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Abstract. The extension of the Hardy-Knopp-Carleman inequality to several classes of means
was the subject of numerous papers. In the class of Gini means the Hardy property was char-
acterized in 2015 by the second author. The precise value of the associated Hardy constant was
only established for concave Gini means by the authors in 2016. The determination of the Hardy
constant for nonconcave Gini means is still an open problem. The main goal of this paper is to
establish sharper upper bounds for the Hardy constant in this case. The method is to construct
a homogeneous and concave quasideviation mean which majorizes the nonconcave Gini mean
and for which the Hardy constant can be computed.

1. Introduction

There are a number of recent results, obtained by the authors, which allow one to
establish the Hardy constants for various families of means. Most of them are based on
the so-called Kedlaya’s property [4, 5] in the background, which unifies their assump-
tions. In the most natural setting, we assume that a mean is concave, homogeneous, and
repetition invariant (then it is also monotone). These assumptions are relaxed for ex-
ample using homogenizations techniques [13, 14], or by replacing repetition invariance
by a weaker axiom [8].

However we have not been able to relax the concavity assumption till now. Due
to this reason, it was difficult to establish an upper estimation for the Hardy constant
for Gini means which are nonconcave. We note that some lower estimation can be
obtained by using some general results from [11]. In this paper we apply a certain
concavization techniques to improve the trivial upper bound (which can be obtained di-
rectly from [11]) as well as a more recent bound from [7]. For this purpose, we consider
Gini means in the quasideviation framework and construct a concave and homogeneous
quasideviation mean which is above the given (nonconcave) Gini mean. The problem
of calculating the Hardy constant for concave quasideviation means has been solved
recently in [14]. The key auxiliary results are contained in Lemma 3.2 which enables
us the described construction.
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2. Means and their properties

A function M :
⋃∞

n=1 R
n
+ →R+ such that min(x) � M (x) � max(x) holds for all

x in the domain of M is called a mean (on R+ ).Throughout the present note all con-
sidered means are defined on R+ , thus we can omit the domain of a mean whenever
convenient. We also adopt the standard convention that natural properties like con-
vexity, homogeneity, etc. refer to the respective properties of the n -variable function
M |Rn

+
to be valid for all n ∈ N .

For a given mean M let H (M ) denote the smallest nonnegative extended real
number, called the Hardy constant of M , such that, for all sequences (x1,x2, . . .) of
positive elements,

∞

∑
n=1

M (x1, . . . ,xn) � H (M ) ·
∞

∑
n=1

xn.

Means with a finite Hardy constant are called Hardy means (cf. [11]).

2.1. Homogeneous quasideviation means

Let F be a class of all continuous functions f : R+ → R such that

(i) sign( f (t)) = sign(t−1) for all t ∈ R+ ,

(ii) for all x ∈ (0,1) , the mapping t �→ f (t)
f (t/x) is strictly increasing on (x,1) .

LEMMA 2.1. Let f : R+ → R satisfy (i) of the previous definition and assume
that, for some p ∈ R , the function fp(t) := t p f (t) (t ∈ R+ ) is increasing on R+ and
strictly increasing on (0,1) . Then f belongs to F . In particular, if f is increasing on
R+ and strictly increasing on (0,1) , then f ∈ F .

Proof. We need to verify that condition (ii) is also valid for f . Let x ∈ (0,1) be
fixed. Then

f (t)
f (t/x)

= x−p t p f (t)
(t/x)p f (t/x)

= x−p fp(t)
fp(t/x)

= −x−p (− fp)(t)
fp(t/x)

and, using the monotonicity property of fp , observe that the mappings

t �→ (− fp)(t) and t �→ 1
fp(t/x)

are positive and strictly decreasing/decreasing functions on (x,1) . Therefore, their

product is strictly decreasing, which implies that t �→ f (t)
f (t/x) is strictly increasing on

(x,1) and proves that (ii) is valid. �

REMARK 2.2. In view of the results of the paper [10, Theorem 6], it turns out that
a continuous function f : R+ → R belongs to F if and only if, for some p ∈ R , the
function fp(t) := t p f (t) (t ∈ R+ ) is increasing and strictly increasing either on (0,1)
or on (1,∞) .
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For every f ∈F and all positive-entry vector x := (x1, . . . ,xn) , define e f ,x(y) : R+
→ R by

e f ,x(y) := f
(x1

y

)
+ . . .+ f

(xn

y

)
.

Due to [9], it is known that the equation e f ,x(y) = 0 has a unique solution, which is
called the quasideviation mean generated by the quasideviation Ef (x,y) := f (x/y) .
We denote it by y := E f (x1, . . . ,xn) . It immediately follows from this definition that
E f is a homogeneous mean, i.e., E f (tx1, . . . ,txn) = tE f (x1, . . . ,xn) for all n ∈ N and
t,x1, . . . ,xn > 0. Let us recall two important results for this family of means.

LEMMA 2.3. For all f ,g ∈ F with f � g we have E f � Eg .

Proof. Fix a vector of positive reals x := (x1, . . . ,xn) . Then e f ,x(y) �= 0 for all y <
E f (x) . Furthermore e f (min(x)) > 0. Thus, since e f ,x is continuous, we get e f ,x(y) > 0
for all y < E f (x) . Consequently we get eg,x(y) � e f ,x(y) > 0 for all y < E f (x) , which
implies E f (x) � Eg(x) . �

REMARK 2.4. By the results of [2] and [9, Theorem 10], the comparison inequal-
ity E f � Eg holds if and only if f � ag for some positive number a .

PROPOSITION 2.5. ([12], Theorem 3.4) Let f : R+ → R be concave such that
sign( f (t)) = sign(t − 1) for all t ∈ R+ . Then f is increasing on R+ and strictly
increasing on (0,1) (and hence f ∈ F ), and E f is a Hardy mean if and only if

∫ 1

0
f
(1

t

)
dt < +∞. (2.1)

Furthermore, its Hardy constant c := H (E f ) is the unique solution of the equation

∫ c

0
f
(1

t

)
dt = 0.

2.2. Gini means

For a given p,q ∈ R , define gp,q : R+ → R by

gp,q(t) :=

⎧⎪⎨
⎪⎩

t p− tq

p−q
if p �= q;

t p ln t if p = q.

Then, observe that t �→ t−qgp,q(t) is strictly increasing. Therefore, by Lemma 2.1, it
follows that gp,q ∈ F for all p,q ∈ R . Thus, for p,q ∈ R , we define the Gini mean
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of parameter (p,q) by Gp,q := Egp,q (cf. [3]). One can easily see that Gp,q has the
following explicit form:

Gp,q(x1, . . . ,xn) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
xp
1 + · · ·+ xp

n

xq
1 + · · ·+ xq

n

) 1
p−q

if p �= q,

exp

(
xp
1 ln(x1)+ · · ·+ xp

n ln(xn)
xp
1 + · · ·+ xp

n

)
if p = q.

. (2.2)

Clearly, in the particular case q = 0, the mean Gp,q reduces to the p th Hölder mean
Pp . It is also obvious that Gp,q = Gq,p . Furthermore by [1] we know that Gini means
are nondecreasing in their parameters, that is Gp,q � Gp′,q′ for all p,q, p′,q′ ∈ R with
p � p′ and q � q′ .

Due to [15] and [6] it is known that Gp,q is a Hardy mean if and only if min(p,q)�
0 and max(p,q) < 1. In addition, its Hardy constant is related to the limit

Hp,q := lim
n→∞

nGp,q
(
1, 1

2 , . . . , 1
n

)
=

⎧⎪⎪⎨
⎪⎪⎩
(

1− p
1−q

) 1
q−p

if p �= q,

e
1

1−p if p = q = 0.

More precisely, by [11], we have that H (Gp,q) = Hp,q in the case when the Gini mean
Gp,q is concave, i.e., when min(p,q) � 0 � max(p,q) < 1. In the remaining case, that
is, if max(p,q) < 0, we only have the lower estimate Hp,q � H (Gp,q) . However the
exact value of H (Gp,q) remains unknown in this quadrant.

There were two approaches to obtain upper estimations of this value. The com-
parison criterion easily implies that, for q < p < 0, we have H (Gp,q) � H (Gq,0) =

(1−q)−
1
q . A sharper upper estimation is due to [7], where it was proved that

H (Gp,q) �

⎧⎪⎨
⎪⎩
( 1−q

1−p

) 1−p
p−q − p

1− p
for q < p < 0;

e−p
1−p for q = p < 0.

(2.3)

The main goal of this paper is to improve both of these upper bounds.

3. Main results

Let us first prove a technical result collecting a few properties of the function gp,q .

LEMMA 3.1. Let p,q ∈ (−∞,0) . Then

(i) gp,q has a global maximum at τp,q ∈ (1,∞) , where

τp,q :=

⎧⎪⎨
⎪⎩
( p

q

) 1
q−p if p �= q,

e−1/p if p = q;
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(ii) sign(gp,q(t)) = sign(t−1) for all t ∈ R+ ;

(iii) gp,q restricted to the interval (0,τp,q) is strictly increasing and concave.

Proof. We prove the assertions only in the case p > q . The cases p = q and p < q
are fairly analogous. For the brevity, denote g := gp,q and τ := τp,q . We have

g′(t) =
pt p−1−qtq−1

p−q
and g′′(t) =

p(p−1)t p−2−q(q−1)tq−2

p−q
.

Thus g′ has a unique zero which equals τ . The second derivative of g also has a

unique zero which equals η :=
( p(p−1)

q(q−1)

) 1
q−p = τ

( p−1
q−1

) 1
q−p . But q−1 < p−1 < 0, thus

p−1
q−1 < 1, and q− p < 0 . Therefore η > τ > 1.

Next, observe that g(0+) = −∞ and g(+∞) = 0. Thus g is strictly increasing
on (0,τ) and strictly decreasing of (τ,∞) , which implies (i). In particular g′′(τ) < 0.
Consequently g′′ is negative on the interval (0,η) . Thus, since (0,τ) ⊂ (0,η) , we
obtain (iii).

As we have already described the monotonicity properties of g , to show the prop-
erty (ii) it is sufficient to verify that g(1) = 0, which is trivial. �

Now we are ready to prove the crucial lemma, which binds all facts which will be
used in the proof of the main theorem.

LEMMA 3.2. Let p,q ∈ (−∞,0) . Define fp,q : (0,+∞) → R by

fp,q(t) :=

{
gp,q(t) for t � τp,q;

gp,q(τp,q) for t > τp,q.

Then

(I) fp,q is concave;

(II) sign( fp,q(t)) = sign(t−1) for all x ∈ R+ ;

(III) H (E fp,q) = cp,q , where cp,q ∈ (1,+∞) is the unique solution of the equation

gp,q(τp,q)
τp,q

+
∫ cp,q

1
τp,q

gp,q
( 1

t

)
dt = 0 (3.1)

(IV) gp,q � fp,q ;

(V) Gp,q � E fp,q .

Proof. To show (I) we need to verify that f ′p,q is decreasing, which easily follows
from the definition of fp,q , and the Lemma 3.1.(iii). Next, Lemma 3.1.(i) yields (IV).
Property (II) is implied Lemma 3.1.(i) and (ii). Thus, by Proposition 2.5, we have
fp,q ∈ F . Consequently, view of Lemma 2.3, we get (V).
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To proceed to the proof of (III), set c := cp,q , f := fp,q , g := gp,q , and τ := τp,q .
It is easy to check that (2.1) holds. Thus, by Proposition 2.5 we know that E f is a Hardy
mean and its Hardy constant c satisfies τ−1 < 1 < c and solves the equation

0 =
∫ c

0
f ( 1

t )dt =
∫ 1

τ

0
f ( 1

t )dt +
∫ c

1
τ

f ( 1
t )dt

=
∫ 1

τ

0
g(τ)dt +

∫ c

1
τ

g( 1
t )dt =

g(τ)
τ

+
∫ c

1
τ

g( 1
t )dt,

which completes the proof �
Now we are ready to present the main result of this note.

THEOREM 3.3. If p,q ∈ (−∞,0) , then H (Gp,q) � cp,q , where cp,q is the unique
solution c ∈ (1,+∞) of the equation

c1−q

1−q
− c1−p

1− p
= |q| 1−p

q−p |p| 1−q
p−q

( 1
1− p

− 1
1−q

)
if p �= q;

c1−p(1− lnc1−p) = pe
1−p

p if p = q.

(3.2)

Proof. Let us denote, as previously, g := gp,q , τ := τp,q , and c := cp,q . Then
applying Lemma 3.2 (V), and (III) we have H (Gp,q) � H (E fp,q) = c , where c solves
(3.1). Thus for p �= q we have

0 =
g(τ)

τ
+
∫ c

1
τ

g
(

1
t

)
dt =

g(τ)
τ

+
∫ c

1
τ

t−p− t−q

p−q
dt

=
g(τ)

τ
+

1
p−q

·
(c1−p− τ p−1

1− p
− c1−q− τq−1

1−q

)

=
1

p−q
·
( c1−p

1− p
− c1−q

1−q
+
((p−q)g(τ)

τ
+

τ p−1

p−1
− τq−1

q−1

))
.

(3.3)

Equivalently, we have

c1−q

1−q
− c1−p

1− p
=

(p−q)g(τ)
τ

+
τ p−1

p−1
− τq−1

q−1
. (3.4)

In order to complete the proof, observe that

(p−q)g(τ)
τ

+
τ p−1

p−1
− τq−1

q−1
= τ p−1− τq−1 +

τ p−1

p−1
− τq−1

q−1
=

pτ p−1

p−1
− qτq−1

q−1

=
p

p−1

( |p|
|q|
) p−1

q−p − q
q−1

( |p|
|q|
) q−1

q−p

=
|p|

1− p
|p|

p−1
q−p |q|

1−p
q−p − |q|

1−q
|p|

q−1
q−p |q|

1−q
q−p

= |q| 1−p
q−p |p| 1−q

p−q

( 1
1− p

− 1
1−q

)
.
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Therefore (3.4) implies our assertion in the case p �= q .
Now assume that p = q < 0. Then (3.1) simplifies to

0 =
g(τ)

τ
+
∫ c

1
τ

g
(

1
t

)
dt =

g(τ)
τ

−
∫ c

1
τ

t−p ln t dt =
g(τ)

τ
+
[ t1−p(1− lnt1−p)

(p−1)2

]c
1
τ

=
g(τ)

τ
+

c1−p(1− lnc1−p)
(p−1)2 − τ p−1(1− lnτ p−1)

(p−1)2

=
1

(p−1)2

(g(τ)(p−1)2

τ
+ c1−p(1− lnc1−p)− τ p−1(1− lnτ p−1)

)
Thus one gets

c1−p(1− lnc1−p) = τ p−1(1− lnτ p−1)− g(τ)(p−1)2

τ
.

As in the previous case it is now sufficient to simplify

τ p−1(1− lnτ p−1)− g(τ)(p−1)2

τ
= τ p−1(1− lnτ p−1)− (p−1)τ p−1 lnτ p−1

= τ p−1(1− p lnτ p−1) = e
1−p

p (1− p lne
1−p

p )

= pe
1−p

p ,

which completes the second case. �
We note that equations in (3.2) are equivalent to (3.1).

4. An example

In this section we compare the known estimates for the particular Gini mean
G−1,−2 .

— First, by Hp,q � H (Gp,q) , we immediately obtain 1.5 � H (G−1,−2) .
— In view of the trivial estimation G−1,−2 � G0,−2 , we get H (G−1,−2)� H (G0,−2)

=
√

3 ≈ 1.732.
— Using the inequality (2.3), we have

H (Gp,q) �
( 3

2

)2 +1

2
=

13
8

= 1.625.

— Finally we use Theorem 3.3. Then c0 is a solution of the equation 1
3c3− 1

2c2 =
2−2( 1

2 − 1
3 ) (or, after simplifications, 8c3−12c2−1 = 0). This polynomial has a unique

real root c0 ≈ 1.552. Thus H (G−1,−2) � c0 , which, obviously, improves both previous
upper estimations. On the other hand, this is still far from the lower estimation 1.5.

We now somehow leave apart the Hardy property and examine the mean E f−1,−2 ,
where f−1,−2 : R+ → R is defined in Lemma 3.2 by

f−1,−2(t) =

⎧⎨
⎩

t−1− t−2 for t � 2;

1
4 for t > 2.
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By Lemma 3.2, we already know that H (E f−1,−2) = c0 . We are going to show the form
of this mean. Since it is symmetric, let n∈N and x = (x1, . . . ,xn) be a vector of positive
numbers with x1 � . . . � xn . Put m := E f−1,−2(x) . Take the maximal k∈ {1, . . . ,n} such
that xk � 2m . Then either 2m < xk+1 or k = n . Thus

0 = eg(m) =
k

∑
i=1

f−1,−2

( xi

m

)
+

n

∑
i=k+1

f−1,−2

( xi

m

)
=

k

∑
i=1

(m
xi
− m2

x2
i

)
+

n− k
4

.

With the notation sα := xα
1 + · · ·+ xα

k , we have −s−2m2 + s−1m+ n−k
4 = 0. Therefore,

since m > 0, we get

m =
s−1 +

√
s2
−1 + s−2(n− k)

2s−2
=

1
2

(
s−1

s−2
+

√(s−1

s−2

)2
+

n− k
s−2

)

Finally, using the definition of Gini means, we have

E f−1,−2(x) =
1
2

(
G−1,−2(x1, . . . ,xk)+

√
G 2
−1,−2(x1, . . . ,xk)+ n−k

k G 2
0,−2(x1, . . . ,xk)

)
=

1
2

(
G−1,−2 +

√
G 2
−1,−2 + n−k

k G 2
0,−2

)
(x1, . . . ,xk),

where k ∈ {1, . . . ,n} is the maximal index satisfying xk � 2E f−1,−2(x) .
Remarkably, in the particular case xn � 2E f−1,−2(x) we have k = n and therefore

E f−1,−2(x) = G−1,−2(x) .
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