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(Communicated by S. Varošanec)

Abstract. In this paper, we give the method to calculate the generalized Gao’s constant under
the absolute normalized norms in R

2 . Using this method, we can compute the exact values of
the generalized Gao’s constant of some concrete Banach spaces easily, such as Banach lattice,
Lorentz sequence spaces etc.

1. Introduction

Let X be a real normed space with the unit ball BX and the unit sphere SX . Re-
cently, the geometric constants have received widespread attention, for the reason that
it not only essentially reflects the geometric properties of a space X , but also enables
us to study the space quantitatively. Among which, the Baronti constant A2(X) , the

Gao constant C
′
NJ(X) and the generalized von Neumann-Jordan constant C(p)

NJ (X) have
been treated by a lot of mathematicians (see [1–4, 7, 8, 19, 22]), they play an important
role in the geometric theory of Banach spaces, which were defined as follows:

A2(X) = sup

{‖x+ y‖+‖x− y‖
2

: x,y ∈ SX

}
.

C
′
NJ(X) = sup

{‖x+ y‖2 +‖x− y‖2

4
: x,y ∈ SX

}
.

C(p)
NJ (X) = sup

{‖x+ y‖p +‖x− y‖p

2p−1(‖x‖p +‖y‖p)
: ‖x‖+‖y‖ �= 0

}
.

They gave the specific descriptions of the geometric properties, such as uniformly non-
square, normal structure etc in the context of fixed point property (see [7, 11, 13, 23,
24]).
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Strongly motivated by the constant A2(X) , C
′
NJ(X) and C(p)

NJ (X) , Yang and Wang

introduced the generalized Gao’s constant C̃(p)
NJ (X) in [20] as follows:

C̃(p)
NJ (X) = sup

{‖x+ y‖p +‖x− y‖p

2p : x,y ∈ SX

}
(1 � p < +∞).

From the definition of the generalized Gao’s constant, it is obvious that C̃(1)
NJ (X) =

A2(X) and C̃(2)
NJ (X) = C

′
NJ(X) . Now, let us collect some properties of the constant

C̃(p)
NJ (X) in [20] as follows:

(i) Let X be a Banach space, then C̃(p)
NJ (X) � C(p)

NJ (X) � 22−p[1+(2
1
q (C̃(p)

NJ (X))
1
p −

1)q]p−1 .

(ii) The Banach space X is uniformly non-square if and only if C̃(p)
NJ (X) < 2 for some

1 � p < +∞ .

(iii) Let X = �p,+∞ with p � 2, then C̃(p)
NJ (X) � 3

2 − ( 2
1
p −1
2 )p .

It is readily seen that the constant C̃(p)
NJ (X) play a significant role in the geometry theory

of Banach space, such as the relation between the generalized Gao’s constant and some
well known constants via several inequalities, equivalent conditions of uniformly non-
square which are described by the generalized Gao’s constant, the estimations of the
constant on some specific space. Therefore, the calculation of the generalized Gao’s

constant C̃(p)
NJ (X) for some concrete spaces is very important in studying geometric

properties of the Banach space. However, some problems in the existing literature

need solving: for instance, how to compute the values of the constant C̃(p)
NJ (X) for the

absolute normalized norms of some concrete Banach spaces?
In this paper, we are interested in determining the values of the generalized Gao’s

constant C̃(p)
NJ (X) for the absolute normalized norms in R

2 . As an application, we get

the exact values of the generalized Gao’s constant C̃(p)
NJ (X) for some concrete Banach

spaces, such as �2
p space, Banach lattice space X p , Xp,q,λ space, Zλ ,p,q,s space, Lorentz

sequence spaces d(2)(ω ,q) etc.

2. Preliminaries

To obtain the main results, we firstly recall some definitions and notions.

DEFINITION 2.1. If a < b are real numbers, then any number m(a,b) is called a
mean of numbers a and b if it satisfies

a � m(a,b) � b.
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One of the most known means is the weighted mean of order s , which is defined as

m[s](a,b;ω ,1−ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(ωas +(1−ω)bs)
1
s , s �= 0,+∞,−∞,

aωb1−ω , s = 0,

max{a,b}, s = +∞,

min{a,b}, s = −∞,

where a,b are positive real numbers and ω ∈ (0,1) .

The norm on R
2 is called absolute, if for all (z,w) ∈ R

2 , such that

‖(z,w)‖ = ‖(|z|, |w|)‖.
A norm ‖ · ‖ is called normalized if

‖(1,0)‖ = ‖(0,1)‖ = 1.

Let Nα denote the family of all absolute normalized norms on R
2 , and Ψ denote the

family of all convex functions on [0,1] such that

ψ(0) = ψ(1) = 1 and max{1− t,t}� ψ(t) � 1.

PROPOSITION 2.2. ([5]) If ‖.‖ ∈ Nα , then ψ(t) = ‖(1− t,t)‖ ∈ Ψ . On the other
hand, if ψ(t) ∈ Ψ , then

‖(z,ω)‖ψ :=

⎧⎨
⎩ (|z|+ |ω |)ψ

(
|ω|

|z|+|ω|

)
, (z,ω) �= (0,0),

0, (z,ω) = (0,0),

is a norm ‖.‖ψ ∈ Nα .

The typical example is the �p norm as follows:

‖(x,y)‖p =

{
(|x|p + |y|p) 1

p , 1 � p < ∞,

max{|x|, |y|}, p = ∞.

The corresponding convex function ψp(t) is defined as

ψp(t) =

{
{(1− t)p + t p} 1

p , 1 � p < ∞,

max{1− t,t}, p = ∞.

It is well known that ‖.‖∞ � ‖.‖ψ � ‖.‖1 for any ‖.‖ψ ∈ Nα . Moreover, by taking
different convex function ψ(t) , Proposition 2.2 also enables us to obtain many non-
�p norms. In particular, X = R

2 with an absolute normalized norm ‖.‖X and with a
function ψX ∈ Ψ , X p denotes the space with the norm

‖x‖ = ‖|x|p‖
1
p
X .
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It is proved that if X is a Banach lattice, then X p space is a Banach lattice for any
p∈ (1,+∞) , some more results about X p space can be found in [15, 17]. The following
lemma help us utilize our results.

LEMMA 2.3. ([18]) Let ψ(t) � φ(t) � 0 in [a,b] , if the function ψ(t)− φ(t)
attain the maximum at t = c∈ [a,b] and the function φ(t) attain the minimum at t = c,

then the function ψ(t)
φ(t) attains its maximum at t = c.

3. Main results

Firstly, we can easily get the equivalent definitions of the generalized Gao’s con-

stant C̃(p)
NJ (X) from the Proposition 4.3 in [3].

PROPOSITION 3.1. Let X be a non-trivial Banach space, for 1 � p < +∞ , then

C̃(p)
NJ (X) = sup

{‖x+ y‖p +‖x− y‖p

2p : x,y ∈ BX

}
,

= sup

{‖x+ y‖p +‖x− y‖p

2p max(‖x‖p,‖y‖p)
,‖x‖+‖y‖ �= 0

}
.

PROPOSITION 3.2. Let X be a non-trivial Banach space, for 1 � p < +∞ , then

C̃(p)
NJ (X) = sup{C̃(p)

NJ (Y ) : Y ∈ P(X)},

where P(X) is the set of all two-dimensional subspaces of X .

Proof. Firstly, it is obvious that

C̃(p)
NJ (X) � sup{C̃(p)

NJ (Y ) : Y ∈ P(X)}.

Secondly, for any ε > 0, there exist x0 and y0 in SX such that

C̃(p)
NJ (X) <

‖x+ y‖p +‖x− y‖p

2p + ε.

Let Y0 be a two-dimensional subspace that contains x0 and y0 , then

‖x+ y‖p +‖x− y‖p

2p � C̃(p)
NJ (Y0) � sup{C̃(p)

NJ (Y ) : Y ∈ P(X)},

thus, we obtain
C̃(p)

NJ (X) < sup{C̃(p)
NJ (Y ) : Y ∈ P(X)}+ ε.

Since ε > 0 is arbitrary, it follows that

C̃(p)
NJ (X) � sup{C̃(p)

NJ (Y ) : Y ∈ P(X)}. �
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THEOREM 3.3. Let X and Y be isomorphic Banach spaces, then for Banach-
Mazur distance d(X ,Y ) ,

C̃(p)
NJ (X)

d(X ,Y )p � C̃(p)
NJ (Y ) � C̃(p)

NJ (X)d(X ,Y )p.

In particular, C̃(p)
NJ (X) = C̃(p)

NJ (Y ) , if X and Y are isometric.

Proof. Suppose that x,y ∈ SX , by the definition of Banach-Mazur distance, for
each ε > 0, there exists an operator T from X onto Y such that

‖T‖‖T−1‖ � d(X ,Y )(1+ ε).

Consider

x1 =
Tx
‖T‖ ∈ BY and y1 =

Ty
‖T‖ ∈ BY .

By the definition of C̃(p)
NJ (X) , we obtain

‖x+ y‖p +‖x− y‖p

2p =
‖T‖p(‖T−1(x1 + y1)‖p +‖T−1(x1− y1)‖p)

2p ,

� d(X ,Y )p(1+ ε)p
(‖x1 + y1‖p +‖x1− y1‖p

2p

)
,

� d(X ,Y )p(1+ ε)pC̃(p)
NJ (Y ),

which implies that

C̃(p)
NJ (X) � d(X ,Y )p(1+ ε)pC̃(p)

NJ (Y ) � d(X ,Y )pC̃(p)
NJ (Y ).

The last inequality is true for every ε > 0, so we obtain the left-hand side of our as-
sertion, the right-hand side of the assertion follows by simply interchanging X and
Y . �

In the following text, we will use notation Xψ for the space X with norm ‖.‖ψ

and write C̃(p)
NJ (‖.‖ψ) instead of C̃(p)

NJ (Xψ) .

COROLLARY 3.4. Let ‖.‖ and |.| be two equivalent norms in X such that

α|.| � ‖.‖ � β |.| (0 < α < β ),

then
α pC̃(p)

NJ (|.|)
β p � C̃(p)

NJ (‖.‖) � β pC̃(p)
NJ (|.|)
α p .

Moreover, if ‖x‖ = a|x| , then C̃(p)
NJ (‖.‖) = C̃(p)

NJ (|.|).
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Proof. This follows from Theorem 3.3 and the fact that d(X ,Y ) � β
α . �

Now, let us denote

M1 = max
0�t�1

φ(t)
ψ(t)

and M2 = max
0�t�1

ψ(t)
φ(t)

.

THEOREM 3.5. Let ψ(t),φ(t) ∈ Ψ and ψ(t) � φ(t) for all t ∈ [0,1] , if the func-

tion φ(t)
ψ(t) attains its maximum at t = 1

2 and C̃(p)
NJ (‖.‖φ ) = 1

2p−1φ p( 1
2 )

, then

C̃(p)
NJ (‖.‖ψ) =

1

2p−1ψ p
(

1
2

) .

Proof. By the condition of ψ(t) � φ(t) and the definition of M1 , we have

1
M1

‖.‖φ � ‖.‖ψ � ‖.‖φ .

By taking α = 1
M1

and β = 1 in Corollary 3.4, which implies that

C̃(p)
NJ (‖.‖ψ) � Mp

1 C̃(p)
NJ (‖.‖φ ).

It is noted that the function φ(t)
ψ(t) attains its maximum at t = 1

2 , i.e., M1 = φ( 1
2 )

ψ( 1
2 )

and

C̃(p)
NJ (‖.‖φ ) = 1

2p−1φ p( 1
2 )

, then

C̃(p)
NJ (‖.‖ψ) � Mp

1 C̃(p)
NJ (‖.‖φ ) =

1

2p−1ψ p( 1
2)

. (3.1)

Let us put x1 = ( 1
2ψ( 1

2 )
, 1

2ψ( 1
2 )

) , y1 = ( 1
2ψ( 1

2 )
,− 1

2ψ( 1
2 )

) , then

‖x1‖ψ = ‖y1‖ψ = 1,

‖x1 + y1‖ψ = ‖x1− y1‖ψ =
1

ψ( 1
2)

,

‖x1 + y1‖p +‖x1− y1‖p

2p =
1

2p−1ψ p( 1
2 )

. (3.2)

From (3.1), (3.2), we obtain

C̃(p)
NJ (‖.‖ψ) = Mp

1 C̃(p)
NJ (‖.‖φ ) =

1

2p−1ψ p( 1
2 )

.

We get the desired result. �
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THEOREM 3.6. Let ψ(t) ∈ Ψ and ψ(t) � ψp(t) (2 � p < ∞) for all t ∈ [0,1] ,
then

C̃(p)
NJ (‖.‖ψ) = Mp

1 .

Proof. Let x,y ∈ SX , by the condition of ψ(t) � ψp(t) and Clarkson inequality in
[6], we have

‖x+ y‖p
ψ +‖x− y‖p

ψ � ‖x+ y‖p
p +‖x− y‖p

p

� 2p−1(‖x‖p
p +‖y‖p

p)

� 2p−1Mp
1 (‖x‖p

ψ +‖y‖p
ψ)

= 2pMp
1 .

The definition of C̃(p)
NJ (‖.‖ψ) implies that

C̃(p)
NJ (‖.‖ψ) � Mp

1 . (3.3)

On the other hand, note that the function ψp(t)
ψ(t) attains its maximum at t1 , i.e. M1 =

ψp(t1)
ψ(t1)

. Let us put x2 = (1− t1,t1) , y2 = (1− t1,−t1) , then

‖x2‖ = ‖y2‖ = ψ(t1).

‖x2 + y2‖p
ψ +‖x2− y2‖p

ψ = 2p[(1− t1)p +(t1)p]
= 2pψ p

p (t1)

= 2pMp
1 ψ p(t1).

Therefore, we can get

C̃(p)
NJ (‖.‖ψ) �

‖x2 + y2‖p
ψ +‖x2− y2‖p

ψ

2p max(‖x2‖p
ψ ,‖y2‖p

ψ)
= Mp

1 . (3.4)

From inequalities (3.3) and (3.4), we infer that

C̃(p)
NJ (‖.‖ψ) = Mp

1 .

We end the proof. �

COROLLARY 3.7. Let X p (2 � p < ∞) be a two-dimensional Banach lattice
space, if the corresponding function ψX attains its minimum at the point t = 1

2 , then

C̃(p)
NJ (‖.‖X p) =

1

2p−1ψ p
X p( 1

2 )
.



116 Z. ZUO, Y. HUANG AND J. WANG

Proof. It is clear that ‖x‖= ‖|x|p‖
1
p
X ∈ Nα from the norm of the space X p , and its

corresponding convex function is

ψX p(t) = ‖(1− t,t)‖X p = [(1− t)p + t p]
1
p ψ

1
p

X

(
t p

(1− t)p + t p

)
.

Since ψX (t) � 1, then ψX p(t) � ψp(t) (2 � p < ∞) for all t ∈ [0,1] , it is easy to check
that the function

ψp(t)
ψX p(t)

= ψ
−1
p

X

(
t p

(1− t)p + t p

)
.

For arbitrary t ∈ [0,1] , the variable s = t p

(1−t)p+t p is also belongs to [0,1] . Since the

function ψX(t) attains its minimum at the point t = 1
2 , then ψX

(
t p

(1−t)p+t p
)

attains its

minimum at t = 1
2 , this implies that the function ψ

−1
p

X

(
t p

(1−t)p+t p
)

attains its maximum

at 1
2 . By Theorem 3.6, we can get that

C̃(p)
NJ (‖.‖X p) =

1

2p−1ψ p
X p( 1

2 )
.

We complete the proof. �

THEOREM 3.8. Let ψ(t),φ(t) ∈ Ψ and ψ(t) � φ(t) for all t ∈ [0,1] , if the func-

tion ψ(t)
φ(t) attains its maximum at t = 1

2 and C̃(p)
NJ (‖.‖φ ) = 2φ p( 1

2 ) , then

C̃(p)
NJ (‖.‖ψ) = 2ψ p

(
1
2

)
.

Proof. From the condition of ψ(t) � φ(t) and the definition of M2 , we have

‖.‖φ � ‖.‖ψ � M2‖.‖φ .

Taking α = 1 and β = M2 in Corollary 3.4, we get the following inequality

C̃(p)
NJ (‖.‖ψ) � Mp

2 C̃(p)
NJ (‖.‖φ ).

Since M2 = ψ( 1
2 )

φ( 1
2 )

and C̃(p)
NJ (‖.‖φ ) = 2φ p( 1

2 ) , then

C̃(p)
NJ (‖.‖ψ) � Mp

2 C̃(p)
NJ (‖.‖φ ) = 2ψ p

(
1
2

)
. (3.5)

On the other hand, let us put x3 = (1,0) , y3 = (0,1) , then

‖x3‖ = ‖y3‖ = 1.

‖x3 + y3‖ψ = ‖x3− y3‖ψ = 2ψ
(

1
2

)
.
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‖x3 + y3‖p
ψ +‖x3− y3‖p

ψ

2p =
2p+1ψ p

( 1
2

)
2p = 2ψ p

(
1
2

)
� C̃(p)

NJ (‖.‖ψ). (3.6)

By the inequalities (3.5) and (3.6), we can get that

C̃(p)
NJ (‖.‖ψ) = Mp

2 C̃(p)
NJ (‖.‖φ ) = 2ψ p

(
1
2

)
.

We end the proof. �

THEOREM 3.9. Let ψ(t) ∈ Ψ and ψ(t) � ψp(t) (1 < p � 2) for all t ∈ [0,1] , if

the function ψ(t)
ψp(t)

attains its maximum at t = 1
2 , then

C̃(p)
NJ (‖.‖ψ) = 22−pMp

2 .

Proof. Let x,y∈ SX , by the condition of ψ(t)� ψp(t) and the Clarkson inequality
in [6],

‖x+ y‖p
ψ +‖x− y‖p

ψ � Mp
2 (‖x+ y‖p

p +‖x− y‖p
p)

� 2Mp
2 (‖x‖p

p +‖y‖p
p)

� 2Mp
2 (‖x‖p

ψ +‖y‖p
ψ).

Which implies that

C̃(p)
NJ (‖.‖ψ) � 22−pMp

2 . (3.7)

On the other hand, since M2 = ψ( 1
2 )

ψp( 1
2 )

, let us put x4 = ( 1
2 ,0),y4 = (0, 1

2 ) , then

‖x4‖p
ψ = ‖y4‖p

ψ =
(

1
2

)p

.

‖x4 + y4‖ψ = ‖x4− y4‖ψ = ψ
(

1
2

)
.

‖x4 + y4‖p
ψ +‖x4− y4‖p

ψ

2p max(‖x4‖p
ψ ,‖y4‖p

ψ)
= 2ψ p

(
1
2

)
= 22−p ψ p( 1

2 )
ψ p

p ( 1
2 )

= 22−pMp
2 � C̃(p)

NJ (‖.‖ψ). (3.8)

From (3.7) and (3.8), we infer that

C̃(p)
NJ (‖.‖ψ) = 22−pMp

2 .

The proof is completed. �
In the following, let us state the conclusion related to the general mean m(t) .

COROLLARY 3.10. Let ψ(t)� φ(t)∈Ψ for all t ∈ [0,1] and m(t) := m(ψ(t),φ(t))
is the mean convex function of the functions ψ(t) and φ(t) .
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(i) If φ(t)
m(t) attains its maximum at t = 1

2 and C̃(p)
NJ (‖.‖φ ) = 1

2p−1φ p( 1
2 )

, then

C̃(p)
NJ (‖.‖m) =

1

2p−1mp
(

1
2

) .

(ii) If m(t)
ψ(t) attains its maximum at t = 1

2 and C̃(p)
NJ (‖.‖ψ) = 2ψ p( 1

2) , then

C̃(p)
NJ (‖.‖m) = 2mp

(
1
2

)
.

Proof. The general mean m(t) has the property

ψ(t) � m(t) � φ(t)

for all t ∈ [0,1] . Since ψ(t),ϕ(t) ∈ Ψ and the assumption of the function m(t) is
convex, it is easy to check that m(t) ∈ Ψ . We can get the results from the Theorem 3.5
and Theorem 3.8, respectively. �

For the general case ψ(t) ∈ Ψ , we give the lower bound and upper bound of the

generalized von Neumann-Jordan type constant C̃(p)
NJ (‖.‖ψ) .

THEOREM 3.11. Let ψ(t)∈Ψ for all t ∈ [0,1] , M1 = max
0�t�1

ψp(t)
ψ(t) , M2 = max

0�t�1

ψ(t)
ψp(t)

.

(i) If 1 < p � 2 , then

22−pMp
2 � C̃(p)

NJ

(‖ · ‖ψ
)

� 22−pMp
1 Mp

2 .

(ii) If 2 � p < ∞ , then

Mp
1 � C̃(p)

NJ

(‖ · ‖ψ
)

� Mp
1 Mp

2 .

Proof. (i) If 1 � p � 2, it is easy to get the left inequality from the (3.8),

22−pMp
2 � C̃(p)

NJ

(‖ · ‖ψ
)
.

Let x,y ∈ SX , by the definition of M1 , M2 and the Clarkson inequality, we obtain

‖x+ y‖p
ψ +‖x− y‖p

ψ � Mp
2 (‖x+ y‖p

p +‖x− y‖p
p)

� 2Mp
2 (‖x‖p

p +‖y‖p
p)

� 2Mp
1 Mp

2 (‖x‖p
ψ +‖y‖p

ψ).

The definition of C̃(p)
NJ (‖.‖ψ) implies that

C̃(p)
NJ (‖.‖ψ) � 22−pMp

1 Mp
2 .
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(ii) If 2 � p � ∞ , the left inequality is obvious from the inequality (3.4),

Mp
1 � C̃(p)

NJ

(‖ · ‖ψ
)
.

Let x,y ∈ SX , from the Clarkson inequality, we get

‖x+ y‖p
ψ +‖x− y‖p

ψ � Mp
2 (‖x+ y‖p

p +‖x− y‖p
p)

� 2p−1Mp
2 (‖x‖p

p +‖y‖p
p)

� 2p−1Mp
1 Mp

2 (‖x‖p
ψ +‖y‖p

ψ)
= 2pMp

1 Mp
2 .

The definition of C̃(p)
NJ (‖.‖ψ) implies that the right inequality as follows:

C̃(p)
NJ

(‖ · ‖ψ
)

� Mp
1 Mp

2 . �

In fact, from Theorem 3.6 and Theorem 3.9, the generalized Gao’s constant

C̃(p)
NJ (‖.‖ψ) coincides with the lower bound. In the following, we can only get some

conditions under which the constants A2(‖.‖ψ) and C
′
NJ(‖.‖ψ) coincides with the up-

per bound in the case of ψ(t) = ψ(1− t)∈ Ψ .

THEOREM 3.12. Let ψ(t) ∈ Ψ and ψ(t) = ψ(1− t) for all t ∈ [0,1] . If there
exist unique points t1,t2 ∈ [0, 1

2 ] such that

M1 =
ψ2(t1)
ψ(t1)

, M2 =
ψ(t2)
ψ2(t2)

and (1− t1)(1− t2) =
1
2
,

then
A2(‖.‖ψ) =

√
2M1M2, C

′
NJ(‖.‖ψ) = M2

1M2
2 .

Proof. On the one hand, taking α = 1
M1

and β = M2 in Corollary 3.4, then

A2(‖.‖ψ) � A2(‖.‖2)M1M2, C
′
NJ(‖.‖ψ) � C

′
NJ(‖.‖2)M2

1M2
2 .

Since A2(‖.‖2) =
√

2 and C
′
NJ(‖.‖2) = 1, this implies that

A2(‖.‖ψ) �
√

2M1M2. (3.9)

C
′
NJ(‖.‖ψ) � M2

1M2
2 . (3.10)

On the other hand, note that (1−t1)(1−t2)= 1
2 . Put x = 1

ψ(t1) (1−t1,t1) , y = 1
ψ(t1) (t1,t1−

1) , we get x+ y = 1
ψ(t1) (1,2t1−1) , x− y = 1

ψ(t1) (1−2t1,1) and

‖x‖ψ = 1, ‖y‖ψ = 1,



120 Z. ZUO, Y. HUANG AND J. WANG

‖x+ y‖ψ =
(2−2t1)

ψ(t1)
ψ

(
1−2t1
2−2t1

)
=

ψ(t2)
ψ(t1)(1− t2)

=
M2ψ2(t2)

ψ(t1)(1− t2)
,

‖x− y‖ψ =
(2−2t1)

ψ(t1)
ψ

(
1

2−2t1

)
=

ψ(1− t2)
ψ(t1)(1− t2)

=
M2ψ2(t2)

ψ(t1)(1− t2)
.

It is well known that √
2(1− t)ψ2

(
1

2−2t

)
= ψ2(t).

Consequently, we obtain

A2(‖.‖ψ) � ‖x+ y‖ψ +‖x− y‖ψ

2
=
√

2M1M2. (3.11)

C
′
NJ(‖.‖ψ) �

‖x+ y‖2
ψ +‖x− y‖2

ψ

4
= M2

1M2
2 . (3.12)

From the inequalities (3.9)–(3.12), we infer that

A2(‖.‖ψ) =
√

2M1M2, C
′
NJ(‖.‖ψ) = M2

1M2
2 . �

4. Some Examples

In this section, we will calculate the exactly values of C̃(p)
NJ (X) for some examples.

These results which not only give the exact value of the generalized von Neumann-

Jordan type constant C̃(p)
NJ (X) , but also give some new supplement results about the

constant C̃(p)
NJ (X) for some concrete Banach spaces.

EXAMPLE 4.1. If X is the �2
p (1 � p � ∞) space, then

C̃(p)
NJ (X) =

{
22−p, 1 < p � 2,
1, 2 < p < ∞.

In particular, C̃(p)
NJ (‖.‖1) = C̃(p)

NJ (‖.‖∞) = 2.

Proof. On the one hand, let 1 < p � 2 and x,y ∈ SX , we can get that

C̃(p)
NJ (‖.‖p) � 22−p, (4.1)

from the Clarkson inequality

(‖x+ y‖p
p +‖x− y‖p

p) � 2(‖x‖p
p +‖y‖p

p).

On the other hand, put x = (1,0) , y = (0,1) , then

‖x+ y‖p
p +‖x− y‖p

p

2p max(‖x‖p
p,‖y‖p

p)
= 22−p. (4.2)
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The definition of C̃(p)
NJ (‖.‖p) from (4.1)–(4.2) implies that

C̃(p)
NJ (‖.‖p) = 22−p. (4.3)

Let 2 < p < ∞ and x,y ∈ SX , from the Clarkson inequality

(‖x+ y‖p
p +‖x− y‖p

p) � 2p−1(‖x‖p
p +‖y‖p

p).

then

C̃(p)
NJ (‖.‖p) � 1. (4.4)

On the other hand, put x = ( 1
2 , 1

2 ),y = ( 1
2 ,− 1

2 ) , then

‖x+ y‖p
p +‖x− y‖p

p

2p max(‖x‖p
p,‖y‖p

p)
= 1. (4.5)

The definition of C̃(p)
NJ (‖.‖p) from (4.4)–(4.5) implies that

C̃(p)
NJ (‖.‖p) = 1. (4.6)

Since ‖.‖p � ‖.‖1(1 < p � 2) , it is well known that ψ1(t)
ψp(t)

= 1

[(1−t)p+t p]
1
p

attains

the maximum at t = 1
2 , then

M2 = max
0�t�1

ψ1(t)
ψp(t)

= 21− 1
p .

By Theorem 3.9, we obtain

C̃(p)
NJ (‖.‖∞) = 22−pMp

2 = 2.

Since ‖.‖∞ � ‖.‖p (2 � p � ∞) and

ψ∞(t) =

{
1− t, 0 � t � 1

2 ,

t, 1
2 < t < 1.

(i) Let 0 � t � 1
2 , ψp(t)

ψ∞(t) = ((1−t)p+t p)
1
p

1−t = g(t) , then g′(t) > 0 and M1 = g( 1
2) = 2

1
p .

(ii) Let 1
2 � t � 1, ψp(t)

ψ∞(t) = ((1−t)p+t p)
1
p

t = h(t) , then h′(t) < 0 and M1 = h( 1
2) = 2

1
p .

Therefore, C̃(p)
NJ (‖.‖∞) = Mp

1 = 2 by Theorem 3.6. �

EXAMPLE 4.2. Let X = R
2 , the convex function ψX (t) is defined on [0,1] as

ψX(t) = (1− t + t2)
1
2 , the corresponding norm is ‖(x,y)‖ = (|x|2 + |x||y|+ |y|2) 1

2 , then

C̃(p)
NJ (‖.‖ψX p ) =

1

2p−1ψ p
X p

(
1
2

) =
2
√

3
3

.
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Proof. It is obvious that ‖(x,y)‖ is an absolute normalized norm on R
2 . By a stan-

dard discussion, it is easy to check that the corresponding function ψX (t) =
√

1− t + t2

attains its minimum at the point 1
2 . For p � 2, the corresponding space X p has the

norm
‖(x,y)‖ = ((|x|2p + |x|p|y|p + |y|2p)

1
2p .

And the corresponding convex function is

ψX p(t) = ‖(1− t,t)‖X p = [(1− t)p + t p]
1
p ψ

1
p
X

(
t p

(1− t)p + t p

)
� ψp(t).

By Corollary 3.7, we have that

C̃(p)
NJ (‖.‖ψX p ) =

1

2p−1ψ p
X p

(
1
2

) =
2
√

3
3

. �

REMARK 4.3. Since the generalizedGao’s constant C̃(p)
NJ (X) has two-dimensional

character and the concept of an absolute normalized norm concerns spaces with bases,
therefore we can firstly consider the examples are norms in R

2 , such as the two-
dimension space �2

p and X p in Example 4.1 and Example 4.2, This method can be

helpful for us to deal with the values of C̃(p)
NJ (X) for the general spaces X from the

Proposition 3.2.

EXAMPLE 4.4. Let Xp,q,λ be the space R
2 with the norm

‖.‖p,q,λ = max{‖.‖p,λ‖.‖q},

where 1 � q � p � ∞ and λ ∈ [2
1
p− 1

q ,1] , then

C̃(p)
NJ (‖.‖p,q,λ ) =

⎧⎨
⎩

2λ p2
p
q−p, if 1 � q < p � 2,

21− p
q

λ p , if 2 � q < p � ∞.

Proof. It is easy to check that ‖.‖p,q,λ = max{‖.‖p,λ‖.‖q} ∈ Nα and its corre-
sponding convex function is

ψ(t) = ‖(1− t,t)‖p,q,λ = max{ψp(t),λ ψq(t)}.

In fact, ψ(t) is symmetric with respect to t = 1
2 , we can only consider the function ψ(t)

on the interval [0, 1
2 ] , which is expanded to the whole interval [0,1] . Let t0 ∈ [0, 1

2 ] be
a point such that ψp(t0) = λ ψq(t0) , then

ψ(t) =

{
ψp(t), t ∈ [0, t0],

λ ψq(t), t ∈ [t0, 1
2 ].
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(i) Suppose that 1 � q < p � 2, it is obvious that ψ(t) � ψp(t) and the function

ψ(t)
ψp(t)

=

⎧⎨
⎩

1, t ∈ [0,t0]∪ [1− t0,1],
λ ψq(t)
ψp(t)

, t ∈ [t0,1− t0]

attains the maximum at t = 1
2 . By Theorem 3.9, we obtain

C̃(p)
NJ (‖.‖p,q,λ ) = 22−pMp

2 = 2λ p2
p
q−p.

(ii) Suppose that 2 � q < p � ∞ , since ψp(t) � ψq(t) and λ ψq(t) � ψq(t) , then
ψ(t) � ψq(t) , it is easy to check that the function

ψq(t)
ψ(t)

=

{ ψq(t)
ψp(t)

, t ∈ [0,t0]∪ [1− t0,1],
1
λ , t ∈ [t0,1− t0]

attains its maximum at t = 1
2 . By Theorem 3.6, we get

C̃(p)
NJ (‖.‖p,q,λ) = Mp

1 =
21− p

q

λ p . �

EXAMPLE 4.5. Let 1 � p < q � ∞ , 1 � s < ∞ and λ > 0. The Banach space
Zλ ,p,q,s and its corresponding function ψλ ,p,q,s(t) is defined on [0,1] as

ψλ ,p,q,s(t) = (1+ λ )−
1
s (ψs

p(t)+ λ ψs
q(t))

1
s .

i.e. ψλ ,p,q,s(t) is a weighted mean of order s of functions ψp and ψq with weights
1

1+λ and λ
1+λ . The corresponding norm is

‖.‖λ ,p,q,s = (1+ λ )−
1
s (‖.‖s

p + λ‖.‖s
q)

1
s ,

then

C̃(p)
NJ (‖.‖λ ,p,q,s) =

⎧⎨
⎩

2(1+ λ )
−p
s (2

s
p + λ2

s
q )

p
s , if 1 � p < q � 2,

2(1+ λ )
p
s (2

s
q + λ2

s
q )

−p
s , if 2 � p < q � ∞.

Proof. Since ψλ ,p,q,s(t) is the weighted mean of order s of the functions ψp(t)
and ψq(t) , then

ψq(t) � ψλ ,p,q,s(t) � ψp(t).

(i) Let 1 � p < q � 2, since ψλ ,p,q,s(t) � ψq(t) and the function
ψλ ,p,q,s(t)

ψq(t) attains

the maximum at t = 1
2 by the simple calculations. Take ψ(t) = ψq(t) and φ(t) =

ψp(t) in Corollary 3.10 (i), then

C̃(p)
NJ (‖.‖λ ,p,q,s) = 2ψ p

λ ,p,q,s

(
1
2

)
= 2(1+ λ )

−p
s (2

s
p + λ2

s
q )

p
s .
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(ii) Let 2 � p < q � ∞ , since ψλ ,p,q,s(t) � ψp(t) and ψp(t)
ψλ ,p,q,s(t)

attains its maximum

at t = 1
2 . Similarly, take ψ(t) = ψq(t) and φ(t) = ψp(t) in Corollary 3.10 (ii),

then

C̃(p)
NJ (‖.‖λ ,p,q,s) =

1

2p−1ψ p
λ ,p,q,s

(
1
2

) = 2(1+ λ )
p
s (2

s
q + λ2

s
q )

−p
s . �

REMARK 4.6. (i) In fact, take q = 2 or p = 2,q = 1 in Example 4.4, some
classical constants such as Baronti constant A2(X) and the Gao constant C

′
NJ(X)

have been calculated for these concrete Banach spaces in [1, 16]. Now, Example

4.4 calculates the values of the constant C̃(p)
NJ (‖.‖p,q,λ) for the general case 1 �

q � p � ∞ and λ ∈ [2
1
p− 1

q ,1] .

(ii) In particular, the concrete Banach space Zλ ,2,∞,s in Example 4.5 has been studied

in some papers (see [21, 22]). However, the exact value of C̃(p)
NJ (‖.‖λ ,p,q,s) for

the general case remain undiscovered. Example 4.5 give the exact value of the

generalized von Neumann-Jordan type constant C̃(p)
NJ (‖.‖λ ,p,q,s) for the general

case 1 � p < q � ∞ , 1 � s < ∞ and λ > 0.

EXAMPLE 4.7. Let 2 � p < ∞ and Vp be the space R
2 endowed with the norm

‖(x1,x2)‖Vp = max

{(∣∣∣∣x1

2

∣∣∣∣
p

+ |x2|p
) 1

p

,

(
|x1|p +

∣∣∣∣x2

2

∣∣∣∣
p) 1

p
}

,

then

C̃(p)
NJ (Vp) = Mp

1 =
2p+1

1+2p .

Proof. The norm ‖(x1,x2)‖Vp is absolute normalized norm on R
2 , and the corre-

sponding convex function is

ψVp(t) =

⎧⎨
⎩

(
(1− t)p +( t

2)p
) 1

p , 0 � t � 1
2 ,(

( 1−t
2 )p + t p

) 1
p , 1

2 � t � 1.

From the form of function ψVp(t) , it is easy to check that ψVp(t) � ψp(t) ,
ψp(t)
ψVp(t) is

symmetric with respect to t = 1
2 . Thus, it suffices to consider ψ p

p (t)
ψ p

Vp
(t) for t ∈ [0, 1

2 ] , the

function ψ p
p (t)−ψ p

Vp
(t) = (1− 1

2p )t p attains the maximum at t = 1
2 and the function

ψVp(t) attains its minimum at t = 1
2 . By Lemma 2.3, we get the function ψp(t)

ψVp (t) attains

its maximum at t = 1
2 . From Theorem 3.6, we get that

C̃(p)
NJ (Vp) = Mp

1 =
2p+1

1+2p . �
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EXAMPLE 4.8. Let 0 < ω < 1 and 2 � q < ∞ . The two-dimensional Lorentz
sequence space d(2)(ω ,q) is R

2 with the norm

‖(x,y)‖ω,q = ((x∗)q + ω(y∗)q)
1
q ,

where (x∗,y∗) is the rearrangement of (|x|, |y|) satisfying x∗ � y∗ , then

C̃(p)
NJ (‖.‖ω,q) = 2

(
1

1+ ω

) p
q

.

Proof. The norm ‖(x,y)‖ω,q is an absolute normalized norm on R
2 , and the cor-

responding convex function is

ψω,q(t) =

⎧⎨
⎩

((1− t)q + ωtq)
1
q , 0 � t � 1

2 ,

(tq + ω(1− t)q)
1
q , 1

2 � t � 1.

It is easy to check that ψω,q(t) � ψq(t) . Since 0 < ω < 1, ψq(t)
ψω,q(t)

is symmetric with

respect to t = 1
2 , it suffices to consider ψq(t)

ψω,q(t)
for t ∈ [0, 1

2 ] . For any t ∈ [0, 1
2 ] , put

f (t) = ψq(t)q

ψω,q(t)q
, then

f ′(t) =
q(1−ω)[t(1− t)]q−1

[(1− t)q + ωtq]2
,

therefore, f ′(t) � 0 for 0 � t � 1
2 , this implies that the function f (t) is increased for

0 � t � 1
2 . Therefore, the function ψq(t)

ψω,q(t) attains its maximum at t = 1
2 . By Theorem

3.6, then

C̃(p)
NJ (‖.‖ω,q) = Mp

1 = 2(
1

1+ ω
)

p
q . �

EXAMPLE 4.9. Let 2 � p < ∞ and Yp be the space R
2 endowed with the norm

‖(x1,x2)‖Yp = max

{(
|x1|p +2|x2|p

) 1
p

,

(
2|x1|p + |x2|p

) 1
p
}

,

then

C̃(p)
NJ (Yp) = Mp

1 =
4
3
.

Proof. The norm ‖(x1,x2)‖Yp is absolute norm on R
2 , However, ‖(1,0)‖Yp =

‖(0,1)‖Yp = 2
1
p , so this norm is not normalized. Let ‖.‖= 2−

1
p ‖.‖Yp , it is easy to check

that ‖.‖ is absolute normalized norm on R
2 , and the corresponding convex function is

given by the formula

ψ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2(1−t)p+t p

2

) 1
p

, 0 � t � 1
2 ,(

(1−t)p+2t p

2

) 1
p

, 1
2 � t � 1.
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It is easy to check that ψ(t) � ψp(t) ,
ψp(t)
ψ(t) is symmetric with respect to t = 1

2 . Thus, it

suffices to consider
ψ p

p (t)
ψ p(t) for t ∈ [0, 1

2 ] . For any t ∈ [0, 1
2 ] , the function ψ p

p (t)−ψ p(t) =
t p
2 attains the maximum at t = 1

2 and ψ(t) attains its minimum at t = 1
2 , therefore the

function ψp(t)
ψ(t) attains its maximum at t = 1

2 by Lemma 2.3. From Theorem 3.6, we get
that

C̃(p)
NJ (Yp) = Mp

1 =
4
3
. �

REMARK 4.10. (i) Taking q = 2 and ω = 2
2
p−1 ∈ (0,1) (2 � p < ∞) in Ex-

ample 4.8, we obtain the Lorentz sequence space �p,2 which were studied in [10,
16] and the following formulas were established

A2(�p,2) =
2

(1+2
2
p−1)

1
2

, C
′
NJ(�p,2) =

2

1+2
2
p−1

.

Now, we get the exact value of the generalized von Neumann-Jordan type con-

stant C̃(p)
NJ (d(2)(ω ,q)) for the general case 0 < ω < 1 and 2 � q < ∞ in Example

4.8.

(ii) The Banach spaces V2 , Y2 have been studied widely in [1, 13], some classical

constants were calculated for these spaces. Now, the the values of C̃(p)
NJ (X) are

calculated for the general Banach spaces Vp , Yp in Example 4.7 and Example
4.9 by Theorem 3.6.

In the above Examples, the maximum value M1 always attains at t = 1
2 . However,

we give some examples to show that M1 does not attain at t = 1
2 .

EXAMPLE 4.11. For each 0 � α � 1
2 � β � 1, X = (R2,‖.‖ψα,β ) is the Banach

space and its corresponding function is

ψα ,β (t) =

⎧⎪⎪⎨
⎪⎪⎩

1− t, if 0 � t � α,

(α+β−1)t+β−2αβ
β−α , if α � t � β ,

t, if β � t � 1.

If the function ψα ,β (t) � ψp(t) (2 � p � +∞) , then

C̃(p)
NJ (‖.‖ψα,β ) =

⎧⎨
⎩

β p+(1−β )p

β p , α + β � 1,

α p+(1−α)p

(1−α)p , α + β > 1.
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Proof. Let us define the f (t) = ψp(t)
ψα,β (t) , taking derivative of the function f (t) , by

the similar discussion in Example 4.8 show that

M1 =

⎧⎪⎪⎨
⎪⎪⎩

ψp(β )
ψα,β (β ) = (β p+(1−β )p)

1
p

β , α + β � 1,

ψp(α)
ψα,β (α) = (α p+(1−α)p)

1
p

1−α , α + β > 1.

From Theorem 3.6, we get that

C̃(p)
NJ (‖.‖ψα,β ) = Mp

1 =

⎧⎨
⎩

β p+(1−β )p

β p , α + β � 1,

α p+(1−α)p

(1−α)p , α + β > 1.
�

EXAMPLE 4.12. Let 2 � p < ∞ and 1
2 < β � 2

1
p−1 , the corresponding convex

function is given by ψβ (t) = max{1− t,t,β}, then

C̃(p)
NJ (‖.‖ψβ ) = Mp

1 =
β p +(1−β )p

β p .

Proof. If 1
2 < β � 2

1
p−1 , then ψβ (t) � ψp(t) , it is easy to check that by the simple

calculation

M1 =
ψp(β )
ψβ (β )

=

(
(1−β )p + β p

) 1
p

β
.

From Theorem 3.6, we have that

C̃(p)
NJ (‖.‖ψβ ) = Mp

1 =
β p +(1−β )p

β p . �

At last, we will present a practical example which satisfies the conditions of The-
orem 3.12, thus the exact value of the von Neumann-Jordan type constant A2(X) and
C

′
NJ(X) coincide with their upper bound.

EXAMPLE 4.13. Let
√

3−1 < c � 1, the corresponding convex function is given
by

ψc(t) = max
{

1− ct,1− c+ ct,1− c2

2

}
for 0 � t � 1,

then

A2(X) =
2(c2−2c+2)√

2− c2
and C

′
NJ(‖.‖ψc) =

2(c2−2c+2)2

(2− c2)2 .
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Proof. It is easy to check that ψc(t) ∈ Ψ and ψ(t) = ψ(1− t) for all t ∈ [0,1] . If√
3−1 < c � 1, easy calculation shows that

M1 =
ψ2(t1)
ψc(t1)

=

√
2(c2−2c+2)

(2− c2)
, M2 =

ψc(t2)
ψ2(t2)

=
√

c2 −2c+2,

where t1 = c
2 , t2 = 1−c

2−c , which satisfy the condition (1− t1)(1− t2) = 1
2 in Theorem

3.12, then

A2(‖.‖ψc) =
√

2M1M2 =
2(c2−2c+2)√

2− c2
.

C
′
NJ(‖.‖ψc) = M2

1M2
2 =

2(c2−2c+2)2

(2− c2)2 . �
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