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SHERMAN’S FUNCTIONAL, ITS PROPERTIES WITH
APPLICATIONS FOR f-DIVERGENCE MEASURE

SLAVICA IVELIC BRADANOVIC*, DILDA PECARIC AND JOSIP PECARIC

(Communicated by I. Peric)

Abstract. In this paper we define Sherman’s functional deduced from Sherman’s inequality. We
established lower and upper bounds for Sherman’s functional and study its properties. As con-
sequences of main results we obtained new bounds for Csiszar f-divergence functional and as
special cases bounds for Shannon’s entropy. As applications we use the Zipf-Mandelbrot law to
introduce a new entropy and to derive some related results.

1. Introduction

Let I be an interval in R. The well known Jensen inequality

l n n
f szixi < = Y pif (xi) (1)

nj=1 nij—1

holds for every convex function f :I — R, for any vector x = (x1,...,x,) € I" and
nonnegative n-tuple p = (p1,...,pn) with X7 pi =P, > 0.
If it is satified

l n
p1>0, pr....pn <0, P,>0 and FZPWEI’
n =1

then the reverse of Jensen’s inequality

f PLZPVC;' > %Zpif(xi)
n =1 n =1
holds (see for example [32]).
Investigating the method of interpolating inequalities, J. Pe€ari¢ using Jensen’s
inequality and its reverse proved the following result ([22, p. 717]). This result was nor
published in any journal and due that we give it with a proof.
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THEOREM 1. Let f:1 — R be a convex function, X = (x1,...,x,) € I", p =
(p1y---,pn) and q = (qu1,--.,qn) be nonnegative n-tuples such p > q, i.e. p; > qi,
i=1,...,n,and P,=%"pi>0, Oy =%",qi >0. Then

> aif (xi) = Ouf (QL Z%‘M’) <Y\ pif (%) = Puf (% ZPW) . (2)
=1 n =1

i=1 ni=1

Proof. Applying Jensen’s inequality we have

i(l’i—%)f ,,; i(pi_%')xi (3)
i=1 E (pl—ql) i=1

<3 )3 (i a) f) = 3 (pi— ) )
i=1 2 (pl—ql) i=1 i=1

n 1 n
Spi—a)f| —— 2 (pi—qi)xi “4)
=  (pi—a)
P, <Ln ﬁ“l PiXi | — On <QL g ‘b/ﬁ)
—(Pn_Qn)f Pn_Qn

1 & 1 &
=P.f (F Zpixz) —Onf (Q_ Clixi> .
n =1 n =1

Now, combining (3) and (4), we obtain (2). [

As an easy consequence of the previous theorem the following lemma holds.

LEMMA 1. Let f:1— R be a convex function, x = (x1,...,x,) € " and p =
(p1,--.,Dn) be nonnegative n-tuple such that By =Y pi > 0. Then

n l n
xi)] <Y pif (xi) = Puf (F ZPVQ‘) (5)
1 i=1 ni=1
n 1 n
< max {p;} [Zf(xi) —nf (; Z&-)] :
SIS i=1 i=1

n

=

min {p;} [éf(xi) —nf (%

1<i<n
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Few years later, Dragomir et el. [1 1], obtained the analogous result to the previous
lemma but as a consequence of a quite different approach. They considered Jensen’s
functional _#,(f,x,p), deduced from Jensen’s inequality (1), as a difference between
the right and left side, define as follows

1 n
n(f.x,p) pr Xi) — (FZ[’VQ) > 0. (6)
ni=1

From (6), forp=1=(1,....,1), we get

a(fx,1) Zf xi) —nf (%Z%) > 0. (7
i=1

Dragomir continued the investigation of the properties of normalized Jensen’s
functional, i.e. functional (6) satisfying P, = > | p; = 1, and obtained the following
lower and upper bound for the normalized functional (see [9, Theorem 1]).

THEOREM 2. Let f:1 — R be a convex function, X = (x,...,x,) € I", p =
(p1,---,pn) be a nonnegative n-tuple and q = (qi,...,q,) be a positive n-tuple with
S pi=Xi,qi=1. Then

(0 <)fg}gﬂ{%}/ (f.x,q) < _Zu(f.x,p) ggﬂ{i}/ (f,x,q). (8

We also recommend to the reader the monograph [20], in which results related to
the concept of Jensen’s functional are collected.

2. Preliminaries

For two vectors X = (x1,...,%m), Y = (V1,...,ym) € I"", where x|,y denote their
increasing order, we say that X majorizes y and write y < x if

k m m
2 < XX k=1Liomand 3yi= 3 ©
: i=1 i=1

Let #,m(R5) denotes the set of all n x m matrices with nonnegative real entries.
A matrix A € #u,(Ry) is doubly stochastic matrix if the sum of the entries in each
column and row is equal to 1. A matrix A € .#,,,(R..) is column (resp. row) stochastic
matrix if the sum of the entries in each column (resp. row) is equal to 1. With €, (R4.)
we denote the set of all n X m column stochastic matrices with nonnegative real entries.
For column stochastic matrices with positive real entries we use notation %, ((0,¢°)).

It is well known that

y=<x iff y=xA

for some doubly stochastic matrix A € 4, (R4).
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Moreover, for every convex function f: I — R, the relation y < x implies the well
known Majorization inequality

m m

> ) <Y ). (10)

i=1 i=1

Sherman [34] considered the weighted concept of majorization

b) < (x,a),

(y,
between two vectors X = (x1,...,x,) € I" and y = (y1,...,ym) € I"" with nonnegative
weights a = (ay,...,a,) and b = (by,...,b,,) under the assumption of existence of
column stochastic matrix S = (a;;) € €um(Ry) such that

y=xS and a=bST, (11D

where S” is a transpose matrix of S. Under conditions (11), for every convex function
f 1 — R, the following inequality

2 bif () < 2 aif (xi) (12)
j=1 i=1

holds. This result is known as Sherman’s theorem and (12) as Sherman’s inequality. It
represents a generalization of Majorization inequality (10) as well as Jensen’s inequal-
ity (1). Choosing m =n and b=1=(1,...,1), the condition (y,b) <(x,a) implies
y = xS with some doubly stochastic matrix S and a=bS” =1=(1,...,1), and as
direct consequence of Sherman’s inequality we get Majorization inequality. Specially,
choosing m = 1 and setting by = 1, s;; = 5, Sherman’s inequality (12) reduces to
Jensen’s inequality (1). Results obtalned for Sherman s inequality generalize certain
results that are valid for Majorization and Jensen’s inequality. Some resent generaliza-
tions of Sherman’s inequality can be found in [1]-[4], [6], [12]-[19], [25]-[31].

Our paper is organized as follows. In the third section, we define Sherman’s func-
tional. We study its properties and establish lower and upper bounds for it. In the fourth
section, we obtain new lower and upper bounds for Csiszar f-divergence functionals
and Shannon’s entropy. The last section is dedicated to the Zipf-Mandelbrot law. In
combination with results from the previous section, we introduce a new entropy and
derive some related results.

3. Sherman’s functional and its properties

Motivated by Sherman’s inequality (12), i.e.

0< Y aif(xi)— X bif(v;) (13)
=1

i=1

= i (i bjsij) f(xi) — ilbjf (im&y) , (14)
= i=

i=1
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we define Sherman’s functional as follows.

Let .#(I) denotes the set of all convex functions defined on /. Under the assump-
tions of Sherman’s theorem, we define Sherman’s functional .7 : % (I) x I" x [0,e0)"™ x
Cnm(R+) — R by

3

Z(f.x,b,S) = 2 Zb isiif(xi) 2 (i&'&‘j) 15)
i=1

B (Eorei(5))

THEOREM 3. Sherman’s functional . satisfies the following properties:

1M§ :
\

a) L (f,x,b,S) is positive, i.e.
Z(f,x,b,8) > 0; (16)

b) Z(f,x,b,-) is concave on the convex set €pm(R..), i.e. forall A € [0,1]

F(FxbAS+(1-A)T) > AZ(£,x,b,S) + (1 - 1).Z(f,x,b,T);  (17)

¢) S (x,-,S) is linear mapping, i.e.

Z(f,x,b+4d,8) = Z(f,x,b,8) +.7(f,x,d,8), (18)
S (f:%,2b,8) = 2.7(f,x,b,8);

d) ZL(f,x,,S) is increasing on [0,00)™, i.e. if b,c € [0,00)™ such that b >d, i.e.
bj>dj,j=1,...,m, then

Z(f,x,b,8) > .7 (f,x,d,8) > 0. (19)

Proof. a) Positivity of functional .# follows from Sherman’s inequality (12).
b) We have

L(f,x,b,AS+ (1 -4)T) (20)
=2 2 b (Asij+ (1= 2)eij) f Z bif (Z (Asij+ (1= 2A)tij)x )
i=1j=1 Jj=1 i=1

M=
Ms

A i gbjs,-jf(xi) + (1 —2,)

i=1j=1

bijtijf (xi) ijf (Z (Asij+ (1= A)t;)x, )

1j=1 i=1

~.
I
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Further, by convexity of f we have

i (z As,-q,' + (1 — A)t,‘j)x,‘>
j=1 i=1

< ij llf (isi./’xi> +(1=24)f (ih,m)]
Jj=1 i=1 i=1
=1 ibjf (i&j)ﬁ) + (1 — 7L) ibjf (ilﬁ)@') .

=1
Combining (20) and (21), we prove the concavity property b)
¢) It is obvious.

=

3y

d) Case b = c is trivial. Let b > ¢. Since

b= (b—c¢)+c,
using the property linearity (18) and positivity (16), we have
Z(f,x,0,8) =7 (f,x,(b—¢)+¢,S)
= Y(f7x7 b -

¢,S)+7(f,x.¢,8)
(f,x,¢,8) 20,
what we need to prove. This ends the proof

|
In the following theorems we establish lower and upper bounds for Sherman’s
functional.

THEOREM 4. For b= (by,...,by) € [0,

= (51}) € Gun(R+), we define

j=1 1<1<
Then
0<n~1 f (fvxal) gy(fvvavs) <M'fn(fvx 1)

(22)
Proof. The first inequality in (22) is consequence of nonnegativity of all entries of
b, S and Jensen’s functional _Z,(f,x,1

Again this is a consequence of Theorem 1. We present an alternative approach
(analogous to [9]).

We prove

11312 {Su} /n fx,1) Zsljf X;) (z%&;) < lrgl_agrl{sij}'/n(fvxvl)» (23)
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forall j=1,....m
Let us denote 7it; = minj<;<,{si;} and M; = max<i<a{sij}, j € {1,...,m}.
Then (23) can be written as

n

mj- Ju(fx,0) < X sijf (xi) (Exzsu><Mf~fn(f,x,l)- (24)

i=1
n

Since n-#itj+ Z (sij —m;j) =1, applying Jensen’s inequality we have
i=1

f (ix,-s,-i,) =f <n~rhj (% i%‘) + i (Sij _"hj>xi>
i=1 =1 i=1

<n-mjf (%i&) +i(5ij—ﬁ1j)f(xi)

I
M=

gl

~

=

=

|

3

~
N
M=

=

=

|

N

\
VR
S| =
TP

=
~
~

I
—_

Il
Mx

sljf(xl) mj'/"(f7x71)

Il
-

which gives the left hand side of (24)

Further, since M >0and 5 Z ( — 7) + ﬁ =1, applying Jensen’s inequal-
I J

ity we have

1 & N\ L n @—m | L n N
f<5f21&> _f< le< noon >x1+nﬁ71.f (2”))
U (M5t roy (S0
< TJZI (7_7)10(/‘1)4'%]6 (;{S,Jx,>
1 & 1 n n
B Z;f()q) - n—M, (lz;siff(xi) —f (izlsijxi>> ;

which gives the right hand side of (24).
Therefore, the inequality (23) holds. Now, multiplying with 5; and summing over
j=1,...,m, we get (22) what we need to prove. [

THEOREM 5. For b = (by,...,by) € [0,00)", S = (5i) € Cm(Ry) and T =
(tij) € Cum((0,%0)), we define

_ ) 5 i
Bumin = | b1 min { —L by min {
min 1 ! y
1<i<n | 11 1<isn  tiy
_ il 5
bmax = ( b1 max { — by max { 28 ).
1<isn | 11 1<i<n  tim
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Then

(0 g) <Sﬂ(fyxyl;min;T) gf(f,x,b,S) gy(fyxyl;max,T)-

Proof. According to the notation, we need to prove

S (2} (500 (50

(Zsuf (xi) (leslj>>
< ibf o { i) <2mf %)= f <Zf>>
j=1 s UGG =1

Let us consider n-tuples p; and q;n,; such that

IME

Sni

S1j J
p; = (tlj ,...,lnj )Z(S1J'7...,Snj)7
1 Inj

q--—tmln& tmln&
min, j 1,1<z<n i IR l<t<n i) .

(25)

It is obviously quin,; < p;. Applying Theorem 1 to n-tuples quiy ; and p;, we get

n n 1 n

Dsiif () = X siif | 5 2 sijxi

i=1 i=1 Y siji=1
i=1

> min < — tiif (xi) tiiX
= 1@‘@1{[11 } |J§ ljf 1 (2 Ly l>‘| )

i.e. we get

Zsuf X;) (Zsuxl> > 1121;1{;} [gfz/f (x;) (Ztlsz>‘| .

Exchanging the roles of min and max, we get the inequality

S (o)< v (509
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So, we have
élllgn { E } [Z, ttjf xt (2 tzsz> ‘|
n
< Zsljf -xl Zstsz
i=1
< .
{3 lZf o= (&m)
Now multiplying with b; and summing over j = 1,...,m, we get the required re-
sult. [

REMARK 1. Choosing m =1 and setting by = 1 and s;; = %, fori=1,...,n,
Sherman’s functional (15) reduces to Jensen’s functional that corresponds to (6). There-
fore, applying Theorem 4, we obtain the bounds of Jensen’s functional in the form (5),
i.e.

< min {pl}jn /X, 1 j”(f7xap) gfg;‘g{n{pi}jn(fﬁxal)'

1<i<n

Applying Theorem 3, the concavity property b), for A = %, with m =1, by =1,

sit = pi, i1 =qi, for i=1,....n, B, =0, =1, it implies the properties of Jensen’s
functional superadditivity
jn(f7x7p+q)>jn(faxap)+jn(f7x7q>7 (26)

and monotonicity

Ia(fx,p) = _Zu(f.x,q) >0, forp>q. (27)

Further, applying Theorem 5, with m =1, by =1 and s;; = p;, tj1 =¢q;, fori=1,...,n,
the inequality (25) reduces to the inequality (8).

4. New bounds for f-divergence functional

Csiszar [7] introduced the concept of f-divergence functional

p) =Y nif (q—> (28)
i=1 pi

for a convex function f : [0,0) — R and nonnegative n-tuples p = (p1,...,pu), 4 =
(q1,---,gn) with the convention

£(0) = lim £@), ¢ =0, Of(g)zo

t—0+
Of(%) = lim ef (g) = clim @ ¢>0. (29)
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For a different choice of the function f, as a special case of (28), we may obtain
various divergences as the Kullback-Leibler distance, o -order Rényi entropy, Bhat-
tacharyya distance, Harmonic distance, s -divergence, Hellinger distance etc. which
play an important role in Information theory and Statistics. Many papers are devoted to
the notion of f-divergence and the subject of inequalities for different types of diver-
gences (see for example [4], [10], [12], [13], [15], [19], [33]).

In [19], the authors introduced the weighted Csiszar f-divergence functional, with
weights ry,...,r, > 0, defined by

Ds(q,p:r) = Y ripif (%) . (30)
i=1 i

REMARK 2. For 1= (1,...,1) € R" we have D¢(q,p;1) = D¢(q,p).

The classical inequality for f-divergence functional, known as the Csiszar-Korner
inequality, is given in the next theorem (see [8]).

THEOREM 6. Let f:[0,00) — R be a convex function, p = (pi,...,pn) € [0,00)"
and q = (qi,-..,qn) € [0,0)" with B, =3} | pi >0 and Qy =Y} ,qi > 0. Then

0<pslan)-nr (%), G

n

If f is normalized, i.e. (1) =0 and P, = Qy, then

Dy(q,p) > 0. (32)

In particular, if p and q are two probability distribution, then the inequality (32)
holds for every convex and normalized function f.

Shannon [33] introduced a statistical concept of entropy, the measure of informa-
tion

L 1
H(p) =Y piln—, (33)
i=1 i
where p = (p1,...,pn) is a probability distribution for some discrete random variable

X. It quantifies the unevenness in the probability distribution p.

Motivated by various communication and transmission problems, Belis and Guiagu
[5] introduced the concept of weighted Shannon’s entropy with nonnegative weights r;,
i=1,...,n, defined by

i 1
H(p;r) = Y ripiln—, (34)
i=1 Di
(see also [35]).

REMARK 3. If we ignore weights r;, i = 1,...,n, then (34) reduces to (33), i.e.
H(p;1)=H(p) for 1=(1,...,1) e R".
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The weighted entropy satisfies the estimate

n
n ,;1 i
0 <H(p:r) < Y ripiln—
=1 > ripi
=1

(see [24]). In particular, the minimum H(p;r) = 0 is reached for a constant random
variable, i.e. when p; = 1, for some i. The opposite extreme, the maximal H(p;r) is

reached for a uniform distribution, i.e. when p; = % forall i=1,...,n. In that case we
have
1 n
0<H(p;r) <= rilnn.
iz
Specially, ignoring weights r;, i=1,...,n, i.e. setting r=1=(1,...,1), the previous

inequality reduces to
0< H(p) <lnn.

In the following results we use the convention (29) and notation (-,-) for the stan-
dard inner product.
As an easy consequence of Theorem 5 we get the next result.

COROLLARY 1. Let f:[0,00) — R be a convex function, p = (p1,...,pn) €
[0,00)", q=(q1,-..,qn) € [0,00)" and R = (rij) € Mum(R.). Let us define

<p7rj>:2Pirij; <Qarj>:211irij7 j:17"'7m7 (35)
i=1 i=1
m n n 2
qi 1 q;Tij
Ry(q,p;R) = Y, [Z%‘Vijf (-) _<(Lrj>f< : )] .
j=1 |i=1 pi <q,rj> i-1 Pi
Then
0< min 4 2 R¢(q,p;R)
1<i<n | q; T
m n 1 n
5 ($onr(2) werr( ol $00)
j=1 <z=1 (p.rj) 5
Di
gg{qi} (a0, p;R) (36)
Proof. Applying (25) to the vector x = (x1,...,x,) with x; = %7 i=1,...,n,
weight b = (by,...,b,) with b; = (p,r;),j = 1,...,m, column stochastic matrices

S = (s;;) with s;j = <f,rj’> i=1,...n, j=1,...;m and T = (1;;) with t;; = <f,—r,'>
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$ o (22 (4) s (8 2.2

N——
N——

=1 S (p.r)) i S pi(p.ry)
m <pirij> n n
p.rj qitij qi qi dqilij
< p,r;) max irij f<_)_f< D ))
j=1< 1>1<l§n ﬁ (z:zl <q,l‘j> Di lzzl i <q7rj>

which is equivalent to (36). [

Specially, for m = 1, the previous result reduces to the next corollary.

COROLLARY 2. Let f:[0,0) — R be a convex function, p = (pi,...,pn) €
[0,0)", q = (q1,-.-,qn) € [0,00)"and r = (ry,...,ry) € [0,0)". Let us define

n n
r) = piri, {(q,r)= qiri,
i=1 i=1

< q; i
r(a,pir) qu <pl) (a, >f<<q7r>l§{ b )

Then
pi I 3
0< min < — r ,p;T) — (P, T iTi
min {2 bRyt pir) <Dy fapir) = (o) s B
i
< iR 37
gg{%} r(q,p:r). (37

Ifinadditionr=1=(1,...,1), with notations (p,xr) =3} | pi=PF,, (p,r)=27qi=

Oy, then
. [ pi c qi q
0< 1‘2,-‘31{5} (l_:zlq,-f (—) an<Qni21pl (38)

< Dy(q,p) — Puf (%)

Pil (x5, (4 9t
< {2} (B ()00 (5:22))

REMARK 4. Note that the results from the previous corollary generalize and refine
the Csizar-Korner inequality (31). Specially, applying (38) to normalized function f,
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ie. f(1) =0, with P, = Q,, we get the lower and upper bound of D¢(q,p) in the form

0 < min {&} i%‘f( ) Onf Zq?
I<isn | gi -1 Pi Qni 1 Pi
qi qzz

<1r21:2<n{ }(qu( ) Q"f<Qn,-2;pl>>

In the proofs of the following two corollaries we use the next conclusions.

REMARK 5. Choosing the convex function f(r) = —Inz, we have

_ipiln <ﬁ> = ip,-ln& —H(p),

=1

1
r(q,p:r) Zrlpzln<p> Zrzpzln——H(P, r).

i—1 qi

Setting q =1=(1,...,1), we get
Ds(1,p) =—H(p) and Dy(1,p;r) = —H(p:r).

We estimate new bounds for Shannon’s entropy.

COROLLARY 3. Let p=(p1,...,pn) be aprobability distribution and q = (q1, . . .,
qn) €[0,00)", r=(ry,...,m) € [0 o). Then

1
>+Erlpz n;—lrgﬁgn{z—}le in(q,p;1)

i=1 !

< H(p:r) (39)

1 & n
< <p7r>ln q-r- + r-p-ln — min {—}R 1 (q p r)
<<p7r> ,:21 o 1:21 e i I<isn | g n
1 & n
< (p,r)In giri | + Y ripiln—,
<<p,r> Z{ il Z{ iPi 1

where
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Ifin additionr =1= (1,...,1) with ¥} qi = n, then

% 1 Di
1 iIn— — Bl R n(a, 40
nn+i=zip n gg{qi} in(q,p) (40)
< H(p)
<In +i In ! min { 22 LR (q,p)
< lnn ;In— — min { — > R_,(q,
i:lpl PR n\q,P

1 1
< 1nn+2pi1n—7
qi

i=1 i
where

R_1n(q,p) =nln liﬁ —iq-ln<ﬂ>
o 21 Pi 57 \pi

Proof. Applying (37) to the convex function f(z) = —Int, we get

i n 1 | Q-
0 < min {p—}R_ln(QaP;r) < Y ripiln— — H(pir) + (p,r) In ( 2‘””)

qi i—1 i
Pi

< max ¢ — ¢ R_1n(q,p;1),

léiéxn{qi} ln(qp )

which is equivalent to (39).
Further, let 3} ;g =n and r =1=(1,...,1). Then (p,r) =3} ,p;i=1, and
from (39) we get (40). O

5. Applications including Zipf-Mandelbrot law

The Zipf-Mandelbrot law is a discrete probability distribution depending on pa-
rameters n € N, g > 0 and s > 0 with probability mass function defined with

1

knqs)=—— k=1.2,...,n,
flkon..5) (k+q)*Hp,g.s
where
y 1 (1)
Hygs=Y ——.
o= B gy

It is also known as the Pareto-Zipf law, a power-law distribution on ranked data, de-
fined by Mandelbrot [23] as generalization of a simpler distribution called Zipf’s law
[36]. Many naturally phenomena, as earthquake magnitudes, city sizes, incomes, word
frequencies and etc., are distributed according to this distribution. It implies that small
occurrences are extremely common, whereas large instances are extremely rare. The
Zipf-Mandelbrot has wide applications in many branches of science, as well as linguis-
tics, information sciences , ecological field studies and etc.
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If we put p; = W in (33), then Shannon’s entropy becomes

- In(i+q)'Hygs < In(i+q)’ L InHy g
2 (i+q)\Hugs ZI (i+q)°Hngs = (i+q) Hugs
s e In(i+q) InHygs & 1
Hy g5 i=1 (i+q) Hygs i—1 (i+q)
s & n(i+gq)

- : +1InH, .,
Hn7q7_\' i1 (l—|—q)s n,q,s

i=1

i.e. we get Shannon’s entropy for the Zipf-Mandelbrot law, so called the Zipf-Mandelbrot

entro
> s & In(k+q)

Hygs S (k+a)
Applying results from the previous section we will obtain lower and upper bounds
for the Zipf-Mandelbrot entropy Z(H, g, s).

Z(Ha‘IaS): +In an\ (42)

COROLLARY 4. Let n €N, ¢ >0, s >0 and q = (q1,-.-,qn) € [0,00)" with
Yt qi=n.Let Hyys and Z(H,q,s) be defined by (41)-(42), respectively. Then

" 1 1
Inn+ - In— — max « ———— »S(n,q,s,
Hy q.s z=21 (i+q)* qi Hugs K"g”{ (H'q)s%} a:59)
< Z(H.q,s) 43)
1 & 1 1 1 1
glnn—i- " ‘11'1—— min {f}s(nﬂbxq)
H, 4.5 gi (i+q)° g Hngsi<isn | (i+9)qi

n 1 l
Z - - In —,
Hy g i=1 (H"I)‘ qi

where

i=1

S(n,q,s,q) =nln< ~12 Y (i+q) q,> =Y qiln(qi(i+ ) Hugys) -
i=1

Proof. Applying (40) we get
1

lnn—i-i;lnl—max (4P Bng. S(n,q,s,q)
1 (i+q)*Hpgs qi 1<i<n qi

1
1 l (i+q)SHn q,s
<Inn+ E T gV, ln : llglgn{ ” S(n,q,s,q)

v
=]
X
ZQ
S

which is equivalent to (43). [
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COROLLARY 5. Let n€ N, ¢ >0, s >0, Hyqs and Z(H,q,s) be defined by

(41)-(42), respectively. Then

where

S(n,q,s)
Inn— ——"2"~_ < Z(H,q, (44)
Fngs(+qp < 2H29)
< ln _ S(n7Q7s)
Hn,q,s (n + q)s
< Inn,
H,

53 (i49)" | = Y n((i+0) Hag)-

noig i=1

S(n,q,s) =nln

Proof. 1f we choose q =1=(1,...,1), then (43) becomes

1 1
Inn — max {(_—}S(n,q,s) < Z(H,q,s)

i+q)°

Hy g5 1<i<n

which is equivalent to (44). [
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