TURÁN'S INEQUALITY FOR ULTRASPHERICAL POLYNOMIALS REVISITED

Geno Nikolov

(Communicated by I. Perić)

Abstract

We present a short proof that the normalized Turán determinant in the ultraspherical case is convex or concave depending on whether parameter λ is positive or negative.

1. Introduction and statement of the result

In the 40's of the last century, while studying the zeros of Legendre polynomials $P_{n}(x)$, P . Turán discovered the inequality

$$
\begin{equation*}
P_{n}^{2}(x)-P_{n-1}(x) P_{n+1}(x) \geqslant 0,-1 \leqslant x \leqslant 1 \tag{1}
\end{equation*}
$$

with equality only for $x= \pm 1$. Since the left-hand side of (1) is representable in determinant form,

$$
\Delta_{n}(x)=\left|\begin{array}{cc}
P_{n}(x) & P_{n+1}(x) \\
P_{n-1}(x) & P_{n}(x)
\end{array}\right|
$$

$\Delta_{n}(x)$ is referred to as Turán's determinant.
The result of Turán inspired a considerable interest, and by now there is a vast amount of publications on the so-called Turán type inequalities. G. Szegő [15] gave four different proof of (1). As Szegő pointed out in [15], his third proof extends Turán's inequality to other classes of functions including ultraspherical polynomials, Laguerre and Hermite polynomials, Bessel functions, etc. This idea was elaborated further by Skovgaard [13].

Karlin and Szegő [8] posed the problem of characterizing the set of pairs $\{\alpha, \beta\}$ for which the normalized Jacobi polynomials $P_{m}^{(\alpha, \beta)}(x) / P_{m}^{(\alpha, \beta)}(1)$ admit a Turán type inequality. Szegő proved that Turán's inequality holds whenever $\beta \geqslant|\alpha|, \alpha>-1$. In two subsequent papers G. Gasper [5, 6] improved Szegő's result showing finally that the sought pairs $\{\alpha, \beta\}$ are those satisfying $\beta \geqslant \alpha>-1$.

[^0]Our concern here is Turán's inequality in the ultraspherical case. Throughout this paper, $p_{n}^{(\lambda)}$ stands for the n-th ultraspherical polynomial normalized to assume value 1 at $x=1$,

$$
p_{n}^{(\lambda)}(x)=\frac{P_{n}^{(\lambda)}(x)}{P_{n}^{(\lambda)}(1)}
$$

Let

$$
\begin{equation*}
\Delta_{n, \lambda}(x):=\left[p_{n}^{(\lambda)}(x)\right]^{2}-p_{n-1}^{(\lambda)}(x) p_{n+1}^{(\lambda)}(x), \tag{2}
\end{equation*}
$$

then Turán's inequality for ultraspherical polynomials reads as

$$
\begin{equation*}
\Delta_{n, \lambda}(x) \geqslant 0, \quad x \in[-1,1] . \tag{3}
\end{equation*}
$$

To the many proofs of (3) (see, e.g. [2, 14, 15, 18, 19]), let us add the one in [10] based on a Hermite interpolation formula, yielding the representation

$$
\Delta_{n, \lambda}(x)=\frac{1-x^{2}}{n(n+2 \lambda)} \sum_{k=1}^{n} \ell_{k}^{2}(x)\left(1-x_{k} x\right)\left[p_{n}^{\prime}\left(x_{k}\right)\right]^{2}
$$

(here, $\left\{\ell_{k}\right\}_{k=1}^{n}$ are the Lagrange basis polynomials for interpolation at the zeros $\left\{x_{k}\right\}_{k=1}^{n}$ of $p_{n}=p_{n}^{(\lambda)}$).

Since $\Delta_{n, \lambda}(\pm 1)=0$, it is of interest to describe the behavior of the normalized Turán function

$$
\begin{equation*}
\varphi_{n, \lambda}(x):=\frac{\Delta_{n, \lambda}(x)}{1-x^{2}} \tag{4}
\end{equation*}
$$

Thiruvenkatachar and Nanjundiah [18] have shown that $\varphi_{n, \lambda}$ increases in $[-1,0]$ and decreases in $[0,1]$ when $-1 / 2<\lambda<0$, and has the opposite behavior when $\lambda>0$. Since $\varphi_{n, \lambda}$ is an even function, it follows that for $x \in[-1,1]$,

$$
\begin{array}{ll}
\varphi_{n, \lambda}(1) \leqslant \varphi_{n, \lambda}(x) \leqslant \varphi_{n, \lambda}(0), & -1 / 2<\lambda<0 \\
\varphi_{n, \lambda}(0) \leqslant \varphi_{n, \lambda}(x) \leqslant \varphi_{n, \lambda}(1), & \lambda>0
\end{array}
$$

These inequalities together with

$$
\begin{aligned}
& \varphi_{n, \lambda}(0)=\Delta_{n, \lambda}(0) \\
& \varphi_{n, \lambda}(1)=-\frac{\Delta_{n, \lambda}^{\prime}(1)}{2}=1 /(2 \lambda+1)
\end{aligned}
$$

imply the following two-sided estimates for $\Delta_{n, \lambda}(x)$ when $x \in[-1,1]$.

$$
\begin{align*}
& \frac{1-x^{2}}{2 \lambda+1} \leqslant \Delta_{n, \lambda}(x) \leqslant \Delta_{n, \lambda}(0)\left(1-x^{2}\right), \quad-1 / 2<\lambda<0 \\
& \Delta_{n, \lambda}(0)\left(1-x^{2}\right) \leqslant \Delta_{n, \lambda}(x) \leqslant \frac{1-x^{2}}{2 \lambda+1}, \quad \lambda>0 \tag{5}
\end{align*}
$$

Here we make this observation more precise by proving the following:

THEOREM 1. The normalized Turán function $\varphi_{n, \lambda}$ is concave or convex on \mathbb{R} depending on whether $-1 / 2<\lambda<0$ or $\lambda>0$.
(Note that $\varphi_{n, 0} \equiv 1$.) Theorem 1 reproduces one of the inequalities in (5) and both sharpens and extends to the whole real line the other one. More precisely, Theorem 1 implies immediately

COROLLARY 1. (i) If $-1 / 2<\lambda<0$, then

$$
\begin{aligned}
& \Delta_{n, \lambda}(x) \leqslant \Delta_{n, \lambda}(0)\left(1-x^{2}\right), \quad x \in[-1,1] \\
& \Delta_{n, \lambda}(x) \geqslant\left[(1-|x|) \Delta_{n, \lambda}(0)+\frac{|x|}{2 \lambda+1}\right]\left(1-x^{2}\right), \quad x \in \mathbb{R} .
\end{aligned}
$$

(ii) If $\lambda>0$, then

$$
\begin{aligned}
& \Delta_{n, \lambda}(x) \geqslant \Delta_{n, \lambda}(0)\left(1-x^{2}\right), \quad x \in[-1,1] \\
& \Delta_{n, \lambda}(x) \leqslant\left[(1-|x|) \Delta_{n, \lambda}(0)+\frac{|x|}{2 \lambda+1}\right]\left(1-x^{2}\right), \quad x \in \mathbb{R}
\end{aligned}
$$

The proof of Theorem 1 is given in the next section. The last section contains some remarks and comments.

2. Proof of Theorem 1

We shall work with the renormalized ultraspherical polynomials

$$
p_{n}^{(\lambda)}(x)=P_{n}^{(\lambda)}(x) / P_{n}^{(\lambda)}(1),
$$

and for the simplicity sake we omit the superscript ${ }^{(\lambda)}$, writing $p_{n}:=p_{n}^{(\lambda)}$. The next two identities readily follow from [16, equation (4.7.28)]:

$$
\begin{aligned}
& p_{n}(x)=-\frac{1}{n+2 \lambda} x p_{n}^{\prime}(x)+\frac{1}{n+1} p_{n+1}^{\prime}(x) \\
& p_{n+1}(x)=-\frac{1}{n+2 \lambda} p_{n}^{\prime}(x)+\frac{1}{n+1} x p_{n+1}^{\prime}(x)
\end{aligned}
$$

These identities are used for deriving representations of p_{n+1} and p_{n-1} in terms of p_{n} and p_{n}^{\prime} :

$$
\begin{aligned}
& p_{n+1}(x)=x p_{n}(x)-\frac{1-x^{2}}{n+2 \lambda} p_{n}^{\prime}(x) \\
& p_{n-1}(x)=x p_{n}(x)+\frac{1-x^{2}}{n} p_{n}^{\prime}(x)
\end{aligned}
$$

By replacing p_{n+1} and p_{n-1} in $\Delta_{n, \lambda}=p_{n}^{2}-p_{n-1} p_{n+1}$ we obtain

$$
\Delta_{n, \lambda}(x)=\frac{1-x^{2}}{n(n+2 \lambda)}\left[n(n+2 \lambda) p_{n}^{2}(x)-2 \lambda x p_{n}(x) p_{n}^{\prime}(x)+\left(1-x^{2}\right)\left[p_{n}^{\prime}(x)\right]^{2}\right]
$$

hence

$$
\begin{equation*}
\varphi_{n, \lambda}(x)=\frac{1}{n(n+2 \lambda)}\left[n(n+2 \lambda) p_{n}^{2}(x)-2 \lambda x p_{n}(x) p_{n}^{\prime}(x)+\left(1-x^{2}\right)\left[p_{n}^{\prime}(x)\right]^{2}\right] \tag{6}
\end{equation*}
$$

Differentiating (6) and using the differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-(2 \lambda+1) x y^{\prime}+n(n+2 \lambda) y=0, \quad y=p_{n}(x) \tag{7}
\end{equation*}
$$

we find

$$
\begin{align*}
\varphi_{n, \lambda}^{\prime}(x) & =\frac{2 \lambda}{n(n+2 \lambda)}\left[x\left[p_{n}^{\prime}(x)\right]^{2}-p_{n}(x) p_{n}^{\prime}(x)-x p_{n}(x) p_{n}^{\prime \prime}(x)\right] \tag{8}\\
& =-\frac{2 \lambda}{n(n+2 \lambda)} p_{n}^{2}(x)\left(\frac{x p_{n}^{\prime}(x)}{p_{n}(x)}\right)^{\prime}
\end{align*}
$$

Let $x_{1}<x_{2}<\cdots<x_{n}$ be the zeros of p_{n}, they form a symmetric set with respect to the origin, therefore

$$
\frac{p_{n}^{\prime}(x)}{p_{n}(x)}=\sum_{k=1}^{n} \frac{1}{x-x_{k}}=\frac{1}{2} \sum_{k=1}^{n}\left(\frac{1}{x-x_{k}}+\frac{1}{x+x_{k}}\right)=x \sum_{k=1}^{n} \frac{1}{x^{2}-x_{k}^{2}}
$$

Consequently,

$$
\left(\frac{x p_{n}^{\prime}(x)}{p_{n}(x)}\right)^{\prime}=-2 x \sum_{k=1}^{n} \frac{x_{k}^{2}}{\left(x^{2}-x_{k}^{2}\right)^{2}}
$$

and (8) implies

$$
\begin{equation*}
\varphi_{n, \lambda}^{\prime}(x)=\frac{4 \lambda x}{n(n+2 \lambda)} \sum_{k=1}^{n} x_{k}^{2} q_{n, k}^{2}(x), \quad q_{n, k}(x)=\frac{p_{n}(x)}{x^{2}-x_{k}^{2}} \tag{9}
\end{equation*}
$$

Now (9) shows that $\operatorname{sign} \varphi_{n, \lambda}^{\prime}(x)=\operatorname{sign} \lambda x$, a result already obtained by Thiruvenkatachar and Nanjundiah [18]. In fact, (9) implies more than that, namely, we have

$$
\begin{equation*}
\operatorname{sign} \varphi_{n, \lambda}^{(r)}(x)=\operatorname{sign} \lambda, \quad x>x_{n}, r=1,2, \ldots, 2 n-2 \tag{10}
\end{equation*}
$$

Indeed, $\varphi_{n, \lambda}^{\prime}$ is a sum of polynomials with leading coefficients of the same sign as λ and with all their zeros being real and located in $\left[x_{1}, x_{n}\right]$. By Rolle's theorem, the derivatives of these polynomials inherit the same properties, hence they have no zeros in $\left(x_{n}, \infty\right)$ and therefore have the same sign as λ therein. In particular, (10) implies

$$
\operatorname{sign} \varphi_{n, \lambda}^{\prime \prime}(x)=\operatorname{sign} \lambda, \quad x \in\left(x_{n}, \infty\right)
$$

and to prove Theorem 1 we need to show that $\operatorname{sign} \varphi_{n, \lambda}^{\prime \prime}(x)=\operatorname{sign} \lambda$ for $x \in\left(0, x_{n}\right]$. In view of (8), this is equivalent to prove that the function

$$
\begin{equation*}
\psi_{n, \lambda}(x):=\left[p_{n}^{\prime}(x)\right]^{2}-p_{n}(x) p_{n}^{\prime}(x)-x p_{n}(x) p_{n}^{\prime \prime}(x) \tag{11}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\psi_{n, \lambda}^{\prime}(x)>0, \quad x \in\left(0, x_{n}\right] . \tag{12}
\end{equation*}
$$

We differentiate (11) and make use of the differential equations (7) and

$$
\left(1-x^{2}\right) y^{\prime \prime \prime}-(2 \lambda+3) x y^{\prime \prime}+(n-1)(n+2 \lambda+1) y^{\prime}=0, \quad y=p_{n}(x)
$$

to obtain a representation of $\psi_{n, \lambda}^{\prime}(x)$ as a quadratic form of p_{n}^{\prime} and $p_{n}^{\prime \prime}$:

$$
\begin{aligned}
n(n+2 \lambda)\left(1-x^{2}\right) \psi_{n, \lambda}^{\prime}(x)= & (2 \lambda+1)(n-1)(n+2 \lambda+1) x^{2}\left[p_{n}^{\prime}(x)\right]^{2} \\
& -(2 \lambda+1) x\left[1+2(\lambda+1) x^{2}\right] p_{n}^{\prime}(x) p_{n}^{\prime \prime}(x) \\
& +\left(1-x^{2}\right)\left[2+(2 \lambda+1) x^{2}\right]\left[p_{n}^{\prime \prime}(x)\right]^{2}
\end{aligned}
$$

The discriminant D of this quadratic form equals

$$
D(x)=(2 \lambda+1) x^{2}\left[2 \lambda+3-(2 \lambda+1)\left(1-x^{2}\right)\right] D_{1}(x)
$$

where

$$
D_{1}(x)=(2 \lambda+1) \frac{\left[2 \lambda+3-(2 \lambda+2)\left(1-x^{2}\right)\right]^{2}}{2 \lambda+3-(2 \lambda+1)\left(1-x^{2}\right)}-4(n-1)(n+2 \lambda+1)\left(1-x^{2}\right) .
$$

Our goal is to prove that

$$
\begin{equation*}
D_{1}(x)<0, \quad x \in\left(0, x_{n}\right] \tag{13}
\end{equation*}
$$

which implies $D(x)<0$ and consequently $\psi_{n, \lambda}^{\prime}(x)>0$ in $\left(0, x_{n}\right]$. It is readily verified that

$$
\frac{\left[2 \lambda+3-(2 \lambda+2)\left(1-x^{2}\right)\right]^{2}}{2 \lambda+3-(2 \lambda+1)\left(1-x^{2}\right)} \leqslant 2 \lambda+3-(2 \lambda+5 / 2)\left(1-x^{2}\right), \quad x \in[-1,1]
$$

therefore

$$
\begin{aligned}
D_{1}(x) & \leqslant(2 \lambda+1)\left[2 \lambda+3-(2 \lambda+5 / 2)\left(1-x^{2}\right)\right]-4(n-1)(n+2 \lambda+1)\left(1-x^{2}\right) \\
& =(2 \lambda+1)(2 \lambda+3)-\left[4(n+\lambda)^{2}-(\lambda+3 / 2)\right]\left(1-x^{2}\right), \quad x \in[-1,1] .
\end{aligned}
$$

Hence, to prove (13), it suffices to show that

$$
1-x^{2}>\frac{(2 \lambda+1)(2 \lambda+3)}{4(n+\lambda)^{2}-\lambda-3 / 2}, \quad x \in\left(0, x_{n}\right)
$$

or, equivalently,

$$
\begin{equation*}
x_{n}^{2}<1-\frac{(2 \lambda+1)(2 \lambda+3)}{4(n+\lambda)^{2}-\lambda-3 / 2} \tag{14}
\end{equation*}
$$

Thus, we need an upper bound for x_{n}, the largest zero of the ultraspherical polynomial $P_{n}^{(\lambda)}$. Amongst the numerous upper bounds for x_{n} in the literature, we use the one from [9, Lemma 6] (see also [4, p. 1801]):

$$
\begin{equation*}
x_{n}^{2}<\frac{(n+\lambda)^{2}-(\lambda+1)^{2}}{(n+\lambda)^{2}+3 \lambda+5 / 4+3(\lambda+1 / 2)^{2} /(n-1)} \tag{15}
\end{equation*}
$$

The comparison of the right-hand sides of (14) and (15) (we have used Wolfram Mathematica for this purpose) shows that the latter is the smaller one, hence (14) holds true. With this (12) is proved, hence $\operatorname{sign} \varphi_{n, \lambda}^{\prime \prime}(x)=\operatorname{sign} \lambda$ for $x \in\left(0, x_{n}\right]$ and consequently

$$
\operatorname{sign} \varphi_{n, \lambda}^{\prime \prime}(x)=\operatorname{sign} \lambda, \quad x \in(0, \infty)
$$

Since $\varphi_{n, \lambda}^{\prime \prime}$ is an even function, this accomplishes the proof of Theorem 1.

3. Remarks

1. There are also some results concerning concavity of $\Delta_{n, \lambda}$. In the classical Turán case, $\lambda=1 / 2$, Madhava Rao and Thiruvenkatachar [12] have proved that

$$
\frac{d^{2}}{d x^{2}} \Delta_{n}(x)=-\frac{2}{n(n+1}\left[P_{n}^{\prime \prime}(x)\right]^{2}
$$

showing that Δ_{n} is a concave function. Venkatachaliengar and Lakshmana Rao [19] extended this result by proving that $\Delta_{n, \lambda}$ is a concave function in $[-1,1]$ provided $\lambda \in(0,1 / 2]$. Generally, $\Delta_{n, \lambda}$ is neither convex nor concave if $\lambda \notin[0,1 / 2]$.
2. Szász [14] proved the following pair of bounds for $\Delta_{n, \lambda}(x)$:

$$
\frac{\lambda\left(1-\left[p_{n}^{(\lambda)}(x)\right]^{2}\right)}{(n+\lambda-1)(n+2 \lambda)}<\Delta_{n, \lambda}(x)<\frac{n+\lambda}{\lambda+1} \frac{\Gamma(n) \Gamma(2 \lambda+1)}{\Gamma(n+2 \lambda+1)}, \quad \lambda \in(0,1)
$$

3. In a recent paper [11] we gave both an analytical and a computer proof of the following refinement of Turán's inequality:

$$
|x|\left[p_{n}^{(\lambda)}(x)\right]^{2}-p_{n-1}^{(\lambda)}(x) p_{n+1}^{(\lambda)}(x) \geqslant 0, \quad x \in[-1,1],-1 / 2<\lambda \leqslant 1 / 2
$$

with the equality occurring only for $x= \pm 1$ and, if n is even, $x=0$. This inequality provides another lower bound for $\Delta_{n, \lambda}(x)$ in the case $-1 / 2<\lambda \leqslant 1 / 2$. A computer proof of the Legendre case $(\lambda=1 / 2)$ was given earlier by Gerhold and Kauers [7].
4. In [18] the authors proved also monotonicity of $\Delta_{n, \lambda}(x), x \in[-1,1]$ fixed, with respect to n. We refer to $[1,17]$ for some general condition on the sequences defining the three-term recurrence relation for orthogonal polynomials, which ensure the monotonicity of the associated Turán determinants.
5. For a higher order Turán inequalities and a discussion on the interlink between the Turán type inequalities and the Riemann hypothesis or the recovery of the orthogonality measure, we refer to [3] and the references therein.

REFERENCES

[1] C. Berg and R. Szwarc, Bounds on Turán determinants, J. Approx. Theory 161, 1 (2009, 127-141.
[2] A. E. Danese, Explicit evaluations of Turán expressions, Annali di Mathematica Pura ed Applicata, Serie IV 38 (1955), 339-348.
[3] D. K. Dimitrov, Higher order Turán inequalilties, Proc. Amer. Math. Soc. 126, 7 (1998), 20332037.
[4] D. K. Dimitrov and G. P. Nikolov, Sharp bounds for the extreme zeros of classical orthogonal polynomials, J. Approx. Theory 162, 10 (2010), 1793-1804.
[5] G. Gasper, On the extension of Turán's inequality to Jacobi polynomials, Duke Math. J. 38 (1971), 415-428.
[6] G. Gasper, An inequality of Turán type for Jacobi polynomials, Proc. Amer. Math. Soc. 32 (1972), 435-439.
[7] S. Gerhold and M. Kauers, A computer proof of Turán's inequality, J. Ineq. Pure Appl. Math. 7, 2, \#42, (2006).
[8] S. KARLIN, G. SZEGŐ, On certain determinants whose elements are orthogonal polynomials, J. Analyse Math. 8 (1960/61), 1-157.
[9] G. Nikolov, Inequalities of Duffin-Schaeffer type. II, East J. Approx. 11, 2 (2005), 147-168.
[10] G. Nikolov, On Turán's inequality for ultraspherical polynomials, Ann. Univ. Sofia, Fac. Math. Inf. 101 (2013), 105-114.
[11] G. Nikolov and V. Pillwein, An extension of Turán's inequality for ultraspherical polynomials, Math. Inequal. Appl. 18, 1 (2015), 321-335.
[12] B.S. Madhava Rao and V. R. Thiruvenkatachar, On an inequality concerning orthogonal polynomials, Proc. Indian Acad. Sci., Sect. A. 29 (1949), 391-393.
[13] H. SkovgaArd, On inequalities of Turán's type, Math. Scand. 2 (1954), 65-73.
[14] O. SzÁsz, Identities and inequalities concerning orthogonal polynomials and Bessel functions, J. Analyse Math. 1 (1951), 116-134.
[15] G. SzeGő, On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Math. Soc. 54 (1948), 401-405.
[16] G. SzEGő, Orthogonal Polynomials, 4th edn., AMS Colloquium Publications, Providence, RI (1975).
[17] R. SzWARC, Positivity of Turán determinants for orthogonal polynomials, Harmonic analysis and hypergroups (Delhi, 1995), Trends Math., 165-182. Birkhäuser Boston, Boston, MA, 1998.
[18] V. R. Thiruvenkatachar and T. S. Nanjundiah, Inequalities concerning Bessel functions and orthogonal polynomials, Proc. Indian Acad. Sci., Sect. A. 33 (1951), 373-384.
[19] K. Venkatachaliengar and S. K. Lakshmana Rao, On Turán's inequality for ultraspherical polynomials, Proc. Amer. Math. Soc. 8 (1957), 1075-1087.

[^1]
[^0]: Mathematics subject classification (2020): Primary 33C45; Secondary 42C05.
 Keywords and phrases: Turán inequality, normalized Turán determinant, ultraspherical polynomials. This research is supported by the Bulgarian National Research Fund under Contract KP-06-N62/4.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

