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UNIFORM POINCARÉ INEQUALITY IN O–MINIMAL STRUCTURES
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Abstract. We first define the trace on a domain Ω which is definable in an o-minimal structure.
We then show that every function u ∈ W 1,p(Ω) vanishing on the boundary in the trace sense
satisfies Poincaré inequality. We finally show, given a definable family of domains (Ωt)t∈Rk ,
that the constant of this inequality remains bounded, if so does the volume of Ωt .

1. Introduction

Poincaré type inequalities are very valuable tools in the theory of PDE as well as
in variational or numerical analysis. There are mainly two directions in the contempo-
rary research: characterizing domains on which Poincaré type inequalities holds, see
for instance [11] or [8] and the literature therein, or focus on the constant and find uni-
form bounds for certain classes of domains. For the latter issue, parametric version of
Poincaré inequalities are very useful [3, 9, 12, 13].

The aim of this note is to provide a proof of a parametric version of Poincaré-
Friedrichs inequality in the o-minimal setting, see Theorem 3.4. Definable sets can be
considered as generalizations of semialgebraic or subanalytic sets. The theory of o-
minimal structures, which sits at the intersections of model theory, geometry, and anal-
ysis, is very adequate to perform analysis on singular sets. Thanks to their “tameness”
the o-minimal structures provide a sufficiently large playground for applicable finite
dimensional variational and numerical analysis (especially in semialgebraic setting).

This is a part of our project to carry out the theory of Sobolev spaces on definable
domains, with possibly singular boundary. In foregoing papers, we proved a version
of Poincaré-Wirtinger inequality on subanalytic sets [14], studied the trace operator on
W 1,p(M) in the case where p is large and M is a bounded subanalytic submanifold of
R

n [15], and showed density of compactly supported functions in the kernel of the trace
operator for such Sobolev spaces. Such a manifold M may of course admit singularities
in its closure which are not metrically conical. Some other interesting inequalities on
singular subanalytic domains were investigated in [1, 2, 6]. The advantage of working
with o-minimal structures is that no extra ad hoc assumption on the metric geometry of
the domains or on their boundaries is needed.
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Some generalizations of Poincaré-Friedrichs inequality were given for example in
[19, 10]. Although the boundary of a domain which is definable in an o-minimal struc-
ture may admit singularities, it must be an at least C 1 manifold almost everywhere. We
rely on it to define a trace operator which is continuous in the Lp

loc topology on the com-
plement of a negligible subset of the boundary of the domain. This enables us to show
a version of Poincaré-Friedrichs inequality which is valid on every definable domain Ω
which is bounded in one direction for every element u ∈W 1,p(Ω) that vanishes on the
boundary in the trace sense.

It is a very interesting problem to study the extent to which the best constant of
Poincaré inequality is related to the geometry of the domain, especially when singu-
larities arise in its boundary. We show that there exists a uniform constant for every
definable family of domains (i.e., definable with respect to parameters) of bounded vol-
ume.

We briefly recall that an o-minimal structure expanding the real field (R,+, ·)
is the data for every n of a Boolean algebra Sn of subsets of R

n containing all the
algebraic subsets of R

n and satisfying the following axioms:

1. If A ∈ Sm , B ∈ Sn , then A×B∈ Sm+n ;

2. If π : R
n×R → R

n is the natural projection and A ∈ Sn+1 , then π(A) ∈ Sn ;

3. S1 is nothing else but all the finite unions of points and intervals.

The elements of Sn are called the definable subsets of R
n .

Given a function ξ : A → R , with A ⊂ R
n , Γξ will stand for the graph of ξ . If

ξ ′ : A → R is another function, we set

(ξ ,ξ ′) := {(x,y) ∈ A×R : ξ (x) < y < ξ ′(x)}.

From now, we fix an o-minimal structure.
Let us recall the inductive definition of cells of R

n . Every subset of R
0 = {0} is

a cell. A definable subset C is a cell of R
n if there is a cell D of R

n−1 such that one of
the following conditions holds:

1. C = Γξ with ξ definable C 1 function on D .

2. C = (ξ ,ξ ′) , where ξ is either equal to −∞ or a C 1 definable function on D ,
and ξ ′ is either equal +∞ or a C 1 definable function on D satisfying ξ < ξ ′ .

A cell decomposition of R
n is a finite partition of R

n into cells which satisfies
some extra inductive properties (see for instance [5, 7]). We say that a cell decomposi-
tion is compatible with some given sets A1, . . . ,Am if each of the sets Ai is a finite sum
of cells of this cell decomposition. One of the main features of o-minimal structures
is to always admit cell decompositions compatible with finitely many given definable
sets.

NOTATIONS. Given Z ⊂R
n and a function u : Z →R , as well as p∈ [1,∞) and an

integer k , we denote by ||u||Lp(Z,H k) the (possibly infinite) Lp norm of u , where H k
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stands for the k -dimensional Hausdorff measure. As usual, we denote by Lp(Z,H k)
the set of functions on Z for which ||u||Lp(Z,H k) is finite and, by Lp

loc(Z,H k) , we
denote the space of functions f : Z →R such that every point x∈ Z has a neighborhood
U in Z for which the restriction f|U belongs to Lp(U,H k) . We will then consider the
Lp

loc - convergence on Z in the following sense: we say that a sequence of functions

fi : Z → R converges to f in the Lp
loc - topology (and we denote it by fi

Lp
loc−→ f ) if every

x ∈ Z has a neighborhood U in Z such that the restrictions fi|U converge to f|U in the

Lp(U,H k) norm.
If Ω ⊂ R

n is an open set, we denote by Lp(Ω) the Lp measurable functions on Ω
(with respect to the Lebesgue measure) and by ||u||Lp(Ω) the Lp norm. We then let

W 1,p(Ω) := {u ∈ Lp(Ω), |∂u| ∈ Lp(Ω)}

denote the Sobolev space, where ∂u stands for the gradient of u in the sense of distri-
butions. It is well-known that this space, equipped with the norm

||u||W1,p(Ω) := ||u||Lp(Ω) + ||∂u||Lp(Ω)

is a Banach space, in which C ∞(Ω) is dense for all p ∈ [1,∞) .
We put ∂Ω := Ω\Ω and we will denote by ∂ 1

regΩ the set of points of ∂Ω at which
this set is a C 1 submanifold of R

n of dimension (n−1) .
We write |.| for the euclidean norm. Given x ∈ R

n and ε > 0, we denote by
B(x,ε) the open ball of radius ε centered at x (for the euclidean norm) and by Sn−1

the unit sphere (centered at the origin). The euclidean distance of a point x ∈ R
n to a

subset A ⊂ R
n is denoted by dist(x,A) and the canonical basis of R

n by e1, . . . ,en .

2. Trace operator

In this section we define a trace operator on the boundary of a given open definable
set Ω ⊂ R

n . As definable sets are piecewise C 1 submanifolds of R
n , this actually

follows from the classical theory.
For this purpose, we shall make use of the set W 1,p

loc (Ω∪∂ 1
regΩ) , which is defined

as the set constituted by all the distributions u on Ω such that every x ∈ Ω∪ ∂ 1
regΩ

has a neighborhood U in R
n such that the restriction u|U∩Ω belongs to W 1,p(U ∩Ω) .

We then say that (ui) converges to u ∈W 1,p
loc (Ω∪ ∂ 1

regΩ) if every x ∈ Ω∪ ∂ 1
regΩ has a

neighborhood U in R
n such that the restriction ui|U∩Ω converges to u|U∩Ω in W 1,p(U∩

Ω) . This defines the W 1,p
loc -topology.

DEFINITION 1. We say that Ω is connected at x∈ ∂Ω if B(x,ε)∩Ω is connected
for all ε > 0 small enough. We say that Ω is normal if it is connected at each x ∈ ∂Ω .

OBSERVATION 2.1. If Ω is normal then C 1(Ω∪ ∂ 1
regΩ) is dense in W 1,p

loc (Ω∪
∂ 1

regΩ) .



144 A. VALETTE AND G. VALETTE

Proof. Up to a partition of unity and a coordinate system of ∂ 1
regΩ , we are re-

duced to finding a C 1 approximation of a given function u ∈W 1,p(H+) , where H+ =
{(x1, . . . ,xn)∈R

n : xn > 0} is the positive half-space, for which the result is well-known
[4, Section III.2.5]. �

OBSERVATION 2.2. Let ( fi) ⊂ C 1(Ω∪∂ 1
regΩ) be a sequence.

(i) If ( fi) is converging in the W 1,p
loc -topology, then ( fi|∂ 1

regΩ) is also Lp
loc -converging.

(ii) If ( fi) converges to 0 in the W 1,p
loc -topology, then fi|∂ 1

regΩ
Lp

loc−→ 0.

Proof. Fix x ∈ ∂ 1
regΩ . There are a relatively compact neighborhood U of x in

Ω∪ ∂ 1
regΩ and a constant C > 0 such that for all ϕ ∈ C 1(Ω∪ ∂ 1

regΩ) the following
inequality holds (for instance by [4, Proposition III.2.18])

||ϕ ||Lp(U∩∂ 1
regΩ,H n−1) � C||ϕ ||1−1/p

Lp(U∩Ω) ||ϕ ||
1/p
W 1,p(U∩Ω). (2.1)

Since the set U is relatively compact in Ω∪∂ 1
regΩ , we know that if ( fi) is convergent in

W 1,p
loc (Ω∪∂ 1

regΩ) then ( fi|U∩Ω) is convergent in W 1,p(U ∩Ω) . We conclude from (2.1)
that the sequence ( fi|U∩∂ 1

regΩ) is Cauchy in Lp(U ∩ ∂ 1
regΩ,H n−1) , which establishes

(i) . This also yields that if ( fi) converges to 0 in the W 1,p
loc -topology then fi|∂ 1

regΩ
Lp

loc−→
0. �

To define our trace operator in the case where Ω is normal for ϕ ∈C 1(Ω∪∂ 1
regΩ) ,

let now tr(ϕ) := ϕ|∂ 1
regΩ . By Observations 2.1 and 2.2, this mapping extends to a

mapping
tr∂ 1

regΩ : W 1,p(Ω) → Lp
loc(∂

1
regΩ,H n−1),

which is continuous in the W 1,p
loc (Ω∪∂ 1

regΩ)-topology.
Let us now define the trace in the case where Ω is not necessarily normal. There

is a finite partition P of ∂ 1
regΩ into definable sets such that every (n−1)-dimensional

element S of P is open in ∂ 1
regΩ and the number of connected components of B(x,ε)∩

Ω (for ε > 0 sufficiently small) is the same (1 or 2) for all x ∈ S . For instance, such
a partition is given by the images of the open simplices of a C 0 definable triangulation
[5]. We start by defining trS , where S is an (n−1)-dimensional element of P .

First case: Ω is connected at the points of S . In this case, there is a neighborhood
V of S in R

n such that V ∩Ω is normal and we can define:

trS : W 1,p(Ω) → Lp
loc(S,H n−1)2, u 	→ (trS u|V∩Ω,0).

Here, we add the zero function as second component since there is only one connected
component. There will be a possibly nonzero component in the second case.
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Second case: Ω fails to be connected at the points of S . Let V be a neighborhood
of S such that V ∩∂Ω = S . If V is sufficiently small, the set V ∩Ω has two connected
components Ω1 and Ω2 such that Ω1 ∪ S and Ω2 ∪ S are both C 1 manifolds with
boundary.

Let us denote by
tr1

S : W 1,p(Ω1) → Lp
loc(S,H n−1)

and
tr2

S : W 1,p(Ω2) → Lp
loc(S,H n−1)

the respective trace operators resulting from the above Observations. We then define

trS : W 1,p(Ω) → Lp
loc(S,H n−1)2, u 	→ (tr1

S u|Ω1
, tr2

S u|Ω2
).

Of course, this mapping depends on the way we have enumerated the connected com-
ponents of V ∩Ω , but, up to a possible permutation of the components, it is independent
of any choice. In particular, the kernel of this mapping is independent of our choices.

Finally, we define tru by tru(x) = trSu(x) , for x ∈ S , for each S ∈ P such that
dimS = n− 1. Since it is induced by the respective trace operators of the connected
components of the germ of Ω at every point of x ∈ ∂ 1

regΩ , it is an Lp
loc mapping on this

set.
We let

W 1,p(Ω,∂ 1
regΩ) := ker tr.

REMARK 1. It is easy to produce examples of definable domains Ω admitting a
function u ∈W 1,p(Ω) such that tru is not Lp on the boundary. Let for k > 2,

Ωk := {(x,y) ∈ (0,1)2 : y < xk},
and let u(x,y) := 1

x . Clearly, u ∈ W 1,p(Ωk) , for p ∈ [1, k
2 ] , while tru is not Lp on

∂ 1
regΩk . The results of [15] however yield that there is p0 such that for p � p0 and

u ∈ W 1,p(Ω) , tru is always Lp , if Ω is a subanalytic bounded domain (the proof
actually applies to any bounded domain which is definable in a polynomially bounded
o-minimal structure expanding the real field). The real number p0 depends on the
Lipschitz geometry of ∂Ω .

3. Uniform bound for the Poincaré constants of definable families

We say that (At)t∈Rk is a definable family if the set

A :=
⋃

t∈Rk

At ×{t}

is a definable subset of R
n ×R

k . We will sometimes regard a definable subset A ⊂
R

n×R
k as a definable family, setting

At := {x ∈ R
n : (x,t) ∈ A}.
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Given two definable families A⊂R
n×R

k and B⊂R
m×R

k , we say that Ft : At →
Bt , t ∈ R

k , is a definable family of mappings if the family of the graphs (ΓFt )t∈Rk , is a
definable family of sets of R

n+m .
A definable family of mappings Ft : At → Bt , t ∈ R

k is uniformly Lipschitz (resp.
bi-Lipschitz) if there exists a constant L such that Ft is L -Lipschitz1 (resp. Ft is L -bi-
Lipschitz) for all t ∈ R

k .
Here, we wish to emphasize that a definable family of sets (resp. mappings) is not

only a family of definable sets (resp. mappings): all the fibers must glue together into
a definable set (resp. mapping). This confers to such families many uniform finiteness
properties that are essential for our purpose (see [5, 18]).

Given X ∈ Sn , we denote by (X)reg the set of the points x ∈ X at which X is a
C 1 submanifold of R

n (of any dimension) and by Tx(X)reg the tangent space to (X)reg

at the point x . We say that λ ∈ Sn−1 is regular for X if there exists α > 0 such that
for all x ∈ (X)reg :

dist(λ ,Tx(X)reg) � α. (3.1)

We say that λ is regular for a family (At)t∈Rk , if there is α > 0 such that (3.1)
holds for X = At , for all t ∈ R

k and all x ∈ (At)reg .
If λ ∈ Sn−1 is regular for A ∈ Sn+k , it is of course regular for At ∈ Sn for every

t ∈ R
k , but it is indeed even stronger since the angle between the vector λ and the

tangent spaces to the fibers must then be bounded below away from zero by a positive
constant independent of the parameter t .

Regular vectors do not always exist, even if the considered set has empty interior,
as it is shown by the simple example of a circle. Nevertheless, when the considered sets
have empty interior, up to a definable family of bi-Lipschitz maps, we can find such a
vector:

THEOREM 3.1. Let (At)t∈Rk be a definable family of subsets of R
n such that At

has empty interior for each t ∈ R
k . There exists a uniformly bi-Lipschitz definable

family of homeomorphisms ht : R
n → R

n such that the vector en is regular for the
family (ht(At))t∈Rk .

Proof. It suffices to apply Theorem 3.1.3 of [16] to the generic fibers of the family
A (see [5, section 5] for the definition of the generic fibers) and the compactness of the
Stone space of the Boolean algebra of the definable sets. A more elementary explicit
proof of this theorem, avoiding the abstract material of the Stone space, is provided in
[17, Theorem 2.2] (see also [18, Theorem 3.1.2] for more details). �

For λ ∈ Sn−1 , the thickness of a set Ω ⊂ R
n in the direction λ is defined as

|Ω|λ := sup
x∈Ω

sup{s � 0 : x+ sλ ∈ Ω}.

We say that Ω is bounded in the direction λ if |Ω|λ < +∞ .
We need the following Poincaré type inequality on definable domains.

1i.e. |Ft (x)−Ft(y)| � L|x− y| for all x,y ∈ At
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THEOREM 3.2. Let Ω ⊂R
n be an open definable subset bounded in the direction

λ ∈ Sn−1 and let u ∈W 1,p(Ω,∂ 1
regΩ) , p ∈ [1,∞) . We have

||u||Lp(Ω) � 21/p |Ω|λ ||∂u||Lp(Ω). (3.2)

Proof. Changing the coordinate system if necessary, we can assume that λ = en .
Take a cell decomposition of R

n compatible with Ω and ∂ 1
regΩ , and let E be an open

cell of this decomposition which is included in Ω . This cell is of the form {(x̃,xn), x̃ ∈
D, ξ1(x̃) < xn < ξ2(x̃)} , where ξ1 and ξ2 are C 1 definable functions on an open cell
D ⊂ R

n−1 such that ξ1 < ξ2 . If the graph Γξ1
(resp. Γξ2

) is not in ∂Ω then the cell
which lies below (resp. above) E is also included in Ω . As we can make a bigger cell
by gluing these cells to E , we may assume that Γξ1

and Γξ2
are included in ∂ 1

regΩ .
Define now for ε > 0

Dε := {x ∈ D : dist(x,∂D) > ε},

Fε := π−1(Dε)∩ (ξ1,ξ2),

where π : R
n → R

n−1 is the projection onto the (n− 1) first coordinates. Since for
each ε > 0 the set Fε is a compact subset of the manifold with boundary E∪Γξ1

∪Γξ2

and the function u has trace zero on the boundary, we can approximate u by smooth
functions, i.e. for every ε > 0 there exists a sequence (ui) ⊂ C ∞

0 (E) satisfying

||u−ui||W 1,p(Fε ) → 0. (3.3)

To construct such a sequence, we take local C ∞
0 approximations at the points of Fε

(using for instance the mollyfying operators constructed in [4, III.2.2]) that we then
glue together by means of a partition of unity subordinated to a finite covering of Fε .
Fix ε > 0 and set for simplicity N := |Ω|en . By the Main Calculus Theorem, we have
for x = (x1, . . . ,xn) ∈ E :

ui(x) =
∫ 0

ξ2(x̃)−xn

∂ui

∂xn
(x1,x2, . . . ,xn + s)ds, (3.4)

and hence

|ui(x)| �
∫ N

0

∣∣∣∣ ∂ui

∂xn
(x1,x2, . . . ,xn + s)

∣∣∣∣ds. (3.5)

For t ∈ R and x̃ ∈ D we put

vi,t(x̃,s) :=

{
∂ui
∂xn

(x̃,s+ t), (x̃,s+ t) ∈ Fε

0, (x̃,s+ t) /∈ Fε .
(3.6)

Then, by Minkowski’s inequality

||ui||Lp(Fε) =
∣∣∣∣
∣∣∣∣
∫ N

0
|vi,s(x̃,xn)|ds

∣∣∣∣
∣∣∣∣
Lp(Fε)

�
∫ N

0
||vi,s||Lp(Fε ) ds. (3.7)
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By Hölder’s inequality we get

||ui||Lp(Fε) � (N)1/p′
(∫ N

0
||vi,s||pLp(Fε ) ds

) 1
p

, (3.8)

with 1
p + 1

p′ = 1, which reads, since vi,s(xn) = vi,xn(s) ,

||ui||Lp(Fε) � (N)1/p′
(∫ N

0

(∫ N

−N

∫
Dε

|vi,xn(x̃,s)|p dx̃ dxn

)
ds

) 1
p

= (N)1/p′
(∫ N

−N

(∫ N

0

∫
Dε

|vi,xn(x̃,s)|p dx̃ ds

)
dxn

) 1
p

� (N)1/p′
(∫ N

−N
||vi,xn ||pLp(π−1(Dε )) dxn

) 1
p

=21/pN

∣∣∣∣
∣∣∣∣ ∂ui

∂xn

∣∣∣∣
∣∣∣∣
Lp(Fε )

,

since for all t ∈ R we have ||vi,t ||Lp(π−1(Dε ))
(3.6)
= || ∂ui

∂xn
||Lp(Fε) . Passing to the limit as

i → ∞ we get, thanks to (3.3), that the above inequality holds for u as well. Making
ε → 0 we finally obtain

||u||Lp(E) � 21/pN||∂u||Lp(E),

for every cell E ⊂ Ω . �
Our uniform Poincaré inequality for definable families will require the following

lemma.

LEMMA 3.3. Let Ω ⊂ R
n ×R

k be a definable family of open sets. There exist
K > 0 and a uniformly bi-Lipschitz definable family of homeomorphisms ht : R

n → R
n

such that for any t ∈ R
k :

|ht(Ωt)|en � KH n(Ωt)1/n. (3.9)

Proof. It suffices to focus on the elements t ∈ R
k for which H n(Ωt) is finite

since (3.9) is trivial for the other parameters. As ∂Ωt is a definable family of sets
of empty interiors, by Theorem 3.1, there is a uniformly bi-Lipschitz definable family
of homeomorphisms ht : R

n → R
n such that en is regular for the family (∂Ω′

t)t∈Rk ,
where Ω′

t := ht(Ωt) , which entails that ∂Ω′
t is comprised in the union of the respective

graphs of some uniformly Lipschitz definable families of functions ξi,t : R
n−1 → R ,

i = 1, . . . ,m (see for instance [17, Proposition 3.6] or [18, Chap. 3]). Using the min
operator, we can transform these families into families that satisfy ξi,t � ξi+1,t , for all
i < m and all t ∈ R

k (see [17, Proposition 3.14]).
Fix t ∈ R

k . Since ∂Ω′
t is included in the graphs of the functions ξi,t , the set

Ω′
t \

⋃m
i=1 Γξi,t

is the union of some connected components (which are finitely many)
of the sets (ξi,t ,ξi+1,t) 0 � i � m , with ξ0 ≡ −∞ and ξm+1 ≡ +∞ . As Ω′

t has finite
volume, we therefore see that it actually must be included in (ξ1,t ,ξm,t) .
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Let us thus fix a connected component E of (ξ j,t ,ξ j+1,t) ∩ Ω′
t , for some 0 <

j < m , and observe that, since the number of such connected components is bounded
independently of t , it is enough to prove that we have

|E|en � KH n(Ω′
t)

1/n,

for some constant K independent of t .
We are going to show that this inequality is satisfied by any K > 4L1−1/n , where

L is the Lipschitz constant of the function (ξ j,t −ξ j+1,t) . Fix for this purpose a point a
in π(E) , where π : R

n → R
n−1 is the projection onto the (n−1) first coordinates, and

suppose by contradiction that

ξ j+1,t(a)− ξ j,t(a) > KH n(Ω′
t)

1/n.

Then, for any x ∈ Z := B(a, KH n(Ω′
t)

1/n

2L ) ⊂ R
n−1 we have

ξ j+1,t(x)− ξ j,t(x) >
K
2

H n(Ω′
t)

1/n,

and hence, integrating over Z , we get (since (ξ j,t|Z ,ξ j+1,t|Z) ⊂ E ⊂ Ω′
t )

H n(Ω′
t) � H n−1

(
B(a,

K
2L

H n(Ω′
t)

1/n)
)
· K
2

H n(Ω′
t)

1/n =
Kn bn

2nLn−1 H n(Ω′
t),

where bn := H n−1(B(0
Rn−1 ,1)) . If K > 4L1−1/n , we therefore have a contradiction

(as bn � 1
2n ). �

We conclude, directly from the above lemma and Theorem 3.2:

THEOREM 3.4. For every definable family Ω ⊂ R
n ×R

k of open sets of finite
volume there is a constant C such that for all t ∈ R

k and all u ∈ W 1,p(Ωt ,∂ 1
regΩt) ,

p ∈ [1,∞) , we have:

||u||Lp(Ωt) � CH n(Ωt)1/n||∂u||Lp(Ωt). (3.10)
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