A FAMILY OF GEOMETRIC CONSTANTS ON MORREY SPACES

Mina Dinarvand

(Communicated by J. Jakšetić)

Abstract

In this paper, we calculate a family of geometric constants for Morrey spaces, small Morrey spaces and discrete Morrey spaces. This family of constants measures uniformly nonsquareness of the associated spaces. We obtain that the value this family of constants for the aforementioned spaces is $2^{1-\frac{1}{t}}$ for $1 \leqslant t<\infty$, which means that the spaces are not uniformly non-square. The main results obtained in this paper generalize some existing results in the recent literature.

1. Introduction and preliminaries

In recent years, various geometric constants for a Banach space have been defined and studied. In general, the study of the geometric property of a Banach space is not easy. Alternatively one can do this with the help of some certain geometric constants.

For a real Banach space X, let $S_{X}=\{x \in X:\|x\|=1\}$ and $B_{X}=\{x \in X:\|x\| \leqslant 1\}$ be the unit sphere and the closed unit ball of X, respectively. Also, let Λ denote the set of all continuous functions $\lambda:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ such that λ is homogeneous of degree 1 and $\lambda(1,1)=1$.

Recently, Amini-Harandi and Rahimi [2] has introduced the constants $C_{\lambda, t}(X)$ and $C_{\lambda, t}^{\prime}(X)$ of X by

$$
C_{\lambda, t}(X)=\sup \left\{\lambda(\|r u+s v\|,\|r u-s v\|): u, v \in S_{X}, r, s \geqslant 0 \text { and }\|(r, s)\|_{t}=1\right\}
$$

for each $\lambda \in \Lambda$ and $t \in[1, \infty]$, where

$$
\|(r, s)\|_{t}= \begin{cases}\left(|r|^{t}+|s|^{t}\right)^{\frac{1}{t}}, & 1 \leqslant t<\infty \\ \max \{|r|,|s|\}, & t=\infty\end{cases}
$$

and

$$
C_{\lambda, t}^{\prime}(X)=\sup \left\{\frac{\lambda(\|u+v\|,\|u-v\|)}{2^{\frac{1}{t}}}: u, v \in S_{X}\right\} .
$$

Notice that since for each $r, s \in[0,1]$, we have $\|r u+s v\|,\|r u-s v\|,\|u+v\|,\|u-v\| \in$ $[0,2]$ and λ is bounded on $[0,2] \times[0,2]$, then $C_{\lambda, t}(X)<\infty$ and $C_{\lambda, t}^{\prime}(X)<\infty$.

[^0]For each $r, s \in[0, \infty)$ and $t \in[1, \infty)$, set $\varepsilon(r, s)=\min \{r, s\}, \alpha_{t}(r, s)=\left(\frac{r^{t}+s^{t}}{2}\right)^{\frac{1}{t}}$ and $\pi(r, s)=\sqrt{r s}$. It is obvious that the constants $C_{\lambda, t}(X)$ and $C_{\lambda, t}^{\prime}(X)$ include some known geometric constants such as the generalized von Neumann-Jordan constant $C_{N J}^{(t)}(X)=$ $2^{2-t}\left(C_{\alpha_{t}, t}(X)\right)^{t}([4,5,6])$, the generalized Zbăganu constant $C_{Z}^{(t)}(X)=2^{2-t}\left(C_{\pi, t}(X)\right)^{t}$ $([17,18])$, the generalized von Neumann-Jordan type constant $C_{-\infty}^{(t)}(X)=2^{2-t}\left(C_{\varepsilon, t}(X)\right)^{t}$ $([7,14])$, the generalized modified von Neumann-Jordan constant $\bar{C}_{N J}^{(t)}(X)=$ $2^{2-t}\left(C_{\alpha_{t}, t}^{\prime}(X)\right)^{t}$ ([16]), the James constant $J(X)=C_{\varepsilon, \infty}(X)$ ([11]), Baronti-Papini's constant $A_{2, t}(X)=2^{\frac{1}{t}} C_{\alpha_{1}, t}(X)([3,8])$, Alonso-Llorens-Fuster's constant $T(X)=$ $C_{\pi, \infty}^{\prime}(X)([1])$. It is interesting to remark at this point that for all $1 \leqslant t<\infty$,

$$
2^{\frac{1}{2}-\frac{1}{t}} \leqslant C_{\lambda, t}^{\prime}(X) \leqslant C_{\lambda, t}(X) \leqslant 2^{1-\frac{1}{t}}
$$

Recall that a Banach space X is called uniformly non-square provided that there exists $\delta>0$ such that either $\|x+y\| \leqslant 2-\delta$ or $\|x-y\| \leqslant 2-\delta$ for all $x, y \in B_{X}$. In [11] it was proved that uniformly non-square Banach spaces are reflexive. It is worthwhile to mention that X is uniformly non-square if and only if $C_{\lambda, t}(X)<2^{1-\frac{1}{t}}$ for all $1<t<\infty$.

The goal of this work is to compute the values of the constants $C_{\lambda, t}(X)$ and $C_{\lambda, t}^{\prime}(X)$ for Morrey spaces $X=\mathscr{M}_{q}^{p}\left(\mathbb{R}^{d}\right)$, small Morrey spaces $X=m_{q}^{p}\left(\mathbb{R}^{d}\right)$ and discrete Morrey spaces $X=\ell_{q}^{p}\left(\mathbb{Z}^{d}\right)$, where $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Our main results tell us that all of those spaces are not uniformly non-square. Moreover, the main results obtained in this paper generalize some previous results in the recent literature on this topic.

2. Small Morrey spaces

For $1 \leqslant p \leqslant q<\infty$, the small Morrey space $m_{q}^{p}=m_{q}^{p}\left(\mathbb{R}^{d}\right)$ is the set of all measurable functions f such that

$$
\|f\|_{m_{q}^{p}}:=\sup _{a \in \mathbb{R}^{d}, R \in(0,1)}|B(a, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(a, R)}|f(y)|^{p} d y\right)^{\frac{1}{p}}<\infty
$$

where $|B(a, R)|$ denotes the Lebesgue measure of the open ball $B(a, R)$ in \mathbb{R}^{d}, with center a and radius R. Small Morrey spaces are Banach spaces [15]. Note that for $p=q$, the space m_{q}^{p} is identical with the space $L_{\text {uloc }}^{q}$ [15].

Our result for small Morrey spaces is presented in the following theorem.
THEOREM 1. Let $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Then

$$
C_{\lambda, t}\left(m_{q}^{p}\right)=C_{\lambda, t}^{\prime}\left(m_{q}^{p}\right)=2^{1-\frac{1}{t}}
$$

Proof. Suppose that $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$ and let $f(x)=\chi_{(0,1)}(|x|)|x|^{-\frac{n}{q}}$, where $x \in \mathbb{R}^{n}$ and $|x|$ denotes the Euclidean norm of x. Then $f \in m_{q}^{p}$. For each $\varepsilon \in$
$(0,1)$, we consider $g(x)=\chi_{(0, \varepsilon)}(|x|) f(x), h(x)=f(x)-g(x)$ and $k(x)=g(x)-h(x)$. Note that g depends on ε, so that h and k also depend on ε. Therefore, we obtain

$$
\begin{aligned}
\|f\|_{m_{q}^{p}} & =\sup _{R \in(0,1)}|B(0, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(0, R)}|y|^{-\frac{n p}{q}} d y\right)^{\frac{1}{p}}=\left(\frac{C_{n}}{n}\right)^{\frac{1}{q}}\left(1-\frac{p}{q}\right)^{-\frac{1}{p}} \\
\|g\|_{m_{q}^{p}} & =\sup _{R \in(0,1)}|B(0, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(0, R)}\left|\chi_{(0, \varepsilon)}(|y|) f(y)\right|^{p} d y\right)^{\frac{1}{p}} \\
& =\sup _{R \in(0, \varepsilon)}|B(0, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(0, R)}|y|^{-\frac{-n p}{q}} d y\right)^{\frac{1}{p}}=\left(\frac{C_{n}}{n}\right)^{\frac{1}{q}}\left(1-\frac{p}{q}\right)^{-\frac{1}{p}} \\
& =\|f\|_{m_{q}^{p}} \\
\|h\|_{m_{q}^{p}} & \geqslant \sup _{R \in(0,1)}|B(0, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(0, R)}\left|\chi_{(\varepsilon, 1)}(|y|) f(y)\right|^{p} d y\right)^{\frac{1}{p}} \\
& =\sup _{R \in(\varepsilon, 1)}|B(0, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(0, R) \backslash B(0, \varepsilon)}|y|^{-\frac{-n p}{q}} d y\right)^{\frac{1}{p}} \\
& =\sup _{R \in(\varepsilon, 1)}\left(\frac{C_{n}}{n}\right)^{\frac{1}{q}-\frac{1}{p}} R^{\frac{n}{q}-\frac{n}{p}}\left(C_{n} \int_{\varepsilon}^{R} r^{-\frac{-n p}{q}+n-1} d r\right)^{\frac{1}{p}} \\
& =\sup _{R \in(\varepsilon, 1)}\left(\frac{C_{n}}{n}\right)^{\frac{1}{q}}\left(1-\frac{p}{q}\right)^{-\frac{1}{p}}\left(1-R^{\frac{-n p}{q}-n} \varepsilon^{-\frac{-n p}{q}+n}\right)^{\frac{1}{p}} \\
& =\left(1-\varepsilon^{n-\frac{-n p}{q}}\right)^{\frac{1}{p}}\|f\|_{m_{q}^{p}}
\end{aligned}
$$

and

$$
\begin{aligned}
\|k\|_{m_{q}^{p}} & =\sup _{R \in(0,1)}|B(0, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(0, R)}\left|\left(\chi_{(0, \varepsilon)}(|y|)-\chi_{(\varepsilon, 1)}(|y|)\right) f(y)\right|^{p} d y\right)^{\frac{1}{p}} \\
& =\sup _{R \in(0,1)}|B(0, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(0, R)}|f(y)|^{p} d y\right)^{\frac{1}{p}}=\|f\|_{m_{q}^{p}}
\end{aligned}
$$

where C_{n} denotes the "area" of the unit sphere in \mathbb{R}^{n}. First, let us compute the constant $C_{\lambda, t}\left(m_{q}^{p}\right)$. Then, we have

$$
\begin{aligned}
C_{\lambda, t}\left(m_{q}^{p}\right) & \geqslant \frac{1}{\left(\|f\|_{m_{q}^{p}}^{t}+\|k\|_{m_{q}^{p}}^{t}\right)^{\frac{1}{t}}} \lambda\left(\|f+k\|_{m_{q}^{p}},\|f-k\|_{m_{q}^{p}}\right) \\
& =\frac{1}{\left(\|f\|_{m_{q}^{p}}^{t}+\|k\|_{m_{q}^{p}}^{t}\right)^{\frac{1}{t}}} \lambda\left(\|2 g\|_{m_{q}^{p}},\|2 h\|_{m_{q}^{p}}\right) \\
& \geqslant \frac{1}{2^{\frac{1}{t}}\|f\|_{m_{q}^{p}}} \lambda\left(2\|f\|_{m_{q}^{p}}, 2\|f\|_{m_{q}^{p}}\left(1-\varepsilon^{n-\frac{-n p}{q}}\right)^{\frac{1}{p}}\right) .
\end{aligned}
$$

Since we may choose ε to be arbitrary small, it follows that $C_{\lambda, t}\left(m_{q}^{p}\right) \geqslant 2^{1-\frac{1}{t}}$. Since $C_{\lambda, t}\left(m_{q}^{p}\right) \leqslant 2^{1-\frac{1}{t}}$, we conclude that $C_{\lambda, t}\left(m_{q}^{p}\right)=2^{1-\frac{1}{t}}$.

Next, we move to the constant $C_{\lambda, t}^{\prime}\left(m_{q}^{p}\right)$. Due to $\|f\|_{m_{q}^{p}}=\|k\|_{m_{q}^{p}}$, we consider $\frac{f}{\|f\|_{m_{q}^{p}}^{p}}$ and $\frac{k}{\|f\|_{m_{q}^{p}}^{p}}$. Hence, we have

$$
\begin{aligned}
C_{\lambda, t}^{\prime}\left(m_{q}^{p}\right) & \geqslant \frac{1}{2^{\frac{1}{t}}\|f\|_{m_{q}^{p}}} \lambda\left(\|f+k\|_{m_{q}^{p}},\|f-k\|_{m_{q}^{p}}\right) \\
& =\frac{1}{2^{\frac{1}{t}}\|f\|_{m_{q}^{p}}} \lambda\left(\|2 g\|_{m_{q}^{p}},\|2 h\|_{m_{q}^{p}}\right) \\
& \geqslant \frac{1}{2^{\frac{1}{t}}\|f\|_{m_{q}^{p}}} \lambda\left(2\|f\|_{m_{q}^{p}}, 2\|f\|_{m_{q}^{p}}\left(1-\varepsilon^{n-\frac{-n p}{q}}\right)^{\frac{1}{p}}\right) .
\end{aligned}
$$

By using similar arguments as before, we conclude that $C_{\lambda, t}^{\prime}\left(m_{q}^{p}\right)=2^{1-\frac{1}{t}}$.
Corollary 1. Let $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Then

$$
\begin{aligned}
C_{N J}^{(t)}\left(m_{q}^{p}\right) & =\bar{C}_{N J}^{(t)}\left(m_{q}^{p}\right)=C_{Z}^{(t)}\left(m_{q}^{p}\right)=C_{-\infty}^{(t)}\left(m_{q}^{p}\right)=J\left(m_{q}^{p}\right) \\
& =A_{2, t}\left(m_{q}^{p}\right)=T\left(m_{q}^{p}\right)=2 .
\end{aligned}
$$

REMARK 1. Corollary 1 generalizes and improves existing results in [10, 12, 13].

3. Morrey spaces

For $1 \leqslant p \leqslant q<\infty$, the (classical) Morrey space $\mathscr{M}_{q}^{p}=\mathscr{M}_{q}^{p}\left(\mathbb{R}^{d}\right)$ is the set of all measurable functions f such that

$$
\|f\|_{\mathscr{M}_{q}^{p}}:=\sup _{a \in \mathbb{R}^{d}, R>0}|B(a, R)|^{\frac{1}{q}-\frac{1}{p}}\left(\int_{B(a, R)}|f(y)|^{p} d y\right)^{\frac{1}{p}}<\infty,
$$

where $|B(a, R)|$ denotes the Lebesgue measure of the open ball $B(a, R)$ in \mathbb{R}^{d}, with center a and radius R. Morrey spaces are Banach spaces [15]. Note that for $p=q$, the space \mathscr{M}_{q}^{p} is identical with the space $L^{q}=L^{q}\left(\mathbb{R}^{d}\right)$, the space of q-th power integrable functions on \mathbb{R}^{d}. Note that for all p and q, the small Morrey spaces properly contain the Morrey spaces.

Our result for Morrey spaces is stated in the following theorem.

THEOREM 2. Let $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Then

$$
C_{\lambda, t}\left(\mathscr{M}_{q}^{p}\right)=C_{\lambda, t}^{\prime}\left(\mathscr{M}_{q}^{p}\right)=2^{1-\frac{1}{t}}
$$

Proof. Suppose that $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$ and let $f(x)=|x|^{-\frac{n}{q}}$, where $x \in \mathbb{R}^{n}$ and $|x|$ denotes the Euclidean norm of x. Then $f \in \mathscr{M}_{q}^{p}$. Now, we consider $g(x)=\chi_{(0,1)}(|x|) f(x), h(x)=f(x)-g(x)$ and $k(x)=g(x)-h(x)$. One may observe that

$$
\|f\|_{\mathscr{M}_{q}^{p}}=\|g\|_{\mathscr{M}_{q}^{p}}=\|h\|_{\mathscr{M}_{q}^{p}}=\|k\|_{\mathscr{M}_{q}^{p}}=\left(\frac{C_{n}}{n}\right)^{\frac{1}{q}}\left(1-\frac{p}{q}\right)^{-\frac{1}{p}} .
$$

First, we calculate the constant $C_{\lambda, t}\left(\mathscr{M}_{q}^{p}\right)$. Hence, we have

$$
\begin{aligned}
C_{\lambda, t}\left(\mathscr{M}_{q}^{p}\right) & \geqslant \frac{1}{\left(\|f\|_{\mathscr{M}_{q}^{p}}^{t}+\|k\|_{\mathscr{M}_{q}^{p}}^{t}\right)^{\frac{1}{t}}} \lambda\left(\|f+k\|_{\mathscr{M}_{q}^{p}},\|f-k\|_{\mathscr{M}_{q}^{p}}\right) \\
& =\frac{1}{\left(\|f\|_{\mathscr{M}_{q}^{p}}^{t}+\|f\|_{\mathscr{M}_{q}^{p}}^{t}\right)^{\frac{1}{t}}} \lambda\left(\|2 g\|_{\mathscr{M}_{q}^{p}},\|2 h\|_{\mathscr{M}_{q}^{p}}\right) \\
& \geqslant \frac{1}{2^{\frac{1}{t}}\|f\|_{\mathscr{M}_{q}^{p}}} \lambda\left(2\|g\|_{\mathscr{M}_{q}^{p}}, 2\|h\|_{m_{q}^{p}}\right) \\
& =2^{1-\frac{1}{t}} .
\end{aligned}
$$

So $C_{\lambda, t}\left(\mathscr{M}_{q}^{p}\right) \geqslant 2^{1-\frac{1}{t}}$. Since $C_{\lambda, t}\left(\mathscr{M}_{q}^{p}\right) \leqslant 2^{1-\frac{1}{t}}$, we conclude that $C_{\lambda, t}\left(\mathscr{M}_{q}^{p}\right)=2^{1-\frac{1}{t}}$.
Next, for the constant $C_{\lambda, t}^{\prime}\left(\mathscr{M}_{q}^{p}\right)$, we consider $\frac{f}{\|f\|_{\mathscr{M}_{q}^{p}}}$ and $\frac{k}{\|f\|_{\mathscr{M}_{q}^{p}}}$ as $\|f\|_{\mathscr{M}_{q}^{p}}=$ $\|k\|_{\mathscr{M}_{q}^{p}}$. Then, we have

$$
\begin{aligned}
C_{\lambda, t}^{\prime}\left(\mathscr{M}_{q}^{p}\right) & \geqslant \frac{1}{2^{\frac{1}{t}}\|f\|_{\mathscr{M}_{q}^{p}}} \lambda\left(\|f+k\|_{\mathscr{M}_{q}^{p}},\|f-k\|_{\mathscr{M}_{q}^{p}}\right) \\
& =\frac{1}{2^{\frac{1}{t}}\|f\|_{\mathscr{M}_{q}^{p}}} \lambda\left(\|2 g\|_{\mathscr{M}_{q}^{p}},\|2 h\|_{\mathscr{M}_{q}^{p}}\right) \\
& \geqslant \frac{1}{2^{\frac{1}{t}}\|f\|_{\mathscr{M}_{q}^{p}}} \lambda\left(2\|g\|_{\mathscr{M}_{q}^{p}}, 2\|h\|_{\mathscr{M}_{q}^{p}}\right) \\
& =2^{1-\frac{1}{t}} .
\end{aligned}
$$

By applying the same arguments as above, we conclude that $C_{\lambda, t}^{\prime}\left(\mathscr{M}_{q}^{p}\right)=2^{1-\frac{1}{t}}$.

Corollary 2. Let $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Then

$$
\begin{aligned}
C_{N J}^{(t)}\left(\mathscr{M}_{q}^{p}\right) & =\bar{C}_{N J}^{(t)}\left(\mathscr{M}_{q}^{p}\right)=C_{Z}^{(t)}\left(\mathscr{M}_{q}^{p}\right)=C_{-\infty}^{(t)}\left(\mathscr{M}_{q}^{p}\right)=J\left(\mathscr{M}_{q}^{p}\right) \\
& =A_{2, t}\left(\mathscr{M}_{q}^{p}\right)=T\left(\mathscr{M}_{q}^{p}\right)=2 .
\end{aligned}
$$

REMARK 2. Corollary 2 generalizes and improves existing results in [10, 13].

4. Discrete Morrey spaces

Let $\omega:=\mathbb{N} \cup\{0\}$ and $m:=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}^{d}$. Define

$$
S_{m, N}:=\left\{k \in \mathbb{Z}^{d}:\|k-m\|_{\infty} \leqslant N\right\}
$$

where $N \in \omega$ and $\|m\|_{\infty}=\max \left\{\left|m_{i}\right|: 1 \leqslant i \leqslant d\right\}$. Then $\left|S_{m, N}\right|=(2 N+1)^{d}$ denotes the cardinality of $S_{m, N}$ for each $m \in \mathbb{Z}^{d}$ and $N \in \omega$. Let $1 \leqslant p \leqslant q<\infty$ and define discrete Morrey spaces $\ell_{q}^{p}=\ell_{q}^{p}\left(\mathbb{Z}^{d}\right)$ as the set of all functions (sequences) $x: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ such that

$$
\|x\|_{\ell_{q}^{p}}:=\sup _{m \in \mathbb{Z}^{d}, N \in \omega}\left|S_{m, N}\right|^{\frac{1}{q}-\frac{1}{p}}\left(\sum_{k \in S_{m, N}}|x(k)|^{p}\right)^{\frac{1}{p}}<\infty .
$$

The discrete Morrey space ℓ_{q}^{p} with the above norm is a Banach space [9]. Note that for $p=q$, the space ℓ_{q}^{p} is identical with the space ℓ^{q}.

Our result for discrete Morrey spaces is presented in the following theorem.

THEOREM 3. Let $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Then

$$
C_{\lambda, t}\left(\ell_{q}^{p}\right)=C_{\lambda, t}^{\prime}\left(\ell_{q}^{p}\right)=2^{1-\frac{1}{t}}
$$

Proof. Suppose that $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Let us first consider the case where $d=1$. Assume that $n \in \mathbb{Z}$ be an even number with $n>2^{\frac{q}{q-p}}-1$, which can be written as $(n+1)^{\frac{1}{q}-\frac{1}{p}}<2^{-\frac{1}{p}}$. Therefore $(n+1)^{\frac{1}{q}-\frac{1}{p}} 2^{\frac{1}{p}}<1$. Consider the sequence $\left(x_{k}\right)_{k \in \mathbb{Z}}$ defined by

$$
x_{0}=x_{n}=1 \text { and } x_{k}=0 \text { for all } k \notin\{0, n\}
$$

and the sequence $\left(y_{k}\right)_{k \in \mathbb{Z}}$ defined by

$$
y_{0}=1, y_{n}=-1 \text { and } y_{k}=0 \text { for all } k \notin\{0, n\} .
$$

Hence, we have

$$
\begin{aligned}
\|x\|_{\ell_{q}^{p}} & =\sup _{m \in \mathbb{Z}^{d}, N \in w}\left|S_{m, N}\right|^{\frac{1}{q}-\frac{1}{p}}\left(\sum_{k \in S_{m, N}}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}} \\
& =\max \left\{1,\left|S_{\frac{n}{2}, \frac{n}{2}}\right|^{\frac{1}{q}-\frac{1}{p}}\left(\sum_{\frac{n}{2}, \frac{n}{2}}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\right\} \\
& =\max \left\{1,(n+1)^{\frac{1}{q}-\frac{1}{p}} 2^{\frac{1}{p}}\right\}=1 .
\end{aligned}
$$

Similarly, we can show that $\|y\|_{\ell_{q}^{p}}=1$. Moreover, we may observe that $\|x+y\|_{\ell_{q}^{p}}=2$ and $\|x-y\|_{\ell_{q}^{p}}=2$.

Now we shall consider the general case where $d \geqslant 1$. Assume that $n \in \mathbb{Z}$ be an even number with $n>2^{\frac{q}{d(q-p)}}-1$, which can be written as $(n+1)^{d\left(\frac{1}{q}-\frac{1}{p}\right)}<2^{-\frac{1}{p}}$. Therefore $(n+1)^{d\left(\frac{1}{q}-\frac{1}{p}\right)} 2^{\frac{1}{p}}<1$. Define the function $x: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ by

$$
x(k)= \begin{cases}1, & k=(0,0, \ldots, 0),(n, 0, \ldots, 0) \\ 0, & \text { otherwise }\end{cases}
$$

and also define the function $y: \mathbb{Z}^{d} \rightarrow \mathbb{R}$ by

$$
y(k)= \begin{cases}1, & k=(0,0, \ldots, 0) \\ -1, & k=(n, 0, \ldots, 0) \\ 0, & \text { otherwise }\end{cases}
$$

Thus, we have

$$
\begin{aligned}
\|x\|_{\ell_{q}^{p}} & =\sup _{m \in \mathbb{Z}^{d}, N \in w}\left|S_{m, N}\right|^{\frac{1}{q}-\frac{1}{p}}\left(\sum_{k \in S_{m, N}}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}} \\
& =\max \left\{1,\left|S_{\frac{n}{2}, \frac{n}{2}}\right|^{d\left(\frac{1}{q}-\frac{1}{p}\right)}\left(\sum_{\frac{n}{2}, \frac{n}{2}}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\right\} \\
& =\max \left\{1,(n+1)^{d\left(\frac{1}{q}-\frac{1}{p}\right)} 2^{\frac{1}{p}}\right\}=1
\end{aligned}
$$

By the same argument, we can show that $\|y\|_{\ell_{q}^{p}}=1$. Moreover, we may observe that $\|x+y\|_{\ell_{q}^{p}}=2$ and $\|x-y\|_{\ell_{q}^{p}}=2$.

First, let us compute the constant $C_{\lambda, t}\left(m_{q}^{p}\right)$. Then, we obtain

$$
\begin{aligned}
C_{\lambda, t}\left(\ell_{q}^{p}\right) & \geqslant \frac{1}{\left(\|x\|_{\ell_{q}^{p}}^{t}+\|y\|_{\ell_{q}^{p}}^{t}\right)^{\frac{1}{t}}} \lambda\left(\|x+y\|_{\ell_{q}^{p}},\|x-y\|_{\ell_{q}^{p}}\right) \\
& =\frac{1}{2^{\frac{1}{t}}} \lambda(2,2)=2^{1-\frac{1}{t}}
\end{aligned}
$$

So $C_{\lambda, t}\left(\ell_{q}^{p}\right) \geqslant 2^{1-\frac{1}{t}}$. Since $C_{\lambda, t}\left(\ell_{q}^{p}\right) \leqslant 2^{1-\frac{1}{t}}$, we conclude that $C_{\lambda, t}\left(\ell_{q}^{p}\right)=2^{1-\frac{1}{t}}$.
Next, we move to the constant $C_{\lambda, t}^{\prime}\left(\ell_{q}^{p}\right)$. Hence, we get

$$
\begin{aligned}
C_{\lambda, t}^{\prime}\left(\ell_{q}^{p}\right) & \geqslant \frac{1}{2^{\frac{1}{t}}} \lambda\left(\|x+y\|_{m_{q}^{p}},\|x-y\|_{m_{q}^{p}}\right) \\
& =\frac{1}{2^{\frac{1}{t}}} \lambda(2,2)=2^{1-\frac{1}{t}} .
\end{aligned}
$$

By using similar arguments as before, we conclude that $\left.C_{\lambda, t}^{\prime} \ell_{q}^{p}\right)=2^{1-\frac{1}{t}}$.
Corollary 3. Let $1 \leqslant p<q<\infty$ and $1 \leqslant t<\infty$. Then

$$
C_{N J}^{(t)}\left(\ell_{q}^{p}\right)=\bar{C}_{N J}^{(t)}\left(\ell_{q}^{p}\right)=C_{Z}^{(t)}\left(\ell_{q}^{p}\right)=C_{-\infty}^{(t)}\left(\ell_{q}^{p}\right)=J\left(\ell_{q}^{p}\right)=A_{2, t}\left(\ell_{q}^{p}\right)=T\left(\ell_{q}^{p}\right)=2
$$

REMARK 3. Corollary 3 generalizes and improves existing results in [10, 14].
As a consequence of Theorems 1, 2 and 3, we obtain the following result.
Corollary 4. Morrey spaces \mathscr{M}_{q}^{p}, small Morrey spaces m_{q}^{p} and discrete Morrey spaces ℓ_{q}^{p} with $1 \leqslant p<q<\infty$ are not uniformly non-square.

REFERENCES

[1] J. Alonso and E. Llorens-Fuster, Geometric mean and triangles inscribed in a semicircle in Banach spaces, J. Math. Anal. Appl., 340, (2008), 1271-1283.
[2] A. Amini-Harandi and M. Rahimi, On some geometric constants in Banach spaces, Mediterr. J. Math., 16:99, (2019), 1-20.
[3] M. Baronti and P. L. Papini, Triangles, parameters, modulus of smoothness in normed spaces, Math. Inequal. Appl., 19, 1 (2016), 197-207.
[4] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue spaces, Ann. of Math., 38, 2 (1937), 114-115.
[5] Y. Cui, W. Huang, H. Hudzik and R. KacZmarek, Generalized Von Neumann-Jordan constant and its relationship to the fixed point property, Fixed Point Theory Appl., Article ID 40, 2015, (2015), 1-11.
[6] M. Dinarvand, On a generalized geometric constant and sufficient conditions for normal structure in Banach spaces, Acta Math. Sci., 37B, 5 (2017), 1209-1220.
[7] M. Dinarvand, Banach space properties sufficient for the Domínguez-Lorenzo condition, UPB Sci. Bull. A: Appl. Math. Phys., 80, 1 (2018), 211-224.
[8] M. Dinarvand, Heinz means and triangles inscribed in a semicircle in Banach spaces, Math. Inequal. Appl., 22, 1 (2019), 275-290.
[9] H. Gunawan, E. Kikianty and C. Schwanke, Discrete Morrey spaces and their inclusion properties, Math. Nachr., 291, (2018), 1283-1296.
[10] H. Gunawan, E. Kikianty, Y. Sawano and C. Schwanke, Three geometric constants for Morrey spaces, Bull. Korean. Math. Soc., 56, 6 (2019), 1569-1575.
[11] R. C. James, Uniformly non-square Banach spaces, Ann. of Math., 80, 2 (1964), 542-550.
[12] A. Mútazili and H. Gunawan, On geometric constants for (small) Morrey spaces, https://doi.org/10.48550/arXiv.1904.01712.
[13] H. Rahman and H. Gunawan, Generalized von Neumann-Jordan constant for Morrey spaces and small Morrey spaces, Aust. J. Math. Anal. Appl., 18, 1 (2021), Art. 17, 1-7.
[14] H. Rahman and H. Gunawan, Some generalized geometric constants for discrete Morrey spaces, https://doi.org/10.48550/arXiv.2104.12983.
[15] Y. SAWANO, A thought on generalized Morrey spaces, J. Indones. Math. Soc., 25, (2019), 210-281.
[16] C. YANG AND F. WANG, An extension of a simply inequality between Von Neumann-Jordan and James constants in Banach spaces, Acta Math. Sinica Engl. Ser., 9, (2017), 1287-1296.
[17] G. ZbĂGANU, An equality of M. Rădulescu and S. Rădulescu which characterizes the inner product spaces, Rev. Roumaine Math. Pures Appl., 47, 2 (2002), 253-257.
[18] M. Zhang and Y. Cui, Generalized Zbăganu constant, J. Harbin Univ. Sci. Techno., 22, (2017), 126-129.
(Received April 10, 2022)

> Mina Dinarvand Department of Mathematics Kharazmi University Tehran, Iran
e-mail: dinarvand_mina@yahoo.com mina.dinarvand2014@gmail.com

[^1]
[^0]: Mathematics subject classification (2020): 46B20.
 Keywords and phrases: Geometric constants, Morrey spaces, small Morrey spaces, discrete Morrey spaces.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

