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TURÁN’S INEQUALITY FOR
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Abstract. We present a short proof that the normalized Turán determinant in the ultraspherical
case is convex or concave depending on whether parameter λ is positive or negative.

1. Introduction and statement of the result

In the 40’s of the last century, while studying the zeros of Legendre polynomials
Pn(x) , P. Turán discovered the inequality

P2
n (x)−Pn−1(x)Pn+1(x) � 0, −1 � x � 1, (1)

with equality only for x = ±1. Since the left-hand side of (1) is representable in deter-
minant form,

Δn(x) =
∣∣∣∣

Pn(x) Pn+1(x)
Pn−1(x) Pn(x)

∣∣∣∣
Δn(x) is referred to as Turán’s determinant.

The result of Turán inspired a considerable interest, and by now there is a vast
amount of publications on the so-called Turán type inequalities. G. Szegő [15] gave
four different proof of (1). As Szegő pointed out in [15], his third proof extends Turán’s
inequality to other classes of functions including ultraspherical polynomials, Laguerre
and Hermite polynomials, Bessel functions, etc. This idea was elaborated further by
Skovgaard [13].

Karlin and Szegő [8] posed the problem of characterizing the set of pairs {α,β}
for which the normalized Jacobi polynomials P(α ,β )

m (x)/P(α ,β )
m (1) admit a Turán type

inequality. Szegő proved that Turán’s inequality holds whenever β � |α| , α > −1. In
two subsequent papers G. Gasper [5, 6] improved Szegő’s result showing finally that
the sought pairs {α,β} are those satisfying β � α > −1.
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Our concern here is Turán’s inequality in the ultraspherical case. Throughout this

paper, p(λ )
n stands for the n -th ultraspherical polynomial normalized to assume value

1 at x = 1,

p(λ )
n (x) =

P(λ )
n (x)

P(λ )
n (1)

.

Let
Δn,λ (x) :=

[
p(λ )

n (x)
]2− p(λ )

n−1(x)p
(λ )
n+1(x) , (2)

then Turán’s inequality for ultraspherical polynomials reads as

Δn,λ (x) � 0, x ∈ [−1,1] . (3)

To the many proofs of (3) (see, e.g. [2, 14, 15, 18, 19]), let us add the one in [10] based
on a Hermite interpolation formula, yielding the representation

Δn,λ (x) =
1− x2

n(n+2λ )

n

∑
k=1

�2
k(x)(1− xkx)

[
p′n(xk)

]2

(here, {�k}n
k=1 are the Lagrange basis polynomials for interpolation at the zeros {xk}n

k=1

of pn = p(λ )
n ).

Since Δn,λ (±1) = 0, it is of interest to describe the behavior of the normalized
Turán function

ϕn,λ (x) :=
Δn,λ (x)
1− x2 . (4)

Thiruvenkatachar and Nanjundiah [18] have shown that ϕn,λ increases in [−1,0] and
decreases in [0,1] when −1/2 < λ < 0, and has the opposite behavior when λ > 0.
Since ϕn,λ is an even function, it follows that for x ∈ [−1,1] ,

ϕn,λ (1) � ϕn,λ (x) � ϕn,λ (0), −1/2 < λ < 0

ϕn,λ (0) � ϕn,λ (x) � ϕn,λ (1), λ > 0.

These inequalities together with

ϕn,λ (0) = Δn,λ (0),

ϕn,λ (1) = −
Δ′

n,λ (1)

2
= 1/(2λ +1)

imply the following two-sided estimates for Δn,λ (x) when x ∈ [−1,1] .

1− x2

2λ +1
� Δn,λ (x) � Δn,λ (0)(1− x2), −1/2 < λ < 0

Δn,λ (0)(1− x2) � Δn,λ (x) � 1− x2

2λ +1
, λ > 0.

(5)

Here we make this observation more precise by proving the following:
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THEOREM 1. The normalized Turán function ϕn,λ is concave or convex on R

depending on whether −1/2 < λ < 0 or λ > 0 .

(Note that ϕn,0 ≡ 1.) Theorem 1 reproduces one of the inequalities in (5) and both
sharpens and extends to the whole real line the other one. More precisely, Theorem 1
implies immediately

COROLLARY 1. (i) If −1/2 < λ < 0 , then

Δn,λ (x) � Δn,λ (0)(1− x2) , x ∈ [−1,1] ,

Δn,λ (x) �
[
(1−|x|)Δn,λ (0)+

|x|
2λ +1

]
(1− x2) , x ∈ R .

(ii) If λ > 0 , then

Δn,λ (x) � Δn,λ (0)(1− x2) , x ∈ [−1,1] ,

Δn,λ (x) �
[
(1−|x|)Δn,λ (0)+

|x|
2λ +1

]
(1− x2) , x ∈ R .

The proof of Theorem 1 is given in the next section. The last section contains
some remarks and comments.

2. Proof of Theorem 1

We shall work with the renormalized ultraspherical polynomials

p(λ )
n (x) = P(λ )

n (x)/P(λ )
n (1) ,

and for the simplicity sake we omit the superscript (λ ) , writing pn := p(λ )
n . The next

two identities readily follow from [16, equation (4.7.28)]:

pn(x) = − 1
n+2λ

x p′n(x)+
1

n+1
p′n+1(x) ,

pn+1(x) = − 1
n+2λ

p′n(x)+
1

n+1
x p′n+1(x) .

These identities are used for deriving representations of pn+1 and pn−1 in terms of pn

and p′n :

pn+1(x) = x pn(x)− 1− x2

n+2λ
p′n(x) ,

pn−1(x) = x pn(x)+
1− x2

n
p′n(x) .

By replacing pn+1 and pn−1 in Δn,λ = p2
n− pn−1pn+1 we obtain

Δn,λ (x) =
1− x2

n(n+2λ )

[
n(n+2λ )p2

n(x)−2λ x pn(x)p′n(x)+ (1− x2)
[
p′n(x)

]2
]
,
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hence

ϕn,λ (x) =
1

n(n+2λ )

[
n(n+2λ )p2

n(x)−2λ x pn(x)p′n(x)+ (1− x2)
[
p′n(x)

]2
]
. (6)

Differentiating (6) and using the differential equation

(1− x2)y′′ − (2λ +1)xy′ +n(n+2λ )y = 0 , y = pn(x), (7)

we find

ϕ ′
n,λ (x) =

2λ
n(n+2λ )

[
x
[
p′n(x)

]2 − pn(x)p′n(x)− x pn(x)p′′n(x)
]

= − 2λ
n(n+2λ )

p2
n(x)

(x p′n(x)
pn(x)

)′
.

(8)

Let x1 < x2 < · · · < xn be the zeros of pn , they form a symmetric set with respect to
the origin, therefore

p′n(x)
pn(x)

=
n

∑
k=1

1
x− xk

=
1
2

n

∑
k=1

( 1
x− xk

+
1

x+ xk

)
= x

n

∑
k=1

1

x2 − x2
k

.

Consequently, (x p′n(x)
pn(x)

)′
= −2x

n

∑
k=1

x2
k

(x2 − x2
k)

2
,

and (8) implies

ϕ ′
n,λ (x) =

4λ x
n(n+2λ )

n

∑
k=1

x2
k q2

n,k(x) , qn,k(x) =
pn(x)

x2− x2
k

. (9)

Now (9) shows that signϕ ′
n,λ (x) = signλ x , a result already obtained by Thiruvenkat-

achar and Nanjundiah [18]. In fact, (9) implies more than that, namely, we have

signϕ(r)
n,λ (x) = signλ , x > xn, r = 1,2, . . . ,2n−2 . (10)

Indeed, ϕ ′
n,λ is a sum of polynomials with leading coefficients of the same sign as

λ and with all their zeros being real and located in [x1,xn] . By Rolle’s theorem, the
derivatives of these polynomials inherit the same properties, hence they have no zeros
in (xn,∞) and therefore have the same sign as λ therein. In particular, (10) implies

signϕ ′′
n,λ (x) = signλ , x ∈ (xn,∞)

and to prove Theorem 1 we need to show that signϕ ′′
n,λ (x) = signλ for x ∈ (0,xn] . In

view of (8), this is equivalent to prove that the function

ψn,λ (x) :=
[
p′n(x)

]2− pn(x)p′n(x)− x pn(x)p′′n(x) (11)



TURÁN’S INEQUALITY FOR ULTRASPHERICAL POLYNOMIALS REVISITED 347

satisfies
ψ ′

n,λ (x) > 0, x ∈ (0,xn]. (12)

We differentiate (11) and make use of the differential equations (7) and

(1− x2)y′′′ − (2λ +3)xy′′+(n−1)(n+2λ +1)y′ = 0 , y = pn(x),

to obtain a representation of ψ ′
n,λ (x) as a quadratic form of p′n and p′′n :

n(n+2λ )(1− x2)ψ ′
n,λ (x) =(2λ +1)(n−1)(n+2λ +1)x2 [

p′n(x)
]2

− (2λ +1)x
[
1+2(λ +1)x2] p′n(x)p

′′
n(x)

+ (1− x2)
[
2+(2λ +1)x2][

p′′n(x)
]2

The discriminant D of this quadratic form equals

D(x) = (2λ +1)x2[2λ +3− (2λ +1)(1− x2)
]
D1(x),

where

D1(x) = (2λ +1)

[
2λ +3− (2λ +2)(1− x2)

]2

2λ +3− (2λ +1)(1− x2)
−4(n−1)(n+2λ +1)(1− x2) .

Our goal is to prove that
D1(x) < 0 , x ∈ (0,xn], (13)

which implies D(x) < 0 and consequently ψ ′
n,λ (x) > 0 in (0,xn] . It is readily verified

that
[
2λ +3− (2λ +2)(1− x2)

]2

2λ +3− (2λ +1)(1− x2)
� 2λ +3− (2λ +5/2)(1− x2) , x ∈ [−1,1],

therefore

D1(x) � (2λ +1)
[
2λ +3− (2λ +5/2)(1− x2)

]−4(n−1)(n+2λ +1)(1− x2)

= (2λ +1)(2λ +3)− [
4(n+ λ )2− (λ +3/2)

]
(1− x2) , x ∈ [−1,1].

Hence, to prove (13), it suffices to show that

1− x2 >
(2λ +1)(2λ +3)

4(n+ λ )2−λ −3/2
, x ∈ (0,xn)

or, equivalently,

x2
n < 1− (2λ +1)(2λ +3)

4(n+ λ )2−λ −3/2
. (14)

Thus, we need an upper bound for xn , the largest zero of the ultraspherical polynomial

P(λ )
n . Amongst the numerous upper bounds for xn in the literature, we use the one from

[9, Lemma 6] (see also [4, p. 1801]):

x2
n <

(n+ λ )2− (λ +1)2

(n+ λ )2 +3λ +5/4+3(λ +1/2)2/(n−1)
. (15)
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The comparison of the right-hand sides of (14) and (15) (we have used Wolfram Math-
ematica for this purpose) shows that the latter is the smaller one, hence (14) holds true.
With this (12) is proved, hence signϕ ′′

n,λ (x) = signλ for x ∈ (0,xn] and consequently

signϕ ′′
n,λ (x) = signλ , x ∈ (0,∞).

Since ϕ ′′
n,λ is an even function, this accomplishes the proof of Theorem 1.

3. Remarks

1. There are also some results concerning concavity of Δn,λ . In the classical Turán
case, λ = 1/2, Madhava Rao and Thiruvenkatachar [12] have proved that

d2

dx2 Δn(x) = − 2
n(n+1

[
P′′

n (x)]2 ,

showing that Δn is a concave function. Venkatachaliengar and Lakshmana Rao [19]
extended this result by proving that Δn,λ is a concave function in [−1,1] provided
λ ∈ (0,1/2] . Generally, Δn,λ is neither convex nor concave if λ �∈ [0,1/2] .

2. Szász [14] proved the following pair of bounds for Δn,λ (x) :

λ
(
1− [p(λ )

n (x)]2
)

(n+ λ −1)(n+2λ )
< Δn,λ (x) <

n+ λ
λ +1

Γ(n)Γ(2λ +1)
Γ(n+2λ +1)

, λ ∈ (0,1) .

3. In a recent paper [11] we gave both an analytical and a computer proof of the fol-
lowing refinement of Turán’s inequality:

|x|[p(λ )
n (x)

]2 − p(λ )
n−1(x)p

(λ )
n+1(x) � 0, x ∈ [−1,1], −1/2 < λ � 1/2 ,

with the equality occurring only for x = ±1 and, if n is even, x = 0. This inequality
provides another lower bound for Δn,λ (x) in the case −1/2 < λ � 1/2. A computer
proof of the Legendre case (λ = 1/2) was given earlier by Gerhold and Kauers [7].

4. In [18] the authors proved also monotonicity of Δn,λ (x) , x ∈ [−1,1] fixed, with
respect to n . We refer to [1, 17] for some general condition on the sequences defin-
ing the three-term recurrence relation for orthogonal polynomials, which ensure the
monotonicity of the associated Turán determinants.

5. For a higher order Turán inequalities and a discussion on the interlink between the
Turán type inequalities and the Riemann hypothesis or the recovery of the orthogonality
measure, we refer to [3] and the references therein.
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[14] O. SZÁSZ, Identities and inequalities concerning orthogonal polynomials and Bessel functions, J.

Analyse Math. 1 (1951), 116–134.
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