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TURAN’S INEQUALITY FOR
ULTRASPHERICAL POLYNOMIALS REVISITED

GENO NIKOLOV

(Communicated by I. Peri¢)

Abstract. We present a short proof that the normalized Turdn determinant in the ultraspherical
case is convex or concave depending on whether parameter A is positive or negative.

1. Introduction and statement of the result

In the 40’s of the last century, while studying the zeros of Legendre polynomials
P,(x), P. Turdn discovered the inequality
P2(x) = P, (x)Py1(x) >0, —1<x<1, (1)
with equality only for x = +1. Since the left-hand side of (1) is representable in deter-
minant form,
Py x) Pot1 (x)

MO =1p" 0 B

A, (x) is referred to as Turdn’s determinant.

The result of Turdn inspired a considerable interest, and by now there is a vast
amount of publications on the so-called Turdn type inequalities. G. Szegd [15] gave
four different proof of (1). As Szeg6 pointed out in [15], his third proof extends Turdn’s
inequality to other classes of functions including ultraspherical polynomials, Laguerre
and Hermite polynomials, Bessel functions, etc. This idea was elaborated further by
Skovgaard [13].

Karlin and Szegd [8] posed the problem of characterizing the set of pairs {o, 3}

for which the normalized Jacobi polynomials PP )(x) / PP )(l) admit a Turdn type
inequality. Szegd proved that Turdn’s inequality holds whenever 3 > |o|, o« > —1. In

two subsequent papers G. Gasper [5, 6] improved Szeg@’s result showing finally that
the sought pairs {c, B} are those satisfying f > a > —1.

Mathematics subject classification (2020): Primary 33C45; Secondary 42C05.
Keywords and phrases: Turan inequality, normalized Turdn determinant, ultraspherical polynomials.
This research is supported by the Bulgarian National Research Fund under Contract KP-06-N62/4.

© M, Zagreb 343

Paper MIA-26-22


http://dx.doi.org/10.7153/mia-2023-26-22

344 G. NIKOLOV

Our concern here is Turdn’s inequality in the ultraspherical case. Throughout this

(%)

paper, p;, ’ stands for the n-th ultraspherical polynomial normalized to assume value
latx=1,

T
Let A 2 A A
A @) = [P @) = M 0P (), @)

then Turdn’s inequality for ultraspherical polynomials reads as
App(x) =0, xe[-1,1]. 3)

To the many proofs of (3) (see, e.g. [2, 14, 15, 18, 19]), let us add the one in [10] based
on a Hermite interpolation formula, yielding the representation

(here, {¢;}}_, are the Lagrange basis polynomials for interpolation at the zeros {xz}}_,

of pu=pi)).
Since A, 3 (£1) =0, it is of interest to describe the behavior of the normalized
Turdn function
Ay 5 (x)

1—x2
Thiruvenkatachar and Nanjundiah [18] have shown that ¢, ; increases in [—1,0] and

decreases in [0,1] when —1/2 < A < 0, and has the opposite behavior when A > 0.
Since @, is an even function, it follows that for x € [—1,1],

Pup (X) = )

0.2(0), —1/2<A <0

(PnJL(l) < (2 (x) A
< (Pn,/l(l)» A >0.

?,,1(0)

These inequalities together with
0,.(0) = 4,(0),
(% ( 1) =

imply the following two-sided estimates for A, 5 (x) when x € [—1,1].

)
1—x<AnA(X)<An.A(0)(1—x2), —1/2<A <0
224 +1 ’ ) 5
1—x2
Anp(O)(1 =) <A (¥) < 57— A >0,

Here we make this observation more precise by proving the following:
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THEOREM 1. The normalized Turdn function @, is concave or convex on R
depending on whether —1/2 <A <0 or A > 0.

(Note that ¢, 0= 1.) Theorem 1 reproduces one of the inequalities in (5) and both
sharpens and extends to the whole real line the other one. More precisely, Theorem 1
implies immediately

COROLLARY 1. (i) If —=1/2< A <0, then

AnJL(x) <An.,?b(o)(l_x2)7 RS [_lvl}a
||
24 +1

Bnp (@)= [(1= DA (0)+ 25 = (1 =), x€R.

(ii) If A >0, then

AnJL(x) >An,l(0)(1_x2)7 xe [_lvl}a
||
24 +1

The proof of Theorem 1 is given in the next section. The last section contains
some remarks and comments.

B (@) < [(1= DA (0)+ 25 =] (1 =), x€R.

2. Proof of Theorem 1
We shall work with the renormalized ultraspherical polynomials
P () = B ) /B (),

and for the simplicity sake we omit the superscript (*), writing p, := pELA). The next
two identities readily follow from [16, equation (4.7.28)]:

1 1
pn(x) = LY xpu(x) + mpfqﬂ(x)»
1 1
Pr1(x) = —,H_—ZAPZ(X) + mxp;+1(x)~

These identities are used for deriving representations of p,| and p,_; in terms of p,
and p/:

1-x%
Puy1(x) =xpn(x) — mpn(x)»
2
/

P () = xpa() + = P ().

By replacing p,+1 and p,—1 in A, 5 = pﬁ — Pn—1Pn+1 We obtain

2
Ml = o

o Mt 22)p3x) = 223 pa(x)p} () + (1 =) [ (0)]7]
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hence

[1(n+20)p2(x) = 2 xpa (WP (x) + (1 =) [P (0] ©)

1
Pup (X) = m

Differentiating (6) and using the differential equation
(L=22)" = 24+ 1)xy +n(n+24)y=0,  y=pa(x), (7

we find

M%Azx) ([P (0)]° = PP () — xpu(x)p) ()]

A xp,
- (n2+zx) (")(;(())>'

Let x; <xp < --- < x, be the zeros of p,, they form a symmetric set with respect to
the origin, therefore

Pfq(x):i_l :%2:{< 1 )in 12.

‘PZ,A (x) =
(8

pa(x)  Elx—x; X — X x—l—xk X2 —xt
Consequently,
! ’ n 2
(xpn(X)> EE T .
Pn(x) = (= x)
and (8) implies
n
/ _ Dn (x)
¢, 5 (x) = n+27L gxkan Gn i (x) = —xl )

Now (9) shows that sign¢/ , (x) = signA x, a result already obtained by Thiruvenkat-
achar and Nanjundiah [18]. In fact, (9) implies more than that, namely, we have

signg) (x) =signd,  x>x, r=12..2n-2. (10)

Indeed, ¢/ 4 18 a sum of polynomials with leading coefficients of the same sign as

2 and with all their zeros being real and located in [x;,x,]. By Rolle’s theorem, the
derivatives of these polynomials inherit the same properties, hence they have no zeros
in (x,,o0) and therefore have the same sign as A therein. In particular, (10) implies

signgy, ; (x) = sign4, X € (xp,0)

and to prove Theorem 1 we need to show that sign @/, (x) = signA for x € (0,x,]. In
view of (8), this is equivalent to prove that the function

W (1) = [po(x)]” = pu0)y (6) = x pu(x) Pls(x) (11)
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satisfies
v, ,(x) >0, x € (0,x,). (12)

We differentiate (11) and make use of the differential equations (7) and
(1—=x)y" — 24 +3)xy" + (n—1)(n+24+1)y =0, y = pa(x),
to obtain a representation of y; ; (x) as a quadratic form of p;, and pj:
n(n+22)(1 =)y, () =4+ 1)(n— 1) (n+ 24+ 1)2% [p,(x)]?

— (24 + D)x[1+2(A + 1)x*] p,(x)pll(x)
+ (1= 2+ A+ 1)) [pl)]

The discriminant D of this quadratic form equals

D(x) = 24+ 1)x* 21 +3 — 24+ 1)(1 —x%)] D (x),
where

22+3—(24+2)(1-2)]?
2A+3— A+ 1)(1—-2)

Di(x) = (21 +1) —4(n—1)(n+2A+1)(1 —x?).

Our goal is to prove that
Dl(x) <07 X € (07)6,,}, (13)
which implies D(x) < 0 and consequently v/ , (x) >0 in (0,x,]. It is readily verified
that
2 +3-(22+2)(1-2)]°
243 —(2A+1)(1—x2)

S2A+3-(2A+5/2)(1—x%),  xe[-1,1],

therefore
Di(x) < 2A+1)[2A +3— (24 +5/2)(1 —x)] —4(n— 1)(n+24+ 1)(1 —x?)
=Q2A+1)2A+3) = [4(n+2A)*— (A +3/2)](1 -,  xe[-L1].
Hence, to prove (13), it suffices to show that

QA+ 1)(24+3)

)
! inrap—a—3pn *E0x)
or, equivalently,
) B QA+ 1)(2A+3)
x; <1 TEES YL (14)

Thus, we need an upper bound for x,,, the largest zero of the ultraspherical polynomial

P,EM . Amongst the numerous upper bounds for x,, in the literature, we use the one from
[9, Lemma 6] (see also [4, p. 1801]):

2 _ (n+A)2—(A+1)?
S A BA L5443 A 1)22 (1)

15)
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The comparison of the right-hand sides of (14) and (15) (we have used Wolfram Math-

ematica for this purpose) shows that the latter is the smaller one, hence (14) holds true.
With this (12) is proved, hence sign ¢/, (x) = sign4 for x € (0,x,] and consequently

sign @), ; (x) = sign4, x € (0,00).

Since ¢ 4 18 an even function, this accomplishes the proof of Theorem 1.

3. Remarks

1. There are also some results concerning concavity of A, ;. In the classical Turdn
case, A = 1/2, Madhava Rao and Thiruvenkatachar [12] have proved that

d? 2
Z A0 =—
dx? (x) n(n+1

showing that A, is a concave function. Venkatachaliengar and Lakshmana Rao [19]
extended this result by proving that A, ; is a concave function in [—1,1] provided
A €(0,1/2]. Generally, A, , is neither convex nor concave if A ¢ [0,1/2].

2. Szdsz [14] proved the following pair of bounds for A, ; (x):

A1 =P @P)
(n+A—-1)(n+21)

n+A T(n)T2A+1)
A+1T(n+21+1)"’

<Ay (x) < 2 e€(0,1).

3. In a recent paper [11] we gave both an analytical and a computer proof of the fol-
lowing refinement of Turdn’s inequality:

A 2 A A
W [ @] = pH el =0, xel-11), —12< <12,
with the equality occurring only for x = £1 and, if n is even, x = 0. This inequality
provides another lower bound for A, ; (x) in the case —1/2 <A <1/2. A computer
proof of the Legendre case (A = 1/2) was given earlier by Gerhold and Kauers [7].

4. In [18] the authors proved also monotonicity of A, ;(x), x € [~1,1] fixed, with
respect to n. We refer to [1, 17] for some general condition on the sequences defin-
ing the three-term recurrence relation for orthogonal polynomials, which ensure the
monotonicity of the associated Turdn determinants.

5. For a higher order Turdn inequalities and a discussion on the interlink between the
Turdn type inequalities and the Riemann hypothesis or the recovery of the orthogonality
measure, we refer to [3] and the references therein.
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