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BORSUK’S PARTITION PROBLEM IN �4
p
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(Communicated by J. Jakšetić)

Abstract. In 1933, K. Borsuk made a conjecture that every n -dimensional bounded set can be
divided into n+1 subsets of smaller diameter. Up to now, the problem is still open for 4 � n �
63 . In this paper, we study the generalized Borsuk’s partition problem in �4

p and prove that all
bounded sets X in every �4

p can be divided into 24 subsets of smaller diameter.

1. Introduction

Let E
n be the n -dimensional Euclidean space, and in this paper an n -dimensional

vector x ∈ E
n is always treated as a column vector. Let K denote an n -dimensional

convex body, a compact convex set with non-empty interior int(K) . By K n we denote
the set of convex bodies in E

n .
Let d(X) denote the diameter of a bounded set X of E

n defined by

d(X) = sup{‖x,y‖ : x,y ∈ X},

where ‖x,y‖ denotes the Euclidean distance between x and y . Let b(X) be the small-
est number of subsets X1,X2, . . . ,Xb(X) of X such that

X =
b(X)⋃
i=1

Xi

and d(Xi) < d(X) holds for all i � b(X) . In 1933, K. Borsuk [1] proposed the following
problem:
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Borsuk’s partition problem. Is it true that

b(X) � n+1

holds for every bounded set X in E
n ?

Usually, the positive statement of this problem is referred as Borsuk’s conjecture.
K. Borsuk [1] proved that the inequality b(X) � 3 holds for any bounded set X ⊆ E

2 .
For n = 3, Borsuk’s conjecture was confirmed by H. G. Eggleston [4] in 1955. In 1945,
H. Hadwiger [7] proved that the inequality b(K) � n+1 holds for every n -dimensional
convex body K with smooth boundary. However, in 1993, J. Kahn and G. Kalai [10]
discovered counterexamples to Borsuk’s conjecture in high dimensions. In 2014, T.
Jenrich and A. E. Brouwer [9] discovered a 64-dimensional counterexample. Up to
now, the problem is still open for 4 � n � 63. For more detailed information about the
problem, we refer to [2, 3, 23, 25].

Let M
n
C = (Rn,‖ ·‖C) denote the Minkowski space with respect to the norm ‖ ·‖C

determined by a centrally symmetric convex body C centered at the origin o . Clearly,
C is the unit ball of M

n
C . For a bounded set X ⊆ M

n
C , let dC(X) denote the diameter

of X defined by dC(X) = sup{‖x,y‖C : x,y ∈ X} , and let bC(X) denote the smallest
number such that X can be divided into bC(X) subsets each of which has the diameter
strictly smaller than dC(X) .

In 1957, B. Grünbaum [6] firstly studied the problem in Minkowski planes M
2
C .

It was mentioned in [3] that for every bounded set X ⊆ M
2
C , if the unit ball C of M

2
C

is a not a parallelogram, then the inequality bC(X) � 3 holds; otherwise, the inequality
bC(X) � 4 holds.

For every convex body K ∈ K n , the covering number γ(K) is the smallest num-
ber of translates of λK (0 < λ < 1) such that their union contains K . In 1957, H.
Hadwiger [8] raised the following conjecture, which has a close relation with the Bor-
suk’s partition problem.

Hadwiger’s covering conjecture. Every convex body K in E
n can be covered by 2n

translates of λK (or int(K)), where λ is a suitable positive number satisfying λ < 1.
The two-dimensional case had been solved by F. W. Levi [12]. In 1984, M. Lassak

[11] proved this conjecture for all centrally symmetric convex bodies in E
3 . However,

this conjecture is open for all n � 3 untill now. The best known upper bound in three-
dimensional case is γ(K) � 14 and is due to A. Prymak [17] recently. In 2020, A.
Prymak and V. Shepelska [18] showed that γ(K) � 96 for all K ∈ K 4 , γ(K) � 1091
for all K ∈ K 5 and γ(K) � 15373 for all K ∈ K 6 . For further results on this conjec-
ture, we refer to [2, 3, 22, 24, 25].

In 1997, C. A. Rogers and C. Zong [19] obtained an upper bound on γ(K) :

γ(K) � vol(K−K)
vol(K)

(n logn+n loglogn+5n)

�
(

2n
n

)
(n logn+n loglogn+5n) = O(4n√n logn) (1)
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when n � 3 and K ∈ K n with volume vol(K) , where K −K denotes the difference
body of K .

In 1965, V. G. Boltyanski and I. T. Gohberg [2] proved that

bC(X) � γ(X̂) (2)

holds for all n -dimensional Minkowski space M
n
C and all bounded sets X of M

n
C ,

where X̂ denotes the closed convex hull of X . Based on this fact, they also proposed
the following problem:

PROBLEM 1. Is it true that

bC(X) � 2n

holds for all n -dimensional Minkowski space M
n
C and all bounded sets X of M

n
C ?

In this paper, we concern the space �n
p := (Rn,‖ · ‖p) , whose unit ball is denoted

by

Cn,p = {x ∈ R
n : ‖x‖p � 1}.

Denote by

Cn = {x ∈ R
n : ‖x‖∞ � 1} = [−1,1]n,

the n -dimensional unit cube and {−1,1}n the vertices of Cn .
In 2009, L. Yu and C. Zong [21] studied Problem 1 and obtained that bC3,p(X)� 23

holds for all bounded sets X in every �3
p . In 2021, Y. Lian and S. Wu [13] showed that

each set X having diameter 1 in �3
p can be represented as the union of 23 subsets of X

whose diameters are at most 0.925. Later, this value is improved into 0.9, see [26].
According to (2), bC(X) has an upper bound via Hadwiger’s covering number (1),

i.e.,

bC(X) � O(4n√n logn)

holds for all n -dimensional Minkowski spaces M
n
C and all bounded sets X ⊆ M

n
C .

Particularly, since γ(K) � 96 for all K ∈ K 4 , it is deduced that bC(X) � 96 for all
4-dimensional Minkowski space M

4
C and all bounded sets X of M

4
C . In this paper, we

continue studying the above problem in �4
p . Our main result is:

THEOREM 1. For all bounded sets X in every �4
p , we have

bC4,p(X) � 24.

In order to prove this theorem, we rely on the Banach-Mazur distance. The Banach-
Mazur distance between two o -symmetric convex bodies K and L is defined as

dBM(K,L) = min{r > 0 : K ⊂ gL ⊂ rK,g ∈ GL(n,R)},

where GL(n,R) is the set of invertible linear operators.
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2. Proof of the Theorem

In order to prove Theorem 1, let us consider three main situations. First of all, we
introduce two lemmas which will be useful for the proof of cases p > 1.

LEMMA 1. ([20]) Let n be a positive integer and 1 � p, q � ∞ .

(i) If 1 � p � q � 2 or 2 � p � q � ∞ , then dBM(Cn,p,Cn,q) = n
1
p− 1

q .

(ii) If 1 � p < 2 < q � ∞ , then ξnα � dBM(Cn,p,Cn,q) � ηnα , where α = max{ 1
p −

1
2 , 1

2 − 1
q} , and ξ , η are universal constants. If n = 2k (k ∈ N), then η = 1 .

LEMMA 2. ([13]) Let M
n
C = (Rn,‖ ·‖C) , if dBM(C,Cn) < 2 , we have bC(X) � 2n

for all bounded set X of M
n
C .

2.1. p > 2

If p > 2, by Lemma 1 (i), we have dBM(C4,p,C4) = 4
1
p < 2. Combining with

Lemma 2, then bC4,p(X) � 24 holds for all bounded set X of �4
p with p > 2.

REMARK 1. Using the same method, by Lemma 1 (i) and Lemma 2, we can prove
that bCn,p(X) � 2n holds for all bounded set X of �n

p with log2 n < p � +∞ and n � 3.

2.2. 1 < p � 2

If 1 < p � 2, by Lemma 1 (ii), we have dBM(C4,p,C4) � 2. That is to say, there
exists a parallelotope Q = gC4 satisfying

1
2
Q ⊆C4,p ⊆ Q, (3)

where

g =
1

4
1
p

⎛
⎜⎜⎝

1 −1 1 1
1 1 −1 1
1 1 1 −1
−1 1 1 1

⎞
⎟⎟⎠ .

Denote by w(X ,u) the Euclidean width of a bounded set X in the direction u . Let

ui = gei , where ei is the i-th unit vector, i.e. u1 = 4−
1
p (1,1,1,−1)T , then w(C4,p,ui) =

41− 1
p for i = 1, . . . ,4.

For each bounded set X with dC4,p(X) = 2 in �4
p , we have w(X ,ui) � 41− 1

p for
i = 1, . . . ,4 and the equality holds if and only if there exists ai,bi ∈ X such that

ai −bi = 2ui. (4)

Up to translation, we may assume that X ⊆ ∩i∈[4]{x : |〈x,ui〉| � wi} = QX with

wi � 41− 2
p . In fact, Q = ∩i∈[4]{x : |〈x,ui〉| � 41− 2

p } . Now we consider two cases:
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1. If there exists some wi < 41− 2
p , then we have X ⊆QX ⊂�= Q and dC4,p(QX ) < 4. In

this case, one can divided QX into 16 smaller copies of 1
2QX with dC4,p(

1
2QX) <

2. Then X can also be divided into 16 corresponding parts with diameter strictly
smaller than 2. Thus, bC4,p(X) � 24 .

2. If wi = 41− 2
p for all i = 1, . . . ,4, let Fi = {x : 〈x,ui〉 = 41− 2

p } and F−i = {x :

〈x,−ui〉 = 41− 2
p } , then X touches each pair of opposite facets of Q . Assuming

that X touches Q∩Fi at one point ai and touches Q∩Fi at point bi satisfying (4).
In addition, since C4,p is strictly convex when 1 < p � 2, then X cannot touch
Fi (as well as F−i ) at more than one point. Also, all ai , bi must be in the relative
interior of each facet of Q . If not, suppose a1 is on the relative boundary of one
facet of Q . Without of loss generality, let a1 ∈ Q∩F1 ∩F2 , by a1 −b1 = 2u1 ,
then b1 ∈ (Q∩F−1∩F2) . Since dC4,p(X) = 2 and a1,b1 ∈ (Q∩F2) , there is no
point of X on the opposite facet (Q∩F−2) , which contradicts to the assumption
that X intersects all facets of Q .

For 1 < p � 2, by the strictly convexity of C4,p and (3), the diameter of 1
2Q in

�4
p is only determined by its eight pairs of symmetric vertices:

dC4,p

(
1
2
Q

)
= 2 =

∥∥∥∥1
2
gv,

1
2
g(−v)

∥∥∥∥
C4,p

,

where
v ∈ {1,−1}4 = Σ4

i=1δiei, δi ∈ {1,−1}.

Now we still divided Q into 16 smaller copies of 1
2Q , that is, Q =

⋃16
i=1(

1
2Q+yi)

with yi ∈ { 1
2gv : v∈ {1,−1}4} . Then we also get 16 corresponding subsets Xi =

X∩( 1
2Q+yi) , i = 1, . . . ,16. For every translating point pair

(
1
2gv+yi,

1
2g(−v)+yi

)
,

i = 1, . . . ,16, we will show that at least one point of
( 1

2gv+yi,
1
2g(−v)+yi

)
lies

on the relative boundary of some facet of Q . Without loss of generality, take a
point pair

( 1
2gv0,

1
2g(−v0)

)
with v0 = Σ4

i=1σiei , σi ∈ {1,−1} . Then

1
2
gv0 +yi =

1
2
g(Σ4

i=1(σi + δi)ei), (5)

1
2
g(−v0)+yi =

1
2
g(Σ4

i=1(δi −σi)ei). (6)

If all δi = σi , i = 1, . . . ,4, then the point (5) is contained in ∩4
i=1Fδi(i) ; if δi =

σi , i = 1, . . . ,3 and δ4 �= σ4 , then the point (5) is contained in ∩3
i=1Fδi(i) ∩Q ;

if δi = σi , i = 1,2 and δ j �= σ j , j = 3,4, then the point (5) is contained in
∩2

i=1Fδi(i) ∩Q ; if δ1 = σ1 , δi �= σi , i = 2, . . . ,4, then the point (6) is contained
in ∩4

i=2Fδi(i) ∩Q ; if all δi �= σi , i = 1, . . . ,4, then the point (6) is contained in
∩4

i=1Fδi(i) .
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By above discussions and the fact that X touches each facet of Q at exactly one
relative interior point, we have dC4,p(Xi) < 2 for all i = 1, . . . ,16. Therefore,
bC4,p(X) � 24 holds for all bounded set X of �4

p with 1 < p � 2.

2.3. p = 1

By (2), determining the covering number of a convex body is useful for solving the
Borsuk’s partition problem. Let m be a positive integer and let γm(K) be the smallest
positive number r such that K can be covered by m translates of rK . Clearly, γm(K) <
1 is equivalent to γ(K) � m . First of all, the following lemma gives an estimate on the
value of γ2n(Cn,1) .

LEMMA 3. ([14]) γ2n(Cn,1) � n−1
n holds for all n � 2 .

In order to show the case of p = 1, we use the concept of completeness. A bounded
set is called complete if it is not properly contained in a set of the same diameter.
Clearly, a complete set is convex and compact. In [5], H. G. Eggleston showed that any
bounded set X ⊆ M

n
C can be embedded in a complete set A of the same diameter, the

complete set A is called the completion of X . Generally, A is not unique. For every

bounded set X ⊆ M
n
C , we have bC(X) � bC(A) , since X ⊆ A∩X ⊆ ∪bC(A)

i=1 (Ai ∩X) =
∪bC(A)

i=1 (Xi) and dC(Xi) = dC(Ai ∩X) � dC(Ai) < dC(A) = dC(X) .
In [15] and [16], J. P. Moreno and R. Schneider gave a new characterization of

the complete sets in M
n
C in terms of supporting slabs. A supporting slab of the convex

body K ∈ K n is any closed set Σ ⊇ K that is bounded by two parallel supporting
hyperplanes H , H ′ of K . The distance between H and H ′ is called the width of
Σ . For any other convex body M , we say that the supporting slab Σ of K is M -
regular if the supporting slab of M that is parallel to Σ has the property that at least
one of its bounding hyperplanes contains a smooth boundary point of M (a boundary
point through which passes only one supporting hyperplane of M ). For the case of a
polyhedral norm, the space of translation classes of complete sets of given diameter is
a finite polytopal complex. The following two lemmas will be useful for our proof.

LEMMA 4. ([15]) Let d > 0 . The n-dimensional convex body K ∈ K n is a
complete set of diameter d if and only if the following properties hold:

(a) Every C-regular supporting slab of K has width � d , C is the unit ball of M
n
C .

(b) Every K -regular supporting slab of K has width d .

LEMMA 5. ([16]) Let Σ1 ,. . . ,Σk be the C-regular supporting slabs of the poly-
topal unit ball C . Each complete set K with diameter 2 is of the form

K =
k⋂

i=1

(Σi + ti)

with ti ∈ R
n , i = 1, . . . ,k .
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For the polytopal unit ball C4,1 of �4
1 , its supporting slabs are Σ1 with outer normal

vectors ±u1 = ±(1,1,1,1) , Σ2 with outer normal vectors ±u2 = ±(−1,−1,1,1) , Σ3

with outer normal vectors ±u3 =±(1,−1,−1,1) , Σ4 with outer normal vectors ±u4 =
±(−1,1,−1,1) , Σ5 with outer normal vectors ±u5 = ±(1,1,1,−1) , Σ6 with outer
normal vectors ±u6 =±(−1,1,1,1) , Σ7 with outer normal vectors ±u7 =±(1,−1,1,1)
and Σ8 with outer normal vectors ±u8 = ±(1,1,−1,1) . Each slab Σi is bounded
by two parallel hyperplanes Φi = {x : 〈x,ui〉 = 1} and Φ−i = {x : 〈x,−ui〉 = 1} ,
i = 1, . . . ,8.

For every bounded set X ⊆ �4
1 with dC4,1(X) = 2, there always exists a completion

D of X . Up to some translation and by Lemma 5, we may assume that

X ⊆ D = D(α1,α2,α3,α4)

=
8⋂

i=5

Σi ∩
4⋂

i=1

(Σi + αiui)

=
(
C4,1∪ (∪4

i=1S±i)
)∩ 4⋂

i=1

(Σi + αiui)

=
⋃
i=5

Di,

where D1 = C4,1 ∩⋂4
i=1(Σi + αiui) , Dj = S j−1 ∩⋂4

i=1(Σi + αiui) or Dj = S−( j−1) ∩⋂4
i=1(Σi + αiui) with |αi| � 1

4 , j = 2, . . . ,5, and

Si = conv

(
(C4,1∩Φi)∪ 1

2
ui

)
,S−i = −Si, i = 1, . . . ,4.

For i = 1, . . . ,4, we obtain that dC4,1(Si) = dC4,1(S−i) = 2 and that there are exactly
five vertices of Si or S−i such that the distance between each pair is 2 . Neither Si nor
S−i is a complete set by Lemma 4, since there exist a Si (S−i)-regular supporting slab
of Si (S−i) with width 1. By Lemma 3, C4,1 can be covered by 8 smaller copies of
C4,1 . That is to say, we have

C4,1 ⊆
4⋃

i=1

((
3
4
C4,1 +yi

)⋃(
3
4
C4,1 +y4+i

))
,

with yi = 1
4ei , y4+i = −yi , i = 1, . . . ,4. By taking a small sutible positive number ε

satisfying 3
4 + ε < 1, then one can see that

(1+ ε)C4,1 ⊆
4⋃

i=1

((
(
3
4

+ ε)C4,1 +yi

)⋃(
(
3
4

+ ε)C4,1 +y4+i

))
.

In fact, some vertices with neighbour also have been covered from the covering of
(1 + ε)C4,1 , so the remaining part of Si or S−i has diameter strictly smaller than 2.
Therefore, X can be divided into at most 12 parts, each of which has diameter strictly
smaller than 2. Consequently, bC4,1(X) � 24 holds for all bounded set X of �4

1 .
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In conclusion, bC4,p(X) � 24 holds for all bounded set X of all �4
p with 1 � p � ∞ .

This completes the proof of the theorem. �
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