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ON Lp MARKOV TYPE INEQUALITY FOR SOME CUSPIDAL DOMAINS

TOMASZ BEBEROK

(Communicated by J. Pečarić)

Abstract. The purpose of this paper is to study a Markov type inequality for algebraic polyno-
mials in Lp norm on two-dimensional cuspidal domains.

1. Introduction

In the space Rd we consider the Euclidean norm: |x| :=
√|x1|2 + · · ·+ |xd|2 ,

where x = (x1, . . . ,xd) . For a nonempty compact set E ⊂Rd , 1 � p < ∞ and h : E →R

for which the p th power of the absolute value is Lebesgue integrable, we put

‖h‖Lp(E) :=
(∫

E
|h(x)|p dx

)1/p

.

If two sequences zn and wn of real numbers have the property that wn �= 0 and the
sequence |zn|/|wn| has finite positive limit as n → ∞ , we write zn ∼ wn . Throughout
the paper, Pn(Rd) denotes the space of real algebraic polynomials of d variables and

degree at most n and P(α ,β )
n denotes the Jacobi polynomial of degree n associated to

parameters α,β . Moreover, N := {1,2,3, . . .} and N0 := N∪{0} .

DEFINITION 1. Let 1 � p < ∞ . We say that a compact set /0 �= E ⊂ R
d satisfies

Lp Markov type inequality (or: is a Lp Markov set) if there exist κ ,C > 0 such that,
for each polynomial P ∈ Pn(Rd) and each 1 � j � d ,∥∥∥∥ ∂P

∂x j

∥∥∥∥
Lp(E)

� Cnκ‖P‖Lp(E). (1)

We denote by B(a,r) ⊂ Rd the closed Euclidean ball with center a and radius r ,
and Sd−1 = {x ∈ Rd : |x| = 1} is the unit sphere. For any r > 0, a ∈ Rd and u ∈ Sd−1

the cylinder La(r,u) with center a , radius r > 0, and axis u is given by

La(r,u) := {x ∈ R
d : |x−a|2 < r2 + 〈x−a,u〉2}.

Furthermore, lx(u) will denote the line in Rd in direction u ∈ Sd−1 through point
x ∈ Rd .

Following Kroó [12], we introduce a graph domain with respect to the cylinder
La(r,u) and a piecewise graph domain.
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DEFINITION 2. K is called a graph domain with respect to the cylinder La(r,u)
if for every x ∈ B(a,r) we have that lx(u)∩K = [A1(x),A2(x)] with Ai(x) , i = 1,2
being continuous for x ∈ B(a,r) and

δr(a,u) := inf
x∈B(a,r)

|A1(x)−A2(x)| > 0.

Moreover, K ⊂ Rd is a piecewise graph domain if it can be covered by finite number
of cylinders so that K is a graph domain with respect to each of them.

Similarly to [12] ωK(·) denotes the modulus of continuity of the boundary of
piecewise graph domain K which is defined as the maximum of modula of continuity
of all functions Ai(·) involved in the corresponding finite covering by cylinders. If
ε := εn(K) is a solution of the equation

2n2ωK

( ε
n2

)
= 1, n ∈ N,

then the main result of the mentioned paper of Kroó is

THEOREM 1. Let K ⊂ Rd be a cuspidal piecewise graph domain. Then there
exists a positive constant B, depending on K and on p, such that for Q ∈ Pn(Rd) ,
n ∈ N ,

‖∇Q‖Lp(K) � B
n2

εn
‖Q‖Lp(K). (2)

Here ∇Q := max1� j�d

∣∣∣ ∂Q
∂x j

∣∣∣ . In particular, if K is Lipγ , 0 < γ < 1 then

‖∇Q‖Lp(K) � Bn
2
γ ‖Q‖Lp(K).

The above theorem is a particular result in the general problem of estimating the
exponent of the growth rate (with respect to the degree n ) of the best comparability con-
stant of the semi-norm ‖∇ · ‖Lp(Ω) and the norm ‖ ·‖Lp(Ω) acting on the space Pn(Rd)
for a given compact set Ω . More precisely, the Markov exponent in Lp -norm of a Lp

Markov set K is defined as the infimum of l as l ranges over all positive numbers such
that there exists a constant C > 0, independent of n , with the property that Lp Markov
type inequality (1) holds (with l and C ), which we denote by μp(K) .

The notion of Markov exponent (in the supremum norm) appears first in [5]. The
Markov exponent has many interesting applications in approximation theory, construc-
tive function theory and in analysis (for instance, to Sobolev inequalities or Whitney-
type extension problems see [7], [16] and [17]). It is known that μp(K) � 2 for every
compact set K ⊂Rd with nonempty interior such that K = intK . In [8] it is proved that
if K is a locally Lipschitz compact subsets of Rd , then μp(K) = 2. See also [3], [10],
[9] and [15]. In the case of cuspidal domains, see [11] and [13]. Markov’s inequality
and its various generalizations were studied in a large number of papers, it is beyond the
scope of this paper to give a complete bibliography, an extensive survey of the results
is given in [6], [14], [19] and [18].
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Theorem 1 gives in general, the best possible Markov type upper bound in Lp ,
1 � p < ∞ norm for cuspidal graph domains. Indeed, we can show that it is attained for
a large family of cuspidal Lipγ , 0 < γ < 1 domains. If we assume that the domain is
imbedded in an affine image of the lγ ball with one of its vertices being on the boundary
∂K of K . Then we have μp(K) = 2

γ , see [12]. A natural question is whether the upper
bound (2) is best possible for cuspidal graph domains that cannot be embedded in an
affine image of the lγ ball. Some special cases of such domains are noteworthy. Below
we give a list of examples.

• {(0,0)}∪{(x,y)∈ R2 : 0 < x � a, 0 � y � xk ln(− lnx)} ,

• {(0,0)}∪{(x,y)∈ R2 : 0 < x � 1, 0 � y � −xk lnx} ,

• {(0,0)}∪{(x,y)∈ R2 : 0 < x � 1, 0 � y � xk(− lnx)c} ,

• {(0,0)}∪{(x,y)∈ R2 : 0 < x � 1, 0 � y � xk+1 ln∗(1/x)} ,

• {(0,0)}∪{(x,y)∈ R2 : 0 < x � a, 0 � y � xk exp((− lnx)c(ln(− lnx))1−c)} .

Here k > 1, 0 < a � 1/e , 0 < c < 1 and

ln∗(x) :=
{

0, if x � 1
1+ ln∗(lnx), if x > 1

.

We note that the domains above are related to the function classes that are frequently
encountered in algorithm runtime analysis. One of the purposes of this note is to show
that, if d = 2, the factor n2

εn
is best possible for larger class of domains (including the

above domains) then Lipγ . Another goal is to prove that for every sequence {εn} ,
satisfying certain properties, there exist a compact set D ⊂ R2 , a constant M > 0 and
a sequence of polynomials Pn such that

‖∇Pn‖Lp(D)

‖Pn‖Lp(D)
∼ n2

εn
and ‖∇Q‖Lp(D) � M

n2

εn
‖Q‖Lp(D)

for any real algebraic polynomial Q of two variables and degree at most n . Moreover,
for every ι � 1 and 1 � p < ∞ we give an example of connected compact subset Eι
of R2 such that μp(Eι) = 2ι and the inequality (1) does not hold with the exponent
μp(Eι ) .

2. Index of convexity

Let φr(t) := t1/r , where t,r > 0 throughout this section.

DEFINITION 3. Let −∞ < a < b < ∞ . Let f : (a,b) → (0,∞) be a convex func-

tion such that there exists a positive constant r so that ( f )
1
r is concave. The index of

convexity of f is defined by

Iconv( f ) := inf{r > 0 : φr ◦ f is concave}.
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The following remark shows why we do not consider convex functions with nega-
tive index of convexity.

REMARK 1. Let f : (a,b)→ (0,∞) be a convex and increasing function. Assume

further that lim
x→a+

f (x) = 0. Then, for every r > 0, ( f )−
1
r cannot be concave.

REMARK 2. Let f : (a,b) → R and g : (a,b) → R where f ((a,b)) ⊆ (c,d) . It is
known that the composite function g ◦ f is convex on (a,b) when f and g are convex
and g is increasing. Hence, the index of convexity cannot be smaller then 1.

EXAMPLE 1. Let k > 1, 0 < c < 1 and b > 0. Let

• f1 : (0,b) → R, f1(x) := xk ln(− lnx) ,

• f2 : (0,b) → R, f2(x) := xk(− lnx)c .

Then, for sufficiently small b , we have Iconv( f1) = Iconv( f2) = k .

Proof. Fix k > 1. It is now a tedious computation (or a task for a computer algebra
package) to check that there exists b > 0 such that

( f1)′′ � 0 and (φk+a ◦ f1)′′ � 0 on (0,b)

for every a > 0. Hence Iconv( f1) = k .
Now fix 0 < c < 1 and consider f2 . Direct calculus computations lead to

(φk+a ◦ f2)′′(x) = −(φk+a ◦ f2)(x)
c(k−a) ln

( 1
x

)
+ c(a− c+ k)+ak ln2 ( 1

x

)
x2(a+ k)2 ln2 ( 1

x

) .

Therefore there exists b > 0 such that (φk+a ◦ f2)′′ � 0 on (0,b) for all a > 0. Thus
Iconv( f2) = k . �

The following result will be useful for the proof of Theorem 2 in the next section.

PROPOSITION 1. Let f : (0,b) → (0,∞) be a convex function. Suppose that
Iconv( f ) = r . If lim

x→0+
f (x) = 0 , then

(r+a) f (x) � x f ′(x)

for every a > 0 and 0 < x < b.

Proof. First, we note that (r+a)(φr+a ◦ f )′ = (φr+a−1 ◦ f ) f ′ . Since Iconv( f ) = r ,
it is clear that φr+a ◦ f is a concave function for every a > 0. Therefore

(φr+a ◦ f )(y) � (φr+a ◦ f )(x)+ (φr+a−1 ◦ f )(x) f ′(x)
(y− x)
r+a

.
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Now the result follows from the continuity of φr+a and the following equality

φr+a ◦ f
φr+a−1 ◦ f

= f . �

Let us now return to the Lp Markov type inequality to explain why we do not
consider convex functions f : (a,b) → (0,∞) with the property that for each r > 0

there exists c ∈ (a,b) so that ( f )
1
r is convex on (a,c) .

PROPOSITION 2. Let E := {(x,y) ∈ R2 : 0 < y � e−
1
x , 0 < x � 1}∪{(0,0)} (see

[21]). Then, for 1 � p < ∞ , E does not satisfy Lp Markov type inequality (1).

Proof. If we consider the polynomials Pk(x,y) = y(1− x)k for k = 1,2, . . . , then

ek :=

∫
E | ∂Pk

∂y (x,y)|p dxdy∫
E |Pk(x,y)|p dxdy

=
∫ 1
0 e−

1
x (1− x)kp dx

1
p+1

∫ 1
0 e−(p+1) 1

x (1− x)kp dx
.

It is easy to derive that

max
x∈[0,1]

{e−(p+1) 1
x (1− x)kp} = e

−(p+1) 1
ak(p) (1−ak(p))kp,

where ak(p) =
√

1+p
√

1+p+4kp−p−1
2kp . Using integration by parts, we obtain

∫ 1

0
e−

1
x (1− x)kp dx �

∫ 1

ak(p)
e−

1
x (1− x)kp dx � e

− 1
ak(p) (1−ak(p))kp+1

kp+1
.

Therefore,

ek � p+1
kp+1

e
p

ak(p) (1−ak(p)). (3)

Now we observe that

lim
k→∞

ak(p)
√

k =
(

p
p+1

)−1/2

. (4)

Combining (3) and (4) leads to

lim
k→∞

k−rek = ∞

for every r > 0. Thus E cannot be Lp Markov set. �
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3. A lower bound in Lp Markov type inequality

For a given point a∈R
2 and a line lb(u)⊂R

2 , Slb(u)(a) stands for the point that is
symmetric to the point a with respect to the line lb(u) . The point πlb(u)(a) ∈ R2 is the
orthogonal projection of the point a onto the line lb(u) i.e., πlb(u)(a) := lb(u)∩ la(w),
where w ⊥ u .

Let K ⊂ R2 be a piecewise graph domain. Suppose that z ∈ K is one of the
strongest cuspidal point of K i.e., there exists a cylinder La(r,u) such that K is a graph
domain with respect to it, z = A2(b) for some b ∈ B(a,r) and for all sufficiently large
n ,

max
{
|z−A2(gn)| : gn ∈ B(a,r), |b−gn| � εn

n2

}
=

1
2n2 .

Let w ∈ S
1, w ⊥ u . We say that z is regular if there exist o ∈ lb(u) , and a function

f : [o,z] → R2 such that f (z) = z ,

[ f (x),πlz(u)( f (x))] ⊂ K∩ lx(w) ⊂ [ f (x),Slz(u)( f (x))] for all x ∈ [o,z],

d(t) := dist(l f ((1−t)o+tz)(u), lz(u)) is convex on the interval (0,1) and

Iconv(d) = r for some r.

THEOREM 2. Let K ⊂ R2 be a piecewise graph domain. Suppose that one of the

strongest cuspidal point of K is regular. If εn is a solution of the equation 2n2ωK

(
εn
n2

)
=

1 , n ∈ N , then there exist Ψ > 0 and a sequence of polynomials Pn ∈ Pn(R2) such
that

‖∇Pn‖Lp(K) � Ψ
n2

εn
‖Pn‖Lp(K).

Proof. Without loss of generality we may suppose that K ⊂ [0,1]× [−1,1] , v =
(1,0) is the strongest cuspidal point of K and {(x,y)∈R2 : η � x � 1,0 � y � f (x)} ⊂
K ⊂ [0,η ]× [−1,1]∪{(x,y)∈ R2 : η � x � 1,− f (x) � y � f (x)} for some 0 < η < 1
and a convex function f : [η ,1]→R with the property that f (1) = 0 and Iconv( f ) < ∞ .
(This can be achieved by shifting the point o into the origin, rotating around the origin
and dilating the space by a proper constant.) Let xn = f−1(εn/n2) for all sufficiently
large n . Then

∫∫
K
|yP(α ,β )

n (x)|p dxdy �
∫ η

0

∫ 1

−1
|yP(α ,β )

n (x)|p dydx+
∫ xn

η

∫ f (x)

− f (x)
|yP(α ,β )

n (x)|p dydx

+
∫ 1

xn

∫ f (x)

− f (x)
|yP(α ,β )

n (x)|p dydx. (5)

Our plan is to obtain the estimates of each integral on the right side. We start with
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the last one. It is clear that∫ 1

xn

∫ f (x)

− f (x)
|yP(α ,β )

n (x)|p dxdy =
2

p+1

∫ 1

xn

( f (x))p+1|P(α ,β )
n (x)|p dx

� 2
p+1

( εn

n2

)p+1 ∫ 1

xn

|P(α ,β )
n (x)|p dx. (6)

Then the change of variable x = cosθ gives us∫ 1

xn

|P(α ,β )
n (x)|p dx =

∫ un

0
|P(α ,β )

n (cosθ )|p sinθ dθ .

Here un = arccosxn . Since v = (1,0) is the strongest cuspidal point of K , it follows
that

ωK

( εn

n2

)
= max

{
|( f−1(y),y)− (1,0)| : 0 � y � εn

n2

}
.

The convexity of f and the fact that f (1) = 0 guarantee

ωK

( εn

n2

)
= |(xn, f (xn))− (1,0)|.

Hence, by ωK

(
εn
n2

)
= 1

2n2 ,

xn = 1−
√

1
4n4 −

ε2
n

n4 .

By the fact that εn → 0 there exists a natural number n0 such that 1− 1
2n2 � xn � 1− 1

4n2

for all n � n0 . Hence there exist a natural number n1 and positive constants a,b such
that a

n � un � b
n for all n � n1 . Applying certain properties of Jacobi polynomials

P(α ,β )
n (x) verified in [8], (7.32.5) , p. 169, we conclude that there exists a natural

number n2 so that∫ un

0
|P(α ,β )

n (cosθ )|p sinθ dθ � Cnα p
∫ un

0
θ dθ � Cb2

2
nα p−2 (7)

for n � n2 and appropriately adjusted constant C . Then by (6) and (7)∫ 1

xn

∫ f (x)

− f (x)
|yP(α ,β )

n (x)|p dydx � Cb2

p+1
ε p+1
n nα p−2p−4 (8)

for all sufficiently large n .
Now select α > −1 such that α p+ p/2−2 > 2Iconv( f )(p+1) . It is easy to see

that ∫ xn

η

∫ f (x)

− f (x)
|yP(α ,β )

n (x)|p dydx =
2

p+1

∫ xn

η
( f (x))p+1|P(α ,β )

n (x)|p dx. (9)

Let σ = arccosη . Proceeding similarly as before, we obtain

2
p+1

∫ xn

η
( f (x))p+1|P(α ,β )

n (x)|p dx � 2Λn−p/2

(p+1)

∫ σ

un

( f (cosθ ))p+1θ−α p−p/2 sinθ dθ

(10)
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for appropriately adjusted constant Λ and all sufficiently large n . Since sinx � x for
x � 0, we have

2
p+1

∫ xn

η
( f (x))p+1|P(α ,β )

n (x)|p dx � 2Λn−p/2

(p+1)

∫ σ

un

( f (cosθ ))p+1θ−α p−p/2+1dθ .

(11)

Integration by parts gives us

∫ σ

un

( f (cosθ ))p+1θ−α p−p/2+1dθ =

[
( f (cosθ ))p+1θ−α p−p/2+2

−α p− p/2+2

]σ

un

+
∫ σ

un

(p+1)( f (cosθ ))pθ−α p−p/2+2

−α p− p/2+2
f ′(cosθ )sinθ dθ . (12)

If −1 � x � 1, then
√

1− x2 arccosx � 2(1− x) . Hence

−λ f ′(cosλ )sinλ � −2(1− cosλ ) f ′(cosλ ) (13)

whenever λ ∈ (0,σ ] . By Proposition 1, for each δ > 0, we have

(Iconv( f )+ δ ) f (x) � − f ′(x)(1− x) (14)

for all x ∈ [η ,1] . Then, by (13) and (14),

∫ σ

un

(p+1)( f (cosθ ))pθ−α p−p/2+2

−α p− p/2+2
f ′(cosθ )sinθ dθ

�
∫ σ

un

2(p+1)(Iconv( f )+ δ )( f (cosθ ))p+1θ−α p−p/2+1

α p+ p/2−2
dθ . (15)

Thus, by (12) and (15),

∫ σ

un

( f (cosθ ))p+1θ−α p−p/2+1dθ � ( f (cosun))p+1u−α p−p/2+2
n

α p+ p/2−2−2(p+1)(Iconv( f )+ δ )

� ε p+1
n a−α p−p/2+2nα p+p/2−2p−4

α p+ p/2−2−2(p+1)(Iconv( f )+ δ )

whenever α p+ p/2−2> 2(p+1)(Iconv( f )+δ ) . Together with (9), (10) and (11), this
last estimate implies that for every α > −1 such that α p+ p/2−2 > 2(p+1)Iconv( f )
there exists a constant C1 > 0, independent of n , with∫ xn

η

∫ f (x)

− f (x)
|yP(α ,β )

n (x)|p dydx � C1ε p+1
n nα p−2p−4. (16)

It now remains to prove that there exists a positive constant C2 , independent of n ,
such that ∫ η

0

∫ 1

−1
|yP(α ,β )

n (x)|p dydx � C2ε p+1
n nα p−2p−4.
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It is easy to verify that

∫ η

0

∫ 1

−1
|yP(α ,β )

n (x)|p dydx =
2

p+1

∫ η

0
|P(α ,β )

n (x)|p dx.

In a similar way as before, we can show that

∫ η

0
|P(α ,β )

n (x)|p dx � Λ1n
−p/2

∫ π/2

σ
θ−α p−p/2+1dθ

for appropriately adjusted constant Λ1 and all sufficiently large n . Hence

∫ η

0

∫ 1

−1
|yP(α ,β )

n (x)|p dydx � 2Λ1n−p/2σ−α p−p/2+2

(α p+ p/2−2)(p+1)
. (17)

Now let f (η) := w . For every δ > 0 define hδ (x) := (1− x)Iconv( f )+δ w
(1−η)Iconv( f )+δ .

Then f (η) = hδ (η) and f (1) = hδ (1) . By the definition of Iconv( f ) , ( f )
1

Iconv( f )+δ is
concave. Hence

( f (x))
1

Iconv( f )+δ � w
1

Iconv( f )+δ
1− x
1−η

= (hδ (x))
1

Iconv( f )+δ

for all x ∈ [η ,1] . Thus

εn

n2 = f (xn) � f

(
1− 1

4n2

)
� hδ

(
1− 1

4n2

)

� w

(1−η)Iconv( f )+δ (2n)2Iconv( f )+2δ (18)

for all sufficiently large n . Now if α is selected so that 2Iconv( f )(p+ 1)+ 2− p/2 <
α p , then, by (17) and (18), there exists C2 > 0 such that

∫ η

0

∫ 1

−1
|yP(α ,β )

n (x)|p dxdy � C2ε p+1
n nα p−2p−4 (19)

for all n ∈ N . Now let M = Cb2/2+C1 +C2 and use the inequalities (5), (8), (16) and
(19) to obtain

∫∫
K
|yP(α ,β )

n (x)|p dxdy � Mε p+1
n nα p−2p−4. (20)

By our assumption on K it follows that

∫∫
K
|P(α ,β )

n (x)|p dxdy �
∫ 1

1− 1
2n2

∫ f (x)

0
|P(α ,β )

n (x)|p dydx =
∫ 1

1− 1
2n2

f (x)|P(α ,β )
n (x)|p dx.

(21)
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By making the change of variable x = 1− z2

2n2 , we obtain

∫ 1

1− 1
2n2

f (x)|P(α ,β )
n (x)|p dx =

1
n2

∫ 1

0
z f (gn(z)) |P(α ,β )

n (gn(z)) |p dz, (22)

where gn(z) = 1− z2

2n2 . Again certain properties of Jacobi polynomials P(α ,β )
n (x) play

a role. By the formula of Mehler-Heine type (see [20], Theorem 8.1.1.)

|P(α ,β )
n (gn(z)) |p � nα p

4p

[
4
( z

2

)−α
Jα(z)− 1

Γ(α +2)

]p

for all sufficiently large n . Here Jα(z) is the Bessel functions of the first kind. Since

min
z∈[0,1]

{(z/2)−αJα(z)} � min
z∈[0,1]

{
1

Γ(α +1)
− z2

4Γ(α +2)

}
=

4α +3
4Γ(α +2)

,

we have

1
n2

∫ 1

0
z f (gn(z))

∣∣∣P(α ,β )
n (gn(z))

∣∣∣p dz �
(

4α +2
4Γ(α +2)

)p

nα p−2
∫ 1

0
z f (gn(z))dz. (23)

Applying integration by parts yields

∫ 1

0
z f (gn(z))dz =

[
1
2
z2 f (gn(z))

]1

0
+

1
2n2

∫ 1

0
z3 f ′(gn(z))dz. (24)

From the inequality (14), it follows that, for all δ > 0 and sufficiently large n , it must
be that

z2

2n2 f ′(1− z2

2n2 ) � −(I + δ ) f

(
1− z2

2n2

)
.

Hence

1
2n2

∫ 1

0
z3 f ′(gn(z))dz � −(I + δ )

∫ 1

0
z f (gn(z))dz. (25)

Thus, by (24), (25), and by the fact that f (1) = f (gn(0)) = 0, we have

(Iconv( f )+1+ δ )
∫ 1

0
z f (gn(z))dz � 1

2
f (gn(1)). (26)

Since f is convex and nonnegative on [η ,1] with the property that f (1) = 0,

η � x � y � 1 =⇒ f (x) � f (y).

Therefore

1
2

f (gn(1)) = f

(
1− 1

2n2

)
� 1

2
f (xn) =

εn

2n2 (27)
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for all sufficiently large n . If n is large enough, then by (21), (22), (23), (26) and (27)
there exists a positive constant ϒ , independent of n , for which∫∫

K
|P(α ,β )

n (x)|p dxdy � ϒεnn
α p−4. (28)

Finally, using the inequalities (20) and (28), we obtain
∫∫

K
|P(α ,β )

n (x)|p dxdy � ϒn2p

Mε p
n

∫∫
K
|yP(α ,β )

n (x)|p dxdy.

This completes the proof. �

4. An application of Theorem 2

We will now focus on the application of the above theorem. Let 0 < η < 1. Let
f : [η ,1]→R be a strictly convex function with the property that f (1) = f ′(1) = 0 and
Iconv( f ) = k . Then D := {(x,y) ∈ R2 : η � x � 1, 0 � y � f (x)}∪{(x,y) ∈ R2 : 0 �
x < η , 0 � y � f (η)} is a graph domain with respect to the cylinder L(0, η

2 )(
η
2 ,(1,0)) .

Moreover,

l(x1,x2)((1,0))∩D = {(x,y) ∈ R
2 : y = x2, 0 � x � f−1(x2)} = [(0,x2),( f−1(x2),x2)]

for every (x1,x2) ∈ B((0, η
2 ), η

2 ) . Hence, by the definition of ωD(t) ,

ωD(t) = max
{|( f−1(x2),x2)− ( f−1(y2),y2)| : 0 � x2,y2 � η , |x2− y2| � t

}
.

By the convexity of f and the assumption that f (1) = 0, we can write

ωD(t) = max
{|( f−1(s),s)− (1,0)| : 0 � s � min{η ,t}} .

Since f is strictly convex, we conclude that

ωD(t) = max

{√
( f−1(s)−1)2 + s2 : s = min{η ,t}

}
.

Since f ′(1) = 0, we have

lim
t→0

ωD(t)
t

= +∞.

Hence if ωD( εn
n2 ) = 1

2n2 then εn → 0 when n goes to +∞ . Therefore, for n large
enough

ωD

( εn

n2

)
=

√(
f−1
( εn

n2

)
−1
)2

+
( εn

n2

)2
.

Now assume that εn is the solution of the equation ωD( εn
n2 ) = 1

2n2 . Thus, for n large
enough,

εn

n2 = f

(
1−
√

1
4n4 −

ε2
n

4n4

)
(29)
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and 0 < 2εn < 1. By the fact that f is strictly convex and f (0) = 0, we have

f

(
1−
√

1
4n4 −

1
16n4

)
� f

(
1−
√

1
4n4 −

ε2
n

4n4

)
� f

(
1− 1

2n2

)
. (30)

On the other hand, by Iconv( f ) = k , the function f
1

k+δ is concave for every δ > 0.
Hence if 0 � c � 1 then

f
1

k+δ (1− c
2n2 ) � c f

1
k+δ

(
1− 1

2n2

)
.

Thus

f

(
1−
√

1
4n4 −

1
16n4

)
�
(√

3
2

)k+δ

f

(
1− 1

2n2

)
. (31)

By (29), (30) and Theorem 2, there exist Ψ > 0 and a sequence of polynomials Qn ∈
Pn(R2) such that

‖∇Qn‖Lp(D) � Ψ
f (1− 1

2n2 )
‖Qn‖Lp(D).

Furthermore, by Theorem 1, (29) and (31), there exists a positive constant B such that
for P ∈ Pn(Rd) , n ∈ N ,

‖∇P‖Lp(D) � B

f (1− 1
2n2 )

‖P‖Lp(D).

EXAMPLE 2. Define a function ϕι on the interval [0,1] as follows:

ϕ(t) =

{
t

1+ln(1/t) , if t ∈ (0,1]

0, for t = 0.

Let Eι = {(x,y) ∈ R
2 : 0 � x � 1,0 � y � ϕ((1− x)ι )} . Then there exist a positive

constant Bι and a sequence of polynomials Pn such that

‖∇Pn‖Lp(D)

‖Pn‖Lp(D)
∼ n2ι(1+ ι ln(2n2)) and ‖∇Q‖Lp(Eι ) � Bιn

2ι(1+ ι ln(2n2))‖Q‖Lp(Eι )

(32)

for any Q ∈ Pn(R2) .

Using (32), one can see that μp(Eι) = 2ι and Lp Markov type inequality on Eι
does not hold with the exponent μp(Eι ) = 2ι . This generalizes (to the Lp norm) Propo-
sition 2.6 of [4].
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5. A growth rate

Now a similar proof to that of the last theorem gives the following proposition:

PROPOSITION 3. Let α,β , p be positive real numbers and 0 < υ � 1 . Let f be
a bounded real-valued function defined on the interval [0,1] . Suppose that f (1) = 0 ,

f
(
1− υ

n2

)
= εn

n2 and there exists 0 < η < 1 such that f |[η,1] is convex with the property

that Iconv( f |[η,1]) < ∞ . If α p � 2Iconv( f |[η,1])+2− p/2 , then

∫ 1

0
| f (x)|

∣∣∣P(α ,β )
n (x)

∣∣∣p dx ∼ εnn
α p−4. (33)

It is worth noting that the above result provides a refinement and generalization of
Theorem 7.34. from [20].

We shall show that, with suitable hypotheses, there is something like the comple-
ment of Theorem 2.

THEOREM 3. Let {εn} be a sequence of real numbers such that 0 < εn+1 � εn ,
lim
n→∞

εn = 0 and there exist constants I > 0 and Cn with the property that (for all n and

m)

εn

n2 −
εm

m2 � −Cm
εm

2
(1/m2−1/n2), (34)

εn

n2 −
εm

m2 = −Cm
εm

2
(1/m2−1/n2) ⇒Cnεn = Cmεm, (35)

lim
n→∞

n−I

εn
= 0, and sup{Cn : n ∈ N} < ∞. (36)

Then there exist a compact set D ⊂ R2 , a constant M > 0 and a sequence of polyno-
mials Pn ∈ Pn(R2) such that

‖∇Pn‖Lp(D)

‖Pn‖Lp(D)
∼ n2

εn
and ‖∇Q‖Lp(D) � M

n2

εn
‖Q‖Lp(D)

for any Q ∈ Pn(R2) .

Before we provide proof, we will discuss the nature of conditions (34)–(36). If we
define

C :=
{

1− 1
2n2 : n ∈ N

}
∪{1},

f : C → R, f

(
1− 1

2n2

)
=

εn

n2 , f (1) := 0,

G : C → R, G

(
1− 1

2n2

)
= −Cnεn, G(1) := 0,
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then the conditions (34) and (35) coincide with condition (C ) and (CW 1 ) taken from
[1], respectively. Thus, by Theorem 1.10 of [1], f has a convex, C1 extension F to
R , with F ′ = G on C , if and only if ( f ,G) satisfies conditions (34) and (35). Let
M := sup{Cn : n ∈ N} . Then the conditions (34) and (36) guarantee that there exists
0 < η < 1 such that, for every x ∈ [η ,1] ,

MF(x) � −F ′(x)(1− x). (37)

The details for accomplishing this will be provided later. The inequality (37) is similar
to (14) used in the proof of Theorem 2. If lim

n→∞
n−I

εn
= 0, then there exists a positive

constant L such that
1
nI � Lεn (n ∈ N)

The above inequality can be treated as an equivalent of the inequality (18). Thus, for
any sequence εn satisfying the assumptions of Theorem 3, there exists a C1 convex
function F : R → R such that εn = n2F(1− 1

2n2 ) .
On the other hand, if f : [0,1] → R is differentiable and strictly convex with the

property that f (1) = f ′(1) = 0 then the sequence εn := n2 f (1− 1
2n2 ) is monotonically

decreasing to zero and satisfies (34) and (35) with Cm =
− f ′(1− 1

2n2 )

n2 f (1− 1
2n2 )

. This follows from

the fact that a differentiable function of one variable is convex on an interval if and only
if its graph lies above all of its tangents:

f (x)− f (y) � f ′(y)(x− y)

and the three chords inequality:

f (x)− f (a)
x−a

� f (b)− f (a)
b−a

� f (b)− f (x)
b− x

whenever a < x < b . If we assume, in addition, that Iconv( f∣∣(η,1)
) = k for some 0 <

η < 1 then, by Proposition 1,

sup{Cn : n ∈ N} < ∞.

The property Iconv( f∣∣(η,1)
) = k implies that there exists a positive constant L such that

1
nI � Lεn.

The proof is similar to that of (18). Thus, in order to give an example of a sequence
εn that satisfies the assumptions of the above theorem, it is enough to take n2 f (1−
1

2n2 ) = εn for any strictly convex function f defined on [0,1] having the properties
f ′(1) = f (1) = 0 and Iconv( f ) < ∞ .

We now turn to the proof of Theorem 3.

Proof. In the first part of the proof, we will define the domain D and derive the
formula for the modulus of continuity of the boundary of D . Let C, f ,G and M be as
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above. Using Theorem 1.10 from [1], there exists a continuously differentiable function
F : R → R such that F is convex and F = f , F ′ = G on C . Now define

f̃ (x) :=

{
ε1 for x ∈ [0,1/2]
F(x) for x ∈ (1/2,1].

(38)

Since F is convex and F(1) = 0 it follows that f̃ is strictly decreasing on the interval
[1/2,1] .

If we define

D := {(x,y) ∈ R
2 : 0 � x � 1, 0 � y � f̃ (x)}, (39)

then D is a graph domain with respect to the cylinder La(ε1/2,u) , where a = (0,ε1/2)
and u = (1,0) . By the definition of ωD(t) ,

ωD(t) = max
{|(F−1(x2),x2)− (F−1(y2),y2)| : 0 � x2,y2 � ε1, |x2 − y2| � t

}
.

In order to prove that

ωD(t) = max
{|(F−1(s),s)− (1,0)| : 0 � s � min{ε1,t}

}
, (40)

it suffices to prove that if f̃ (y) = f̃ (x1)− f̃ (x2) , then

f̃ (y)
1− y

� f̃ (x1)− f̃ (x2)
x2− x1

(41)

for any 1/2 � x1 < x2 � 1 and 1/2 � y < 1. Since f̃ (y) = f̃ (x1)− f̃ (x2) , we have
y � x1 . If x1 < x2 � y , then, by the mean value theorem, there exist ξ ∈ (x1,x2) and
η ∈ (y,1) such that

− f̃ (y)
1− y

= f̃ ′(η),
f̃ (x2)− f̃ (x1)

x2− x1
= f̃ ′(ξ ).

Hence, (using the fact that differentiable function of one variable is convex on an inter-
val if and only if its derivative is monotonically non-decreasing on that interval)

f̃ (y)
1− y

= − f̃ ′(η) � − f̃ ′(ξ ) =
f̃ (x1)− f̃ (x2)

x2− x1
.

For the case x1 � y < x2 , let

S(t,r) :=
F(t)−F(r)

t− r
.

It is known that F is convex if and only if S(t,r) is monotonically non-decreasing in
t , for every fixed r . Therefore

F(x1)−F(x2)
x1− x2

= S(x2,x1) � S(1,x1) = S(x1,1) � S(y,1) =
F(y)−F(1)

y−1
.
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Since F = f̃ on the interval [1/2,1] , the inequality (41) holds when x1 � y < x2 .
From the formula (40) it follows that

ωD(t) = |(F−1(t),t)− (1,0)|=
√

(1−F−1(t))2 + t2

whenever t � ε1 . Hence, by F ′(1) = F(1) = 0,

lim
t→0+

ωD(t)
t

= +∞. (42)

Moreover,

ωD

( εn

n2

)
=

√
1

4n4 +
( εn

n2

)2
. (43)

Let sn be the solution of the equation ωD( sn
n2 ) = 1

2n2 . In this part of the proof, we
shall show that if n ∈ N is large enough, then there exist mn ∈ N , 0 < ξ < 1 for which

εn

n2 ξ � εmn

m2
n

� sn

n2 � εn

n2 . (44)

To establish (44), select i,τ ∈ N so that η := τ
i < 1 and 1− M

2 + M
2 η2 > 0. For each

n ∈ N let ln ∈ N0 be such that n = lnτ + sn for some sn ∈ {0,1,2, . . . ,τ − 1} . Define
mn := lni+n− lnτ . It is clear that

lim
n→∞

mn

n
=

1
η

> 1. (45)

Now choose n0 so large that,

4ε2
mn

<
m4

n

n4 −1

whenever n � n0 . Hence, by (43),

ωD

(
εmn

m2
n

)
=

√
1

4m4
n
+

ε2
mn

m4
n

<
1

2n2 .

Thus if ωD

(
sn
n2

)
= 1

2n2 , then

εmn

m2
n

<
sn

n2 <
εn

n2 . (46)

By (34), we have

εn

n2

(
1−Cn

2
+

Cn

2
n2

m2
n

)
� εmn

m2
n
. (47)
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Take δ > 0 so that ξ := 1− M
2 + M

2 (η2 − δ ) > 0, then there exists n1 ∈ N such that

εn

n2 ξ � εn

n2

(
1−Cn

2
+

Cn

2
(η2 − δ )

)
� εmn

m2
n

(48)

whenever n � n1 . This follows from the crucial fact that sup{Cn : n ∈ N} = M < ∞ ,
the limit (45) and (47). Thus, from (46) and (48), we conclude (44).

Since (42), the domain D is a cuspidal piecewise graph domain. An application
of Theorem 1 shows that there exists a constant B > 0 such that

‖∇Q‖Lp(D) � B
n2

sn
‖Q‖Lp(D) (49)

for any Q ∈ Pn(R2) . Hence, by (44),

‖∇Q‖Lp(D) � B
ξ

n2

εn
‖Q‖Lp(D). (50)

Before we go on to show that the factor n2

εn
is best possible, we will prove the

inequality (37). Let ν := max{n0,n1} . If x ∈ [1− 1
2ν2 ,1) , then there exists ς ∈ N such

that

x ∈
[
1− 1

2ς2 ,1− 1
2(ς +1)2

]
⊂
[
1− 1

2ς2 ,1− 1
2m2

ς

]
.

Hence, by the fact that F is strictly decreasing on the interval [1/2,1] ,

C
2ξ

F(x) � C
2ξ

F

(
1− 1

2m2
ς

)
=

Cεmς

2ξm2
ς
. (51)

Now by (48) and the definition of C ,

Cεmς

2ξm2
ς

� Cες

2ς2 � Cς ες

2ς2 = −F ′
(

1− 1
2ς2

)
1

2ς2 . (52)

Since −F ′(x)(1− x) is nonincreasing on (1/2,1) ,

Cς ες

2ς2 = −F ′
(

1− 1
2ς2

)
1

2ς2 � −F ′(x)(1− x). (53)

Hence

C
2ξ

F(x) � −F ′(x)(1− x) (54)

for x ∈ [1− 1
2ν2 ,1) , which is (37) with η = 1− 1

2ν2 and M = C
2ξ .



312 T. BEBEROK

In the last part we will consider the following family of polynomials

Pn(x,y) := yP(α ,β )
n (x).

A simple computation reveals that

‖Pn‖p
Lp(D) =

∫ 1− 1
2ν2

0

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx+
∫ 1− 1

2n2

1− 1
2ν2

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx

+
∫ 1

1− 1
2n2

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx (55)

for n > ν . It is easy to conclude that

∫ 1

1− 1
2n2

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx � 2
p+1

( εn

n2

)p+1∫ 1

1− 1
2n2

|Pα
n (x)|p dx. (56)

An argument similar to the one we gave for
∫ 1
xn
|P(α β )

n (x)|p dx shows that there exists
ϑ > 0 such that ∫ 1

1− 1
2n2

|P(α ,β )
n (x)|p dx � ϑnα p−2 (57)

for all sufficiently large n . Thus by (56) and (57),

∫ 1

1− 1
2n2

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx � 2ϑ
p+1

ε p+1
n nα p−2p−4. (58)

Using the methods similar to ones used in the proof of Theorem 2, applying (54) instead
of (14), we have

υεnn
α p−4 �

∫ 1

1− 1
2n2

∫ f̃ (x)

0
|P(α β )

n (x)|p dxdy, (59)

∫ 1− 1
2n2

1− 1
2ν2

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx � ϑ1ε p+1
n nα p−2p−4 (60)

for α p+ p/2−2> (p+1)C
ξ , appropriately adjusted constants υ ,ϑ1 and all sufficiently

large n . By the definition of f̃ , we have

∫ 1− 1
2ν2

0

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx =
ε p+1
1

p+1

∫ 1− 1
2ν2

0
|P(α ,β )

n (x)|p dx. (61)

Let u = arccos(1− 1
2ν2 ) . Using the change of variables x = cosθ , we have

∫ 1− 1
2ν2

0
|P(α ,β )

n (x)|p dx =
∫ π

2

u
|P(α ,β )

n (cosθ )|p sinθ dθ . (62)
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Applying certain properties of Jacobi polynomials P(α ,β )
n (x) verified in [20], (7.32.5) ,

p. 169, we conclude that there exists a natural number n2 so that

∫ π
2

u
|P(α ,β )

n (cosθ )|p sinθ dθ � Cn−
p
2

∫ π
2

u
θ−α p− p

2 +1 dθ (63)

for n � n2 and appropriately adjusted constant C . Hence, by (61)–(63),

lim
n→∞

∫ 1− 1
2ν2

0

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx = 0. (64)

If α p−2p−4 � I(p+1) , then by (36),

lim
n→∞

ε p+1
n nα p−2p−4 = ∞. (65)

Thus, by (64) and (65), for each α so that α p− 2p− 4 � I(p + 1) , there exists a
positive constant ϑ2 with the property that

∫ 1− 1
2ν2

0

∫ f̃ (x)

0
|yP(α ,β )

n (x)|p dydx � ϑ2ε p+1
n nα p−2p−4. (66)

Putting together (55), (58), (59), (60) and (66), we find that∥∥∥ ∂Pn
∂y

∥∥∥
Lp(D)

‖Pn‖Lp(D)
� ϑ3

n2

εn
, (67)

where ϑ3 > 0 is a constant independent of n . Finally, (50) and (67) yield that

‖∇Pn‖Lp(D)

‖Pn‖Lp(D)
∼ n2

εn
. �
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[13] A. KROÓ AND J. SZABADOS Bernstein-Markov type inequalities for multivariate polynomials on sets
with cusps, J. Approx. Theory, 102, (2000), 72–95.
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