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Abstract. For a graph G of order n , size m and degree sequence D(G) = (d1,d2, . . . ,dn) , a
new measure of irregularity

IAG(G) = 1−nn(d1 + r)(d2 + r) · · ·(dn + r)/(2m+ rn)n,

r ∈ R�0 , is introduced. It is shown that if G has maximum IAG -irregularity among all con-
nected graphs of order n and size m , then (i) Δ(G) = n− 1 ; (ii) for each u,v ∈ V(G) with the
property dG(u) � dG(v) , it holds that N(G,u) ⊆ N[G,v] , where N(G,w) and N[G,w] are the
neighbourhood and the closed neighbourhood of w in G , respectively; (iii) G is a threshold
graph. Further, it is proven that if a graph H has a minimum value of IAG -irregularity among
all irregular graphs of the same order and size, then Δ(H)−δ (H) = 1 . Finally, the graphs with
minimum and maximum IAG -irregularity in the classes of trees, unicyclic and bicyclic graphs
are characterized.

1. Introduction

Let G be a simple graph, with vertex set V (G) = {v1,v2, . . . ,vn} and edge set
E(G) = {e1,e2, . . . ,em} . The quantities n and m are called the order and size of G ,
respectively. The degree of vertex w in G , dG(w) , is the number of vertices adja-
cent to w . When from the context it is clear, which graph is considered, the index of
G in dG(w) will be omitted. N(G,v) denotes the set of vertices adjacent to v and
N[G,v] = N(G,v)∪{v} . The maximum degree of G , denoted by Δ(G) , and the min-
imum degree of G , denoted by δ (G) , are the maximum and minimum of its vertices’
degrees. D(G) = (dG(v1),dG(v2), . . . ,dG(vn)) , with dG(v1) � dG(v2) � · · · � dG(vn)
is called the degree sequence of G . The graph G is said to be regular of degree k ,
when D(G) = (k,k, . . . ,k) . Otherwise, the graph is irregular.

A pendant vertex is a vertex of degree one. For a connected graph G of order
n and size m , the cyclomatic number of G is defined as c = m− n+ 1. Graphs with
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cyclomatic numbers c = 1 and 2 are said to be unicyclic and bicyclic, respectively.
A clique is a subset of vertices of a graph such that every two distinct vertices in the
clique are adjacent. An independent set is a set of vertices in a graph, no two of which
are adjacent. A connected graph G with the property that the vertex set V (G) can be
partitioned into two subsets A and B , such that A is independent and B is a clique,
is called a split graph. If G has n vertices and the subset A has exactly k elements,
then the graph G is denoted by S(n,k) . If each vertex in A is adjacent to each vertex
in B , then it is called complete split graph and we denote it by KS(n,k) . A cograph is
a graph with no induced path on four vertices, P4 . A graph is a threshold graph if and
only if it is both a cograph and a split graph [8]. Some alternative notations of threshold
graph can be found in [5].

Let H be a subclass of a class of all non-isomorphic graphs G . The real function
I : H −→ R�0 is called an irregularity measure on H , if for all G ∈ H , I (G) = 0 if
and only if G is regular. We refer the interested readers to consult the recently published
book of Ali et al. [4] for more information on this topic.

To the best of our knowledge, the first irregularity measure of graphs was intro-
duced by Collatz and Sinogowitz [9]. For a simple graph G of order n and size m
with eigenvalues λ1 � λ2 � · · · � λn , they proved that λ1 � 2m/n with equality if
and only if G is regular. Therefore, this property leads to an irregularity measure
CS(G) = λ1−2m/n . Collatz and Sinogowitz proved that the star and path on n vertices
have the maximum and minimum values of CS among all n−vertex trees, and checked
that for all graphs with at most five vertices CS(G) �

√
n−1−2+2/n , with equality if

and only if G is isomorphic to the n−vertex star graph Sn . They also conjectured that
the n−vertex star graph Sn has maximum value of CS among all n−vertex graphs.
Counterexamples for this conjecture were presented by Cvetković and Rowlinson [10].

Bell [7] introduced the vertex degree variance of the graph G , Var(G) , as Var(G)
= 1

n ∑v∈V (G)
(
d(v)− 2m

n

)2
. He determined the most irregular graphs with respect to

irregularity measures CS and Var for various classes of graphs.

The edge imbalance of an edge e = xy of a graph G is defined as |d(x)− d(y)| .
The sum of imbalances over all edges of G is called the irregularity of G . It was
introduced by Albertson [3], who also determined the maximum irregularity of various
classes of graphs and proved that the irregularity of an arbitrary n−vertex graph has
a tight bound of 4n3/27. In [2] it is shown that for general graphs with n vertices
the upper bound �n/3	
2n/3�(
2n/3�−1) is sharp. Albertson also proved that the
irregularity of any graph is an even positive integer.

Motivated to overcome some disadvantages of the (Albertson) irregularity, Abdo et
al. [1] introduced the total irregularity of G as irrt (G) = ∑{u,v}⊆V (G) |dG(u)−dG(v)| .
They determined all graphs with maximal total irregularity and showed that among all
n−vertex trees the star graph Sn has the maximal total irregularity. A comparison of
irregularity and total irregularity was studied in [11]. In [6] it was proven that if G is an

irregular n−vertex graph, then irrt (G) �
{

n−1, if 2 � n
2n−4, if 2 | n . There, also all graphs for

which the equality is satisfied were determined. In [16] tight upper and lower bounds
on the total irregularity of an n−edge connected graph with a cyclomatic number c and
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p pendant vertices were established.

Estrada [12] introduced a new measure of irregularity for graphs without isolated
vertices, ρ(G) = (∑uv∈E(G)(d(u)−1/2−d(v)−1/2)2/(n−2

√
n−1) , which in a context

of networks was named as a degree heterogeneity. He proved that 0 � ρ(G) � 1 with
equality on the left side if and only if G is regular. The equality on the right side
occurs if and only if G is a star graph. A scale-free network is a network whose degree
distribution follows a power law. Many real-world networks have been reported to be
scale-free. The irregularity of a scale-free network is very close to the irregularity of the
star graph, considered by Estrada as a graph, which is most appropriate to be the graph
with maximal irregularity. Estrada analyzed several real-world networks to support his
expectation and intuition. In [13], he studied 17 real-world networks representing food
webs in a variety of ecological environments. A graphical method for representing
every graph in a degree heterogeneity space was introduced. Estrada [14] proved a few
analytical results showing the relation of degree heterogeneity index to the number of
pendant nodes, and to some irregularity indices proposed in the literature.

Nikiforov [18] presented the degree deviation of graphs, which is another irregu-
larity measure of graphs based on vertex degrees. This irregularity measure is defined
as S(G) = ∑v∈V (G)

∣∣d(v)− 2m
n

∣∣ . Nikiforov proved that Var(G)/(2
√

2m) � CS(G) �√
S(G) , S(G)2/(2n2

√
2m) � CS(G) � 4

√
n2Var(G) , S(G)2/n2 � Var(G) � S(G) ,

λn(G) + λn(Gc) � −1− S(G)2/2n3 and λk(G) + λn−k+2(Gc) � −1 −2
√

2S(G) ,
where 2 � k � n and Gc denotes the complement of G . Two of the present authors
[15] proved that if

k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n
3

if 3 | n
n−1

3
if 3 | n−1

n−2
3

n+1
3

if 3 | n−2

,

then KS(n,k) has the maximum degree deviation among all n−vertex graphs.

The aim of this paper is to propose a new irregularity measure, which is also an
invariant regarding a given degree sequence. It is based on the arithmetic-geometric
mean inequality. By modifying the value of the parameter r , different graphs with
maximal irregularity can be obtained. We conjecture that the star graph will be one
among them. Also, we expect that we can tune r such that the discrimination ability
of this measure will increase. The justification of this will come when the stronger
versions of both conjectures at the end of the paper will be resolved (for any possible
r ). Also, additional theoretical and practical support will be needed. This is however
beyond the scope of this work and could be considered in the future. We introduce this
new irregularity measure in the next section, where also some of its properties will be
shown. Those properties lead to characterizations of extremal graphs for a few classes
of graphs, which will be done in the last section.
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2. IAG -irregularity

Let G be a simple graph of order n , size m and with a degree sequence D(G) =
(d1,d2, . . . ,dn) . By the classical result of Euler, ∑n

i=1 di = 2m . Suppose that r is a
non-negative real number. By the arithmetic-geometric mean inequality,

(d1 + r)+ (d2 + r)+ · · ·+(dn + r)
n

� n
√

(d1 + r)(d2 + r) · · ·(dn + r)

with inequality if and only if d1 = d2 = · · · = dn . Thus,

nn(d1 + r)(d2 + r) · · ·(dn + r)
(2m+ rn)n � 1,

with equality if and only if G is regular. From the last inequality, we can derive the
following quantity:

IrAG(G) = 1− nn(d1 + r)(d2 + r) · · ·(dn + r)
(2m+ rn)n ,

where, IrAG(G) = 0 if and only if G is regular, otherwise 0 < IrAG(G) < 1. Therefore,
IrAG is a measure of irregularity. If we are not considering a particular value of r , then
r will be omitted as a superscript in the notation.

2.1. Some properties of the graphs with extremal IAG -irregularity

THEOREM 1. Let G be a graph with maximal IAG -irregularity among all con-
nected graphs of order n and size m. Then, Δ(G) = n−1 .

Proof. Suppose Δ(G) � n− 2, and d(v) = Δ(G) = Δ , for some v ∈ V (G) . Let
N(G,v) = {x1,x2, . . . ,xΔ} . Since G is connected there exists i , 1 � i � Δ , such that
A = N(G,xi)\N(G,v) �= /0 . Let a ∈ A be a vertex adjacent to xi . Consider the graph
G1 obtained by deleting the edge xia and adding the edge va , i.e., G1 = G−{xia|a ∈
A}+{va|a∈ A} . Then G1 is a graph of order n and size m . It holds that

1− IAG(G)
1− IAG(G1)

=

(
nn ∏v∈V (G)(dG(v)+ r)

)
/(2m+ rn)n(

nn ∏v∈V (G1)(dG1(v)+ r)
)
/(2m+ rn)n

=
(Δ + r)(dG(xi)+ r)

(Δ + |A|+ r)(dG(xi)−|A|+ r)
. (1)

On the other hand,

(Δ + r)(dG(xi)+ r)− (Δ + |A|+ r)(dG(xi)−|A|+ r) = |A|(|A|+ Δ−dG(xi))
� |A|(|A|+ Δ−Δ) > 0.

Applying (1) it can be deduced that
1− IAG(G)
1− IAG(G1)

> 1. Thus, 1− IAG(G) > 1−
IAG(G1) and so IAG(G) < IAG(G1) , a contradiction. Therefore, Δ(G) = n−1. �
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Next, we characterize the difference between the minimum and maximum degree
of the graphs with minimal IAG -irregularity.

THEOREM 2. Let G be a graph with minimal IAG -irregularity among all con-
nected irregular graphs of order n and size m. Then, Δ(G)− δ (G) = 1 .

Proof. Assume that Δ(G)− δ (G) � 2. Choose two vertices u and v of G such
that d(u) = Δ(G) = Δ and d(v) = δ (G) = δ . Under these conditions there exists
a vertex w ∈ N(G,u) \ N(G,v) . Let G2 be the graph obtained from G by deleting
the edge wu and adding the edge wv , i.e., G2 = G−wu + wv . Due to the condition
Δ(G)− δ (G) � 2, we can choose the vertex w in such a way that G2 is connected.
Note that G2 has order n and size m . Further, we have

1− IAG(G)
1− IAG(G2)

=
(Δ + r)(δ + r)

(Δ−1+ r)(δ +1+ r)
. (2)

On the other hand, (Δ+ r)(δ + r)− (Δ−1+ r)(δ +1+ r) = δ +1−Δ < 0. Hence, by

(2),
1− IAG(G)
1− IAG(G2)

< 1, which implies that IAG(G2) < IAG(G) , which is a contradiction

by minimality of G . We now apply our assumption that G is irregular to deduce that
Δ(G)− δ (G) = 1. �

By a similar argument, one can see that the previous theorem is valid for non-
connected graphs.

The next result charaterizes the neighbourhood of the vertices of the graphs with
maximal IAG -irregularity.

THEOREM 3. Let G be a graph with the maximum value of the IAG -irregularity
among all connected graphs of order n and size m. If u,v∈ V (G) and dG(u) � dG(v) ,
then N(G,u) ⊆ N[G,v] .

Proof. Let u and v be two vertices of G such that dG(u) � dG(v) and N(G,u)\
N[G,v] �= /0 . Choose the vertex x∈ N(G,u)\N[G,v] �= /0 . Let G3 be the graph obtained
by deleting the edge xu and adding the edge xv , i.e., G3 = G− xu+ xv . By definition
of G3 ,

1− IAG(G)
1− IAG(G3)

=
(dG(u)+ r)(dG(v)+ r)

(dG(u)−1+ r)(dG(v)+1+ r)
. (3)

On the other hand,

(dG(u)+ r)(dG(v)+ r)− (dG(u)−1+ r)(dG(v)+1+ r) = dG(v)+1−dG(u) > 0.

Hence by (3),
1− IAG(G)
1− IAG(G3)

> 1 and so IAG(G) < IAG(G3) , contradicts by maxi-

mality of G . Therefore, for all vertices u and v of G with condition dG(u) � dG(v) ,
we have N(G,u) ⊆ N[G,v] , as desired. �
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By a similar argument as in the previous theorem, it can be easily seen that Theo-
rem 3 is also valid for non-connected graphs.

Finally, we are presenting the closest characterization of graphs of fixed order and
size with maximal IAG -irregularity so far.

THEOREM 4. If the graph G has maximal IAG -irregularity among all connected
graphs of order n and size m, then G is a threshold graph.

Proof. Recall that a graph is a threshold graph if and only if it is both a split graph
and a cograph.

Firstly, we show that G is a split graph. Suppose S is the largest subset of V (G)
such that G[S] is a complete graph and min{dG(x)|x∈ S} � max{dG(x)|x∈ V (G)\S}.
We claim that V (G)\S is an independent set. If not, the subgraph G[V (G)\S] has at
least one edge. Suppose v ∈V (G)\S such that N(G,v)∩ (V (G)\S) �= /0 , and dG(v) �
max{dG(x)|x ∈ V (G)\SandN(G,x)∩ (V (G)\S) �= /0}. By Theorem 3 and maximal-
ity of G , we can see that for each vertex u ∈ V (G)\S which satisfies the condition
N(G,u)∩(V (G)\S)= /0 we have dG(u)< dG(v) . Note that in the other case, N(G,v)⊆
N(G,u) which contradicts N(G,u)∩ (V (G)\S) = /0 . Thus for every y ∈ V (G)\S , we
have dG(y) � dG(v) . By definition of S , S\N(G,v) �= /0 . Suppose a ∈ S\N(G,v) and
b∈ N(G,v)∩(V (G)\S) . Define G4 = G−vb+va . By Theorem 1 and this assumption
that G has maximum value of IAG , we can see that ba ∈ E(G) . This proves that G4 is
a connected graph of order n and size m and by definition of G4 ,

1− IAG(G)
1− IAG(G4)

=
(dG(a)+ r)(dG(b)+ r)

(dG(a)+1+ r)(dG(b)−1+ r)
. (4)

On the other hand,

(dG(a)+ r)(dG(b)+ r)− (dG(a)+1+ r)(dG(b)−1+ r) = dG(a)+1−dG(b) > 0.

Thus by (4),
1− IAG(G)
1− IAG(G4)

> 1 and so IAG(G) < IAG(G4) , which contradicts by maxi-

mality of G . This proves that V (G)\S is independent and G is a split graph.
Next, we show that G does not contain induced paths on 4 vertices, which will

imply that G is also a cograph. Assume that there is a path P on 4 vertices in G .
Observe that P must contain at least two vertices from the clique, otherwise, it cannot
exist. On the other hand, P cannot contain three or four vertices from the clique,
because those vertices will induce at least one triangle. Thus, P must contain two
vertices, u1 and u2 , from the clique and two vertices, v1 and v2 , from the independent
set. The vertices u1 and u2 must be adjacent in P , otherwise, we have a triangle,
due to the edge u1u2 (u1 and u2 are adjacent since they belong to the clique). So the
remaining configuration of P is when its end-vertices are v1 and v2 . We may assume
that P = v1u1u2v2 and that d(v1) � d(v2) . Then, by Theorem 3, v1 is also adjacent to
u2 , and we have again triangle. Thus, we can conclude that G does not have induced
paths on 4 vertices, i.e., G is also a cograph. �
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From the above results, the characterization of the graphs with minimal and max-
imal IAG -irregularity in the classes of trees, unicyclic and bicyclic graphs follows, and
it will be presented in the next section. In addition, we will characterize the c-cyclic
graphs with minimal IAG -irregularity.

3. Trees and c-cyclic graphs with extremal IAG -irregularity

The aim of this section is to study the extremal c-cyclic graphs under IAG -irregularity.

COROLLARY 1. If T is an n−vertex tree, then

1−nn (r+2)n−2 (1+ r)2 (rn+2n−2)−n � IAG(T ) (5)

� 1−nn (1+ r)n−1 (n−1+ r)(rn+2n−2)−n . (6)

The equality in (5) is satisfied if and only if T ∼= Pn , and the equality in (6) is satisfied
if and only if T ∼= Sn .

Proof. Let T be a tree of order n . It is easy to see that Δ(T ) = n−1 if and only
if T ∼= Sn . Moreover, Δ(T ) = 2 if and only if T ∼= Pn . Apply Theorem 2 to deduce
that the minimum value of IAG among all trees of order n are attained if and only if T
is a path. The star graph Sn is the only threshold graph of order n and size n−1, and
we know from Theorem 4 that threshold graphs maximize the IAG . On the other hand,

IAG(Sn) = 1−nn (r+2)n−2 (1+ r)2 (rn+2n−2)−n ,

IAG(Pn) = 1−nn (1+ r)n−1 (n−1+ r)(rn+2n−2)−n ,

proving the result. �
Suppose Se

n is a unicyclic graph obtained from the star Sn by adding one edge
e . Note that all such unicyclic graphs are isomorphic and so the graph structure is
independent of the choice of the edge e .

COROLLARY 2. Let U be a unicyclic graph of order n � 4 . Then,

0 � IAG(U) � 1−nn (1+ r)n−3 (r+2)2 (n−1+ r)((r+2)n)−n .

The equality on the left is satisfied if and only if U ∼= Cn , and the equality on the right
is attained if and only if U ∼= Se

n .

Proof. Since ∑v∈V (U) d(v) = 2n , if U has a vertex of degree n− 1, then it must
have two vertices of degree 2 and n−3 vertices of degree 1. This shows that Δ(U) =
n− 1 if and only if U ∼= Se

n . Since U ∼= Se
n is the unique threshold graph amnong

uncyclic connected graphs, from Theorem 4 it follows that it maximizes the IAG -
irregularity. It can be easily calculated that IAG(Se

n)= 1−nn(1+r)n−3(r+2)2(n−1+r)
((r+2)n)−n . On the other hand, the cycle Cn is the unique regular unicyclic graph, and
IAG(Cn) = 0. �
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Denote by S2e
n the graph constructed from Sn by adding two edges, so that its

degree sequence is

D(S2e
n ) = (n−1,3,2,2,

n−4︷ ︸︸ ︷
1, . . . ,1).

We also assume that Bn(2,3) is the family of all connected bicyclic graphs with degree
sequence

(3,3,

n−2︷ ︸︸ ︷
2, . . . ,2).

COROLLARY 3. Let B be a bicyclic n−vertex graph. Then,

IAG(B) � 1−nn (1+ r)n−4 (r+2)2 (3+ r)(n−1+ r)(rn+2n+2)−n

with equality if and only if B ∼= S2e
n . Moreover,

IAG(B) � 1−nn (r+2)n−2 (3+ r)2 (rn+2n+2)−n

with equality if and only if B ∈ Bn(2,3) .

Proof. It can be seen that if Δ(B) = n− 1 and for all vertices u,v ∈ V (B) with
condition dB(u) � dB(v) , we have N(B,u)⊆N[B,v] , then B∼= S2e

n . Furthermore, there
is no regular bicyclic graph and Δ(B)− δ (B) = 1 if and only if B ∈ Bn(2,3) . After
simplifying the calculations, we can obtain that

IAG(S2e
n ) = 1−nn (1+ r)n−4 (r+2)2 (3+ r)(n−1+ r)(rn+2n+2)−n ,

and if B ∈ Bn(2,3) , then

IAG(B) = 1−nn (r+2)n−2 (3+ r)2 (rn+2n+2)−n . �

Connected graphs of fixed order and size share the same cyclomatic number, and
therefore, the problem of determining extremal graphs with given order and size is
equivalent to the problem of determining extremal graphs with given cyclomatic num-
ber c and order (or size).

Let Cn(Δ− 1,Δ) be the family of all connected c-cyclic graphs with degree se-
quence

(

nΔ︷ ︸︸ ︷
Δ, . . . ,Δ,

n−nΔ︷ ︸︸ ︷
Δ−1, . . . ,Δ−1).

COROLLARY 4. Among all c-cyclic graphs, c � 1 , of order n the uniquely de-
termined graph with minimal IAG -irregularity is a graph from Cn(Δ−1,Δ) .
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Proof. By Theorem 2, for an irregular graph G with minimal IAG it holds that
Δ(G)− δ (G) = 1, and thus, G ∈ Cn(Δ− 1,Δ) . Recall, that if Δ(G) = δ (G) , G is
regular, and IAG = 0. For given n and c the number of edges m is also determined
(m = n+ c−1). Together with nΔΔ +(n−nΔ)(Δ−1) = 2m , it follows that

Δ =
⌈

3n+2c−nΔ−2
n

⌉
,

and

nΔ = 3n+2c−nΔ−2.

Hence, for given c and n the graphs in Cn(Δ−1,Δ) are uniquely determined. �
We end this paper with two conjectures.

CONJECTURE 1. Let G be a graph with maximal I0
AG -irregularity among all con-

nected graphs of order n . Then, G ∼= Sn .

We believe that the answer to this conjecture is affirmative. It is known that graphs
with maximal Collatz-Sinogowitz irregularity are also threshold graphs, but, different
from star graphs [10]. A further comparison study could help to find how consistent the
IAG -irregularity and Collatz-Sinogowitz’s irregularity are.

CONJECTURE 2. Among all c-cyclic graphs, c � 1, of order n , the uniquely de-
termined graph with maximal I0

AG - irregularity is a threshold graph whose independent
set has at most one vertex of degree larger than one.
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