(-1,1) \backslash\{0\}$, we obtain

$$
\begin{align*}
\frac{1}{x} \ln (1+x) & =\frac{1-t}{2 t} \ln \left(\frac{1+t}{1-t}\right)=\frac{1-t}{t} \sum_{j=1}^{\infty} \frac{t^{2 j-1}}{2 j-1} \\
& =(1-t) \sum_{i=0}^{\infty} \frac{t^{2 i}}{2 i+1} \tag{8}
\end{align*}
$$

Hence, for $x \in(-1, \infty) \backslash\{0\}$, i.e. for $|t|<1$,

$$
\begin{align*}
(1+x)^{1 / x}=\left(\frac{1+t}{1-t}\right)^{\frac{1-t}{2 t}} & =\exp \left(\sum_{i=0}^{\infty} \frac{t^{2 i}}{2 i+1}-\sum_{i=0}^{\infty} \frac{t^{2 i+1}}{2 i+1}\right) \\
& =\exp \left(\sum_{j=0}^{\infty} a_{j} t^{j}\right) \tag{9}
\end{align*}
$$

where, for $j \geqslant 0$,

$$
a_{j}=(-1)^{j} c_{j} \quad \text { and } \quad c_{j}=\left\{\begin{array}{cl}
\frac{1}{j+1}, & j \text { even } \tag{10}\\
\frac{1}{j}, & j \text { odd }
\end{array}\right.
$$

We shall use the following lemma, demonstrated quite elementarily.

LEMMA 1. If an analytic function $s(t)$ has the expansion $s(t)=\sum_{j=0}^{\infty} a_{j} t^{j}$, for $|t|<r$ with some $r \in \mathbb{R}^{+}$, then the function $f(t):=\exp (s(t))$ has the expansion ${ }^{1}$

$$
\begin{equation*}
f(t)=\sum_{j=0}^{\infty} a_{j}^{*} t^{j}=e^{a_{0}} \sum_{j=0}^{\infty} b_{j}^{*} t^{j} \quad(|t|<r) \tag{11}
\end{equation*}
$$

where $a_{j}^{*}=e^{a_{0}} b_{j}^{*}$, for $j \geqslant 0$, with

$$
\begin{align*}
& a_{0}^{*}=e^{a_{0}} \quad \text { and } \quad a_{n}^{*}=\frac{1}{n} \sum_{k=0}^{n-1}(n-k) a_{n-k} a_{k}^{*} \quad(n \geqslant 1), \tag{12}\\
& b_{0}^{*}=1 \quad \text { and } \quad b_{n}^{*}=\frac{1}{n} \sum_{k=0}^{n-1}(n-k) a_{n-k} b_{k}^{*}=\frac{1}{n} \sum_{j=1}^{n} j \cdot a_{j} b_{n-j}^{*} \quad(n \geqslant 1) . \tag{13}
\end{align*}
$$

Proof. Let all the suppositions of Lemma 1 be satisfied. Then, due to the analyticity, the function $f(t)=\exp (s(t))$ has the Taylor series expansion, consequently the nth coefficient a_{n}^{*} is given as

$$
\begin{equation*}
a_{n}^{*}=\frac{f^{(n)}(0)}{n!}, \quad \text { for } \quad n \geqslant 0 \tag{14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
a_{0}^{*}=f(0)=e^{s(0)}=e^{a_{0}} \tag{15}
\end{equation*}
$$

Since $f^{\prime}(t)=e^{s(t)} s^{\prime}(t)=f(t) s^{\prime}(t)$, we have, using (14) and the Leibniz theorem on the nth derivative of a product,

$$
\begin{aligned}
(f(t))^{(n+1)} & =\left(f^{\prime}(t)\right)^{(n)} \\
& =\left(f(t) s^{\prime}(t)\right)^{(n)} \\
& =\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(t) s^{(1+n-k)}(t) \quad(n \geqslant 0)
\end{aligned}
$$

Consequently, considering (14), we obtain, for $n \geqslant 0$,

$$
\begin{aligned}
a_{n+1}^{*} & =\frac{1}{(n+1)!} \sum_{k=0}^{n} \frac{n!}{k!\cdot(n-k)!} \cdot(k!) a_{k}^{*} \cdot(1+n-k)!a_{1+n-k} \\
& =\frac{1}{n+1} \sum_{k=0}^{n}(n+1-k) a_{k}^{*} a_{n+1-k}
\end{aligned}
$$

that is, for $n \geqslant 1$,

$$
a_{n}^{*}=\frac{1}{n} \sum_{k=0}^{n-1}(n-k) a_{n-k} a_{k}^{*}
$$

[^0]This way we approved (12) and consequently also (13), due to the obvious identity $a_{j}^{*}=e^{a_{0}} b_{j}^{*} \quad(j \geqslant 0)$.

Thanks to (9)-(10) and Lemma 1 we have the expansion

$$
\begin{equation*}
\left(\frac{1+t}{1-t}\right)^{\frac{1-t}{2 t}}=e \cdot \sum_{j=0}^{\infty} b_{j}^{*} t^{j} \quad(t \in(-1,1) \backslash\{0\}), \tag{16}
\end{equation*}
$$

where, according to (9), (10) and (13), the coefficients b_{j}^{*} are given as

$$
\begin{equation*}
b_{0}^{*}=1 \quad \text { and } \quad b_{n}^{*}=\frac{1}{n} \sum_{j=1}^{n} j \cdot(-1)^{j} c_{j} b_{n-j}^{*} . \quad(n \geqslant 1) \tag{17}
\end{equation*}
$$

Consequently, for the sequence

$$
\begin{equation*}
B_{n}:=(-1)^{n} b_{n}^{*} \quad(n \geqslant 0) \tag{18}
\end{equation*}
$$

we have (see (10)),

$$
\begin{equation*}
B_{0}=1, \quad 0<B_{n}=\frac{1}{n} \sum_{j=1}^{n} j c_{j} B_{n-j} \leqslant 1, \quad \text { and } \quad b_{n}^{*}=(-1)^{n} B_{n}, \quad \text { for } n \geqslant 1 \tag{19}
\end{equation*}
$$

Indeed, referring to (17) and (18), we obtain

$$
(-1)^{n} B_{n}=b_{n}^{*}=\frac{1}{n} \sum_{j=1}^{n} j(-1)^{j} c_{j}(-1)^{k-\jmath^{k}} B_{n-j}, \quad \text { for } n \geqslant 1 .
$$

In addition, considering (10), i.e. the obvious inequalities $0<j c_{j} \leqslant 1$, and using the induction, we approve the estimate $0<B_{n} \leqslant 1$.

Due to (19) we have

$$
\begin{align*}
& B_{0}=B_{1}=1 \\
& B_{2}=B_{3}=\frac{5}{6} \approx 0.83 \\
& B_{4}=B_{5}=\frac{287}{360} \approx 0.80 \tag{20}\\
& B_{6}=B_{7}=\frac{7085}{9072} \approx 0.78
\end{align*}
$$

3. Monotonicity of the sequence $n \mapsto B_{n}$

3.1. Direct discrete approach

We would like to confirm the detected monotonicity of the sequence $n \mapsto B_{n}$ perceived in (20). Thanks to (10) and (19), we obtain, for $n \geqslant 1$,

$$
\begin{align*}
B_{n+1}-B_{n} & =\frac{1}{n+1}\left(1 \cdot 1 \cdot B_{n}+\sum_{j=2}^{n+1} j c_{j} B_{n+1-j}\right)-B_{n} \\
& =\frac{1}{n+1}\left(-n B_{n}+\sum_{j=2}^{n+1} j c_{j} B_{n+1-j}\right) \\
& =\frac{1}{n+1}\left(-\sum_{j=1}^{n} j c_{j} B_{n-j}+\sum_{j=2}^{n+1} j c_{j} B_{n-(j-1)}\right) \\
& =-\frac{1}{n+1} \sum_{i=1}^{n} \underbrace{\left(i c_{i}-(i+1) c_{i+1}\right)}_{=:(-1)^{i+1} \beta_{i}} B_{n-i} \tag{21}
\end{align*}
$$

According to (10), we have, for $i \geqslant 0$,

$$
\beta_{i}:=(-1)^{i+1}\left(i c_{i}-(i+1) c_{i+1}\right)= \begin{cases}\frac{1}{i+1}, & i \text { even } \tag{22}\\ \frac{1}{i+2}, & i \text { odd }\end{cases}
$$

The sequence β_{i} is decreasing, satisfying the following relations

$$
\begin{equation*}
1=\beta_{0}>\beta_{2 j-1}=\beta_{2 j}>\beta_{2 j+1}=\beta_{2 j+2}>0 \quad(j \geqslant 1) \tag{23}
\end{equation*}
$$

Now, using (21) and (23), we obtain, for any integer $m \geqslant 1$,

$$
\begin{align*}
B_{2 m+1}-B_{2 m} & =-\frac{1}{2 m+1} \sum_{i=1}^{2 m}(-1)^{i+1} \beta_{i} B_{2 m-i} \\
& =-\frac{1}{2 m+1} \sum_{j=1}^{m} \beta_{2 j-1}\left(\underline{B_{2(m-j)+1}-B_{2(m-j)}}\right) \tag{24}
\end{align*}
$$

Thus, if for some integer $m \geqslant 1$ we have $B_{2 k+1}=B_{2 k}$ for $k \in\{0,1, \ldots, m-1\}$, then also $B_{2 m+1}=B_{2 m}$. Hence, since $B_{0}=1=B_{1}$, we conclude

$$
\begin{equation*}
B_{2 k+1}=B_{2 k} \quad(k \geqslant 0) \tag{25}
\end{equation*}
$$

Consequently, using (25) and (21)-(23), we find, for $m \geqslant 1$,

$$
\begin{align*}
B_{2 m+2}-B_{2 m} & =B_{2 m+2}-B_{2 m+1} \\
& =-\frac{1}{2 m+2}\left(\beta_{1} B_{2 m}+\sum_{i=2}^{2 m+1}(-1)^{i+1} \beta_{i} B_{2 m+1-i}\right) \\
& =-\frac{1}{2 m+2}\left(\frac{B_{2 m}}{3}+\sum_{j=1}^{m}\left(\beta_{2 j+1}-\beta_{2 j}\right) B_{2 m-2 j}\right) \\
& =-\frac{1}{6(m+1)}\left(B_{2 m}-6 \sum_{j=1}^{m} \frac{B_{2 m-2 j}}{(2 j+1)(2 j+3)}\right) . \tag{26}
\end{align*}
$$

We can not demonstrate that the expression between the last round parenthesis in (26) is positive, for all positive integers m, although Mathematica [15] find $B_{2 m+2}-B_{2 m}>0$, for $m \leqslant 500$. Therefore, we try differently. Thanks to (19), (25) and (10), we have

$$
\begin{align*}
B_{2 m} & =\frac{1}{2 m} \sum_{i=1}^{2 m} i \alpha_{i} B_{2 m-i} \\
& =\frac{1}{2 m}(\sum_{j=1}^{m}(2 j-1) \alpha_{2 j-1} \underbrace{B_{2 m-2 j+1}}_{=B_{2 m-2 j}}+\sum_{j=1}^{m}(2 j) \alpha_{2 j} B_{2 m-2 j}) \\
& =\frac{1}{2 m} \sum_{j=1}^{m}\left((2 j-1) \alpha_{2 j-1}+(2 j) \alpha_{2 j}\right) B_{2 m-2 j} \\
& =\frac{1}{m} \sum_{j=1}^{m}\left(1-\frac{1}{4 j+2}\right) B_{2 m-2 j}, \quad \text { for } m \geqslant 1 . \tag{27}
\end{align*}
$$

Consequently, using (26), we obtain

$$
\begin{equation*}
B_{2 m+2}-B_{2 m}=-\frac{1}{6(m+1)} \sum_{j=1}^{m} \frac{1}{2 j+1}\left(\frac{4 j+1}{2 m}-\frac{6}{2 j+3}\right) B_{2 m-2 j} \tag{28}
\end{equation*}
$$

Unfortunately, we fail to prove that the sum in (28) is positive, for all integers $m \geqslant 1$. So, we shall use a complex analysis approach, used in [6].

OPEN PROBLEM 1. Demonstrate directly/elementarily the monotonicity of the sequence $m \mapsto B_{2 m}$.

3.2. Complex analysis approach to the monotonicity of $B_{2 m}$

The logarithmic function ${ }^{2} L(z):=\int_{C: 1}^{z} \frac{\mathrm{~d} \zeta}{\zeta}(C$ is any piecewise smooth curve connecting 1 and z) is analytic on the simply connected domain $\mathbb{C}^{-}:=\mathbb{C} \backslash(-\infty, 0]$ and satisfies the equalities $L(z)=\ln (z)$, for $z \in \mathbb{R}^{+}$and $z=\exp (L(z))$, for $z \in \mathbb{C}^{-}$. For $z \in \mathbb{C}^{-}$, we have

$$
\begin{equation*}
L(z)=\ln (|z|)+\mathrm{i} \operatorname{Arg}(z) \tag{29}
\end{equation*}
$$

where $\operatorname{Arg}(z) \in(-\pi, \pi]$ is the principal value of the argument of z.
For $\alpha \in \mathbb{C}$ and $z \in \mathbb{C}^{-}$, the α-power of z we define as $z^{\alpha}:=\exp (\alpha L(z))$. For $z \in \mathbb{R}^{+}$and $\alpha \in \mathbb{R}$, this definition of a power coincides with the standard one. Consequently, considering the expansion ${ }^{3}$ (16) and the identity $\frac{1+z}{1-z}=\frac{1-|z|^{2}+2 i \mathfrak{I}(z)}{|1-z|^{2}}$, the composite function

$$
\begin{equation*}
f(z):=\left(\frac{1+z}{1-z}\right)^{\frac{1-z}{2 z}}=\exp \left(\frac{1-z}{2 z} L\left(\frac{1+z}{1-z}\right)\right) \tag{30}
\end{equation*}
$$

is analytic on the domain $\mathbb{C} \backslash(-\infty,-1] \backslash\{1\}$.
We will show that the singularity of $f(z)$ at $z=1$ is removable. Indeed, according to (29)-(30), for $r \in(0,1 / e)$ and $t \in(-\pi, \pi]$, we estimate

$$
\begin{aligned}
\left|f\left(1+r e^{\mathrm{i} t}\right)\right| & \leqslant \exp \left(\frac{r}{2(1-r)}\left(\ln \frac{2+r}{r}+\pi\right)\right) \\
& <\exp \left(3 \cdot \frac{r}{3}\left(\ln \frac{3}{r}+\pi\right)\right)<\exp \left(3\left(\frac{1}{e}+\pi\right)\right)<4 \pi
\end{aligned}
$$

Since $f(z)$ is bounded on the open punctured disk $D^{\prime}\left(1, \frac{1}{e}\right):=\left\{z \in \mathbb{C}: 0<|z-1|<\frac{1}{e}\right\}$, the Laurent expansion of $f(z)$ on $D^{\prime}(1,1 / e)$ reduces to the Taylor expansion guaranteing the existence of the finite $\lambda:=\lim _{z \rightarrow 1} f(z)$. Therefore, using the additional definition $f(1):=\lambda$, the extension $f(z)$ becomes analytic also on the disk $|z-1|<1 / e$.

For the function $f(z)$, being analytic on the simply-connected domain $\mathscr{D}:=\mathbb{C} \backslash$ $(-\infty,-1]$, we use the Cauchy's integral formula for derivatives,

$$
\begin{equation*}
f^{(n)}(0)=\frac{n!}{2 \pi \mathrm{i}} \oint_{C} \frac{f(z)}{z^{n+1}} \mathrm{~d} z \quad(n \in \mathbb{N}) \tag{31}
\end{equation*}
$$

where $C \subset \mathscr{D}$ is any piecewise smooth, simple closed curve enclosing the point $z=0$. In addition, referring to (18), (16) and (30), we have also

$$
\begin{equation*}
e(-1)^{n} B_{n}=e b_{n}=\frac{f^{(n)}(0)}{n!} \tag{32}
\end{equation*}
$$

Hence, we obtain

$$
B_{n}=\frac{(-1)^{n}}{2 \pi \mathrm{i} e} \oint_{C} \frac{f(z)}{z^{n+1}} \mathrm{~d} z \quad(n \in \mathbb{N})
$$

[^1]consequently
\[

$$
\begin{equation*}
B_{2 m}-B_{2 m+2}=\frac{1}{2 \pi \mathrm{i} e} \oint_{C} \frac{\left(z^{2}-1\right) f(z)}{z^{2 m+3}} \mathrm{~d} z \quad(m \in \mathbb{N}) \tag{33}
\end{equation*}
$$

\]

Here, in contrast to the function $f(z)$, the function $g(z):=\left(z^{2}-1\right) f(z)=(z-1)(1+$ z) $f(z)$ is bounded on the notched disk $D:=\left\{-1+r e^{i t}: 0<r \leqslant \frac{1}{2},-\pi<t<\pi\right\}$. Indeed, using (30), for $\left(-1+r e^{\mathrm{it} t}\right) \in D$, we have

$$
\begin{align*}
\left|g\left(-1+r e^{\mathrm{i} t}\right)\right| & \leqslant(2+r) r \cdot \exp \left(\frac{r}{2(1-r)}\left(\left|\ln \frac{r}{2-r}\right|+\pi\right)\right) \\
& <3 r \cdot \exp \left(r\left(\ln \frac{2}{r}+\pi\right)=3\left(2 e^{\pi}\right)^{r} \cdot r^{1-r}<6 e^{\pi}\right. \tag{34}
\end{align*}
$$

Now let, for (small) $\varepsilon \in\left(0, \frac{1}{4}\right]$ and (large) $R>2$, the curve $C=C(\varepsilon, R)$ be the oriented sum of consistently oriented curves, $C(\varepsilon, R)=C_{1}(\varepsilon, R)+C_{2}(\varepsilon, R)+C_{3}(\varepsilon)+$ $C_{2}^{*}(\varepsilon, R)$, where, as is indicated in Figure $2, C_{1}(\varepsilon, R)$ is the circular arc with center at $z=0$ and radius $R, C_{2}(\varepsilon, R)$ and $C_{2}^{*}(\varepsilon, R)$ are horizontal segments, and $C_{3}(\varepsilon)=\{z \in$ $\mathbb{C}:|z+1|=\varepsilon, \mathfrak{R}(z) \geqslant 1\}$, the semicircle.

Figure 2: The piecewise smooth, simple closed curve $C(\varepsilon, R)=C_{1}(\varepsilon, R)+C_{2}(\varepsilon, R)+C_{3}(\varepsilon)+$ $C_{2}^{*}(\varepsilon, R)$ in a simply connected domain $\mathscr{D}:=\mathbb{C} \backslash(-\infty,-1]$, enclosing the point $z=0$.

We have

$$
\begin{equation*}
\oint_{C(\varepsilon, R)} \frac{\left(z^{2}-1\right) f(z)}{z^{2 m+3}} \mathrm{~d} z=\chi_{C_{1}(\varepsilon, R)}+\int_{C_{2}(\varepsilon, R)}+X_{C_{3}(\varepsilon)}+\int_{C_{2}^{*}(\varepsilon, R)} \frac{\left(z^{2}-1\right) f(z)}{z^{2 m+3}} \mathrm{~d} z \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1+z}{1-z}=\frac{1-|z|^{2}+2 \mathrm{i} \cdot \mathfrak{I}(z)}{|1-z|^{2}}, \quad \lim _{\substack{\mathfrak{R}(z)<0 \\ \mathfrak{I}(z) \backslash 0}} \operatorname{Arg}\left(\frac{1+z}{1-z}\right)=\pi, \quad \lim _{\substack{\mathfrak{N}(z)<0 \\ \mathfrak{S}(z) \uparrow 0}} \operatorname{Arg}\left(\frac{1+z}{1-z}\right)=-\pi \tag{36}
\end{equation*}
$$

where, using (30) and (36), we obtain

$$
\begin{align*}
& \lim _{\varepsilon \downarrow 0}\left(\int_{C_{2}(\varepsilon, R)} \frac{\left(z^{2}-1\right) f(z)}{z^{2 m+3}} \mathrm{~d} z+\int_{C_{2}^{*}(\varepsilon, R)} \frac{\left(z^{2}-1\right) f(z)}{z^{2 m+3}} \mathrm{~d} z\right) \\
= & \int_{-R}^{-1} \frac{\left(x^{2}-1\right) \exp \left(\frac{1-x}{2 x}\left(\ln \left|\frac{1+x}{1-x}\right|+\mathrm{i} \pi\right)\right) \mathrm{d} x}{x^{2 m+3}} \\
& +\int_{-1}^{-R} \frac{\exp \left(\left(x^{2}-1\right) \frac{1-x}{2 x}\left(\ln \left|\frac{1+x}{1-x}\right|-\mathrm{i} \pi\right)\right) \mathrm{d} x}{x^{2 m+3}} \\
= & 2 \mathrm{i} \int_{-R}^{-1}\left(x^{2}-1\right)\left|\frac{1+x}{1-x}\right|^{\frac{1-x}{2 x}} \frac{\sin \left(\frac{1-x}{2 x} \pi\right)}{x^{2 m+3}} \mathrm{~d} x \\
= & 2 \mathrm{i} \int_{1}^{R}\left(t^{2}-1\right)\left|\frac{1+t}{1-t}\right|^{\frac{1+t}{2 t}} \frac{\cos \left(\frac{\pi}{2 t}\right)}{t^{2 m+3}} \mathrm{~d} t . \tag{37}
\end{align*}
$$

Thanks to (29)-(30), for $R \geqslant 3$ and $t \in[-\pi, \pi]$, we estimate

$$
\left|f\left(R e^{\mathrm{i} t}\right)\right| \leqslant \exp \left(\frac{1+R}{2 R} \ln \left(\frac{1+R}{R-1}\right)+\pi\right)<\exp (1 \cdot \ln (2)+\pi)=2 e^{\pi}
$$

Therefore, for integer $m \geqslant 1, \varepsilon \in(0,1 / 4)$ and $R>3$, we have

$$
\left|\int_{C_{1}(\varepsilon, R)} \frac{\left(z^{2}-1\right) f(z) \mathrm{d} z}{z^{2 m+3}}\right|<\int_{C_{1}(\varepsilon, R)} \frac{2 R^{2} \cdot 2 e^{\pi}|\mathrm{d} z|}{R^{2 m+3}}<\frac{4 e^{\pi}}{R^{2 m+1}} \cdot 2 \pi R=\frac{8 \pi e^{\pi}}{R^{2 m}}
$$

Thus,

$$
\begin{equation*}
\lim _{R \nmid \infty, \varepsilon \downarrow 0} \int_{C_{1}(\varepsilon, R)} \frac{\left(z^{2}-1\right) f(z) \mathrm{d} z}{z^{2 m+3}}=0 . \tag{38}
\end{equation*}
$$

Similarly, according to (34), we have

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \int_{C_{3}(\varepsilon)} \frac{\left(z^{2}-1\right) f(z) \mathrm{d} z}{z^{2 m+3}}=0 . \tag{39}
\end{equation*}
$$

Now, considering (35), (37), (38) and (39), we get the equality

$$
\lim _{R \uparrow \infty, \varepsilon \downarrow 0} \oint_{C(\varepsilon, R)} \frac{\left(z^{2}-1\right) f(z)}{z^{2 m+3}} \mathrm{~d} z=2 \mathrm{i} \int_{1}^{\infty}\left(t^{2}-1\right)\left|\frac{1+t}{1-t}\right|^{\frac{1+t}{2 t}} \frac{\cos \left(\frac{\pi}{2 t}\right)}{t^{2 m+3}} \mathrm{~d} t
$$

Hence, using (33) we find, for integer $m \geqslant 1$,

$$
\begin{align*}
B_{2 m}-B_{2 m+2} & =\frac{1}{e \pi} \int_{1}^{\infty}\left(t^{2}-1\right)\left(\frac{t+1}{t-1}\right)^{\frac{t+1}{2 t}} \frac{\cos \left(\frac{\pi}{2 t}\right)}{t^{2 m+3}} \mathrm{~d} t \\
& =\frac{1}{e \pi} \int_{0}^{1} \underbrace{\left(1-\tau^{2}\right)\left(\frac{1+\tau}{1-\tau}\right)^{\frac{1+\tau}{2}} \tau^{2 m-1} \cos \left(\frac{\pi}{2} \tau\right)}_{\geqslant 0} \mathrm{~d} \tau>0 \tag{40}
\end{align*}
$$

3.3. Rough bounding the sequence $n \mapsto B_{n}$

The integral $I(m)$ in (40),

$$
\begin{align*}
I(m) & :=\int_{0}^{1}\left(1-\tau^{2}\right)\left(\frac{1+\tau}{1-\tau}\right)^{\frac{1+\tau}{2}} \tau^{2 m-1} \cos \left(\frac{\pi}{2} \tau\right) \mathrm{d} \tau \\
& =\int_{0}^{1}(1-\tau)^{\frac{1-\tau}{2}}(1+\tau)^{\frac{3+\tau}{2}} \tau^{2 m-1} \cos \left(\frac{\pi}{2} \tau\right) \mathrm{d} \tau \tag{41}
\end{align*}
$$

we roughly estimate ${ }^{4}$ from below, using (41), as follows

$$
\begin{aligned}
I(m) & >\int_{0}^{1} e^{-1 /(2 e)}\left(1+\frac{3}{2} \tau\right) \cdot \tau^{2 m-1} \cdot\left(\frac{\pi}{2}-\frac{\pi}{2} \tau-\frac{1}{6}\left(\frac{\pi}{2}-\frac{\pi}{2} \tau\right)^{3}\right) \mathrm{d} \tau \\
& =\frac{\pi \exp (-1 /(2 e))}{192} \cdot \frac{240 m^{3}+936 m^{2}+3\left(352-5 \pi^{2}\right) m+12\left(24-\pi^{2}\right)}{m(m+1)(m+2)(2 m+1)(2 m+3)} \\
& >\frac{\pi \exp (-1 /(2 e))}{192} \cdot \frac{240 m^{3}+936 m^{2}+606 m+168}{m(m+1)(m+2)(2 m+1)(2 m+3)} \\
& >\frac{\pi \exp (-1 /(2 e))}{192} \cdot \frac{42 \cdot(m+2)(2 m+1)(2 m+3)}{m(m+1)(m+2)(2 m+1)(2 m+3)} \\
& =\frac{21 \pi \exp (-1 /(2 e))}{96 m(m+1)}>\frac{0.181 \pi}{m(m+1)} \quad(m \geqslant 1) .
\end{aligned}
$$

Thus, using (40), we obtain ${ }^{5}$

$$
\begin{align*}
B_{2 m+2 n} & <B_{2 m}-\frac{21 \exp (-1 /(2 e))}{96 e} \sum_{j=0}^{n-1} \frac{1}{(m+j)(m+j+1)} \\
& =B_{2 m}-\frac{21 \exp (-1 /(2 e))}{96 e}\left(\frac{1}{m}-\frac{1}{m+n}\right) \\
& <B_{2 m}-0.066\left(\frac{1}{m}-\frac{1}{m+n}\right) \quad(m, n \geqslant 1) \tag{42}
\end{align*}
$$

Similarly, using (41), we estimate from above

$$
\begin{aligned}
& I(m)<\int_{0}^{1} 1 \cdot(1+\tau)^{2} \cdot \tau^{2 m-1}\left(\frac{\pi}{2}-\frac{\pi}{2} \tau-\frac{1}{6}\left(\frac{\pi}{2}-\frac{\pi}{2} \tau\right)^{3}\right. \\
&\left.=\frac{\pi}{120}\left(\frac{\pi}{2}-\frac{\pi}{2} \tau\right)^{5}\right) \mathrm{d} \tau \\
&<\frac{\pi}{3840} \cdot \frac{A(m)+B(m)+C(m)}{m(m+1)(m+2)(m+3)(2 m+1)(2 m+3)(2 m+5)(2 m+7)} \\
&=\frac{\pi}{2 m(m+1)(m+2)(m+3)(2 m+1)(2 m+3)(2 m+5)(2 m+7)} \\
& \widehat{0.500 \pi} \\
& m(m+1)
\end{aligned}
$$

[^2]where
\[

$$
\begin{aligned}
& A(m):=30720 m^{6}+384000 m^{5}+1920\left(986-\pi^{2}\right) m^{4}+1920\left(2416-9 \pi^{2}\right) m^{3} \\
& B(m):=120\left(48360-448 \pi^{2}+\pi^{4}\right) m^{2}+60\left(55632-1100 \pi^{2}+7 \pi^{4}\right) m \\
& C(m):=315\left(1920-80 \pi^{2}+\pi^{4}\right)
\end{aligned}
$$
\]

Consequently, considering (40), we get ${ }^{6}$

$$
\begin{align*}
B_{2 m+2 n} & >B_{2 m}-\frac{1}{2 e} \sum_{j=0}^{n-1} \frac{1}{(m+j)(m+j+1)} \\
& =B_{2 m}-\frac{1}{2 e}\left(\frac{1}{m}-\frac{1}{m+n}\right) \\
& >B_{2 m}-0.184\left(\frac{1}{m}-\frac{1}{m+n}\right) \quad(m, n \geqslant 1) \tag{43}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (42)-(43), we obtain, for any integer $m \geqslant 1$, the double inequality

$$
\begin{equation*}
B_{2 m}-\frac{23}{125 m}<\lim _{n \rightarrow \infty} B_{n}<B_{2 m}-\frac{8}{125 m} \tag{44}
\end{equation*}
$$

For example, using $m=2$, we estimate

$$
\frac{7}{10}<\lim _{n \rightarrow \infty} B_{n}<\frac{8}{10}
$$

Figure 3 shows, for $m \in\{10,30\}$ the graphs of the functions $n \mapsto B_{2 m+2 n}$ together with the graphs of the lower and upper bounds, $n \mapsto B_{2 m}-\frac{23}{125}\left(\frac{1}{m}-\frac{1}{m+n}\right)$ and $n \mapsto$ $B_{2 m}-\frac{8}{125}\left(\frac{1}{m}-\frac{1}{m+n}\right)$, respectively.

Figure 3: The graphs of the functions $n \mapsto B_{2 m+2 n}$ and the graphs of the lower and upper bounds, $n \mapsto B_{2 m}-\frac{23}{125}\left(\frac{1}{m}-\frac{1}{m+n}\right)$ and $n \mapsto B_{2 m}-\frac{8}{125}\left(\frac{1}{m}-\frac{1}{m+n}\right)$.

[^3]
4. Series expansion of $(1+x)^{1 / x}$

We summarize the results of our previous discussions, the items (7), (9), (16), (18), (25), (27), (40), (42) and (43), as the following theorem.

ThEOREM. For $-1<x \neq 0$, the expansion

$$
\begin{equation*}
(1+x)^{1 / x}=e \cdot \sum_{j=0}^{\infty}(-1)^{j} B_{j} \cdot\left(\frac{x}{x+2}\right)^{j} \tag{45}
\end{equation*}
$$

holds, having the series absolutely convergent, where the sequence B_{n} is monotonically decreasing ($B_{2 m}$ strictly monotonically decreasing) and given recursively as

$$
\begin{equation*}
B_{0}=1 \quad \text { and } \quad B_{2 m}=B_{2 m+1}=\frac{1}{m} \sum_{j=1}^{m} \frac{4 j+1}{4 j+2} B_{2 m-2 j}=\frac{1}{m} \sum_{i=0}^{m-1} \frac{4(m-i)+1}{4(m-i)+2} B_{2 i} \tag{46}
\end{equation*}
$$

for $m \geqslant 1$.
The sequence $n \mapsto B_{2 m+2 n}$ satisfies, for all $m, n \geqslant 1$, the double inequality

$$
\begin{equation*}
B_{2 m}-\frac{23}{125}\left(\frac{1}{m}-\frac{1}{m+n}\right)<B_{2 m+2 n}<B_{2 m}-\frac{8}{125}\left(\frac{1}{m}-\frac{1}{m+n}\right) \tag{47}
\end{equation*}
$$

resulting from the identity

$$
\begin{equation*}
B_{2 m}-B_{2 m+2}=\frac{1}{e \pi} \int_{0}^{1}\left(1-\tau^{2}\right)\left(\frac{1+\tau}{1-\tau}\right)^{\frac{1+\tau}{2}} \tau^{2 m-1} \cos \left(\frac{\pi}{2} \tau\right) \mathrm{d} \tau \quad(m \geqslant 1) \tag{48}
\end{equation*}
$$

Corollary 1. We have $\frac{7}{10}<\lim _{n \rightarrow \infty} B_{n}<B_{n}<\frac{8}{10}$, for $n \geqslant 4$.
COROLLARY 2. For any integer $m \geqslant 1$ and every real $x>0$ we have the following relations

$$
\begin{align*}
& (1+x)^{1 / x}=\frac{2 e}{x+2} \sum_{i=0}^{\infty} B_{2 i} \cdot\left(\frac{x}{x+2}\right)^{2 i} \tag{49}\\
& S_{2 m-1}(x)<(1+x)^{1 / x}<S_{2 m}(x) \tag{50}
\end{align*}
$$

where

$$
S_{n}(x):=e \cdot \sum_{j=0}^{n}(-1)^{j} B_{j} \cdot\left(\frac{x}{x+2}\right)^{j}, \quad \text { for } n \geqslant 1
$$

Figure 4 shows the graph of the function $x \mapsto(1+x)^{1 / x}$, together with the graphs of its approximations $S_{n}(x):=e \sum_{j=0}^{n}(-1)^{j} b_{j} x^{j}$ and $S_{n+1}(x)$, for $n \in\{2,4\}$.

Setting $x=\frac{1}{n}$ in (49), we obtain the next corollary.

Figure 4: Illustration of the double inequality (49), for $m \in\{1,3\}$.

Corollary 3. For any integers $m, n \geqslant 1$ there holds the following double inequality

$$
\begin{align*}
e \cdot \sum_{j=0}^{2 m-1}(-1)^{j} \frac{B_{j}}{(2 n+1)^{j}} & <\left(1+\frac{1}{n}\right)^{n} \\
& <e \cdot \sum_{j=0}^{2 m}(-1)^{j} \frac{B_{j}}{(2 n+1)^{j}} \tag{51}
\end{align*}
$$

Considering Pólya's improvement (2), we get from (51) the following corollary.

COROLLARY 4. (Carleman's inequality improvement) For any integer $m \geqslant 1$ and for every sequence $x_{n} \geqslant 0$ such that $0<\sum_{n=1}^{\infty} x_{n}<\infty$, we have the following improvement of Carleman's inequality

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n} & <e \cdot\left(1-\sum_{j=1}^{2 m}(-1)^{j+1} \frac{B_{j}}{(2 n+1)^{j}}\right) x_{n} \\
& =e \cdot \sum_{n=1}^{\infty}(1-\Delta(m, n)) x_{n} \tag{52}
\end{align*}
$$

where

$$
0<\Delta(m, n):=\sum_{i=1}^{m} \frac{1}{(2 n+1)^{2 i-1}}\left(B_{2 i-1}-\frac{B_{2 i}}{2 n+1}\right)<1 \quad(m, n \geqslant 1)
$$

Open problem 2. Demonstrate that the estimate (52) improves the inequality $[6,(3.4)]$, i.e. $\Delta(m, n)>\delta(m, n):=\sum_{j=1}^{2 m}(-1)^{j+1} \frac{b_{j}}{n^{j}}$, for $m, n \geqslant 1$.

REFERENCES

[1] T. CARLEmAN, Sur les fonctions quasi-analytiques, Comptes rendus du V^{e} Congres des Mathematiciens Scandinaves, Helsingfors (1922), 181-196.
[2] H.-W. Chen, On an infinite series for $(1+1 / x)^{x}$ and its application, Int. J. Math. Math. Sci. 29 (2002), 675-680.
[3] C.-P. Chen and J. Choi, Asymptotic formula for $(1+1 / x)^{x}$ based on the partition function, Amer. Math. Monthly 121 (2014), 338-343.
[4] C.-P. Chen and H. J. Zhang, Padé approximant related to inequalities involving the constant e and a generalized Carleman-type inequality, Journal of Inequalities and Applications, (2017) 2017: 205, doi:10.1186/s13660-017-1479-8.
[5] C.-P. ChEN AND R. B. PARIS, An inequality involving the constant e and a generalized Carlemantype inequality, J. Math. Anal. Appl. 466 (2018), 711-725.
[6] C.-P. ChEn And R. B. Paris, An inequality involving the constant e and a generalized Carlemantype inequality, Math. Inequal. Appl. 23 (2020), 1197-1203.
[7] A. ČIžmešiJa, J. Pečarić and L. E. Persson, On strengtened weighted Carleman's inequality, Bull. Austral. Math. Soc. 68 (2003), 481-490.
[8] G. H. Hardy, Notes on some points in the integral calculus, Messenger of Math. 54 (1925), 150-156.
[9] H.-P. LiU AND L. ZHU, New strengthened Carleman's inequality and Hardy's inequality, J. Inequal. and Appl. (2007), Art. ID 84104, 7 pp.
[10] C. Mortici and Y. Hu, On some convergences to the constant e and improvements of Carleman's inequality, Carpathian J. Math. 31 (2015), 249-254.
[11] C. Mortici and X.-J. Jang, Estimates of $(1+x)^{1 / x}$ involved in Carleman's inequality and Keller's limit, Filomat 29, (2015), 1535-1539.
[12] G. Pólya, Proof of an inequality, Proc. London Math. Soc. 24 (1926), 57.
[13] V. Ponomarenko, Asymptotic formula for $(1+1 / x)^{x}$, Revisited, Amer. Math. Monthly 122 (2015), p. 587.
[14] Z. Xie and Y. Zhong, A best approximation for constant e and an improvement to Hardy's inequality, J. Math. Anal. Appl. 252 (2000), 994-998.
[15] S. Wolfram, Mathematica, version 7.0, Wolfram Research, Inc., 1988-2009.
[16] B. Yang, On Hardy's inequality, J. Math. Anal. Appl. 234 (1999), 717-722.
[17] X. You, Di-R. Chen and H. Shi, Continued fraction inequalities related to $(1+1 / x)^{x}$, J. Math. Anal. Appl. 443 (2016) 1090-1094.
(Received May 30, 2022)

[^4]
[^0]: ${ }^{1}$ See the interesting discussions on an expansion of the function $(1+1 / x)^{x}$ given in [3] and [13], the latter as a revisit using the Faà di Bruno formula.

[^1]: ${ }^{2}$ called the principal branch of the logarithm
 ${ }^{3} z=0$ is a removable singular point of $f(z)$

[^2]: ${ }^{4}$ using the inequalities $e^{-1 /(2 e)} \leqslant x^{x / 2} \leqslant 1$ and $(1+x)^{3 / 2} \geqslant 1+\frac{3}{2} x$, both true for $0 \leqslant x \leqslant 1$, and $\frac{\pi}{2}-$

[^3]: ${ }^{6}$ by induction

[^4]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

