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INEQUALITIES IN TIME–FREQUENCY ANALYSIS

SAIFALLAH GHOBBER, SLIM OMRI ∗ AND ONS OUESLATI

(Communicated by I. Perić)

Abstract. Different types of Nash inequaliy, Sobolev inequality, Pitt inequality, logarithmic
Sobolev inequality and Gross inequality are proved for the short time Fourier transform. Also,
several formulations of Beckner’s logarithmic uncertainty principle are established for the same
transform.

1. Introduction

Uncertainty principles in harmonic analysis state that a nonzero function and its
Fourier transform cannot be simultaneously and sharply localized, that is, it’s impossi-
ble for a nonzero function to be arbitrary small as well as its Fourier transform. There
are many different formulations of this general fact where the localization and the small-
ness have been interpreted by several ways. In the literature, many of these uncertainty
principles are formulated as inequalities indeed many authors have showed in the Eu-
clidean case different type of uncertainty inequalities as Sobolev and Pitt’s inequalities
[2, 3, 4, 29], which were generalized by Ghobber and Omri [11, 32] for the Bessel-
Kingman hypergroup and by Ghobber and Soltani in the Dunkl setting [10, 30, 31]. For
more detail about uncertainty principles we refer the reader to [9, 16].

It’s well known that in signal analysis, the classical Fourier transform provide a
global description of the spectrum of a given signal, however this description is un-
fortunately devoid of any chronology, loosing then the localization of each spectral
component. To overcome this strong constraint, many authors introduced in the last
decades several time-frequency representations where the temporal and the frequency
variables are simultaneously present in the so-called time frequency plane. One of
the most important time-frequency representations, called the short time Fourier trans-
form, was introduced by Gabor in the sixties, more precisely for a nonzero function
g ∈ L2(Rd) called a window function, the short-time Fourier transform (STFT) is de-
fined on L2(Rd) by [14]

∀(x,ω) ∈ Rd × R̂d, Vg( f )(x,ω) =
∫

Rd
f (z)g(z− x)e−i〈z,ω〉dμd(z), (1.1)
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where 〈. , .〉 is the classical inner product on Rd defined by 〈z,ω〉 =
d

∑
i=1

ziωi and

dμd(z) = (2π)−d/2dz is the normalized Lebesgue measure. Many harmonic analy-
sis results related to the STFT will be developed in the second section and for more
details about the harmonic analysis of the STFT, we refer the reader to [14].

Uncertainty principles for the STFT say that for a given function f ∈ L2(Rd) ,
Vg( f ) cannot be arbitrary localized, otherwise f is zero. In this context, Lieb, Omri,
Lamouchi, Gröchenig, Zimmermann, Bonami, Demange, Jaming, Fernandez, Galbis,
Wilczok and recently Ghobber and Oueslati [6, 8, 12, 15, 20, 22, 33] showed many
uncertainty principles for the STFT. Moreover, many authors were interested in gener-
alizing different uncertainty inequalities to the Gabor analysis, so the main subject of
this paper is a continuity of these works where we shall generalize through this work
several uncertainty inequalities already proved in the Euclidean case, for more details
about uncertainty principle in Gabor analysis we refer the reader to [7].

Recently, Kubo, Ogawa and Suguro proved different type of logarithmic Sobolev
inequalities as well as Shannon inequality in the Euclidean case [19]. A part of these
results were generalized very recently by Mejjaoli and Shah in the directional short time
Fourier transform setting [25] and for the classical Gabor transform as well [24]. The
results showed in this paper are complementary to those obtained by Mejjaoli and Shah
in [24], and the only commun result which is the logarithmic uncertainty principle, has
been obtained slightly differently.

The paper is organized as follows, in the second section we will recall some har-
monic analysis tools connected with the STFT. In the last section we prove the main
results of this paper, that are Nash, Sobolev, Pitt, Gross and logarithmic Sobolev in-
equalities. Also, we deduce different type of Heisenberg and Beckner’s uncertainty
principles related to the STFT.

2. Harmonic analysis associated with the short time Fourier transform

For every x,ω ∈ Rd , we denote by Mω and τx respectively the modulation and
the shift operator defined by,

Mωh(z) = ei〈z,ω〉h(z), (2.1)

and
Txh(z) = h(z− x). (2.2)

Then, by (2.1) and (2.2), we deduce that for every x,ω ∈ Rd , we have

∀z ∈ Rd , Mω(Txh)(z) = ei〈z,ω〉h(z− x), (2.3)

and
∀z ∈ Rd , Tx(Mωh)(z) = e−i〈x,ω〉ei〈z,ω〉h(z− x). (2.4)

Again, by (2.2), the STFT may be expressed by

Vg( f )(x,ω) = f̂ Txg(ω), (2.5)
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and by (1.1) and (2.1), we have

Vg( f )(x,ω) =
∫

Rd
f (z)ei〈z,ω〉g(z− x)dμd(z) = Mω f ∗ g(x), (2.6)

where ∗ denotes the classical convolution product on Rd .
According to Gröchenig [14], it’s well known that for every f ,g ∈ L2(Rd) , the

function Vg( f ) is uniformly continuous and bounded on the time-frequency plane Rd×
R̂d and satisfies,

‖Vg( f )‖∞,2d � ‖ f‖2,d‖g‖2,d. (2.7)

Moreover, we have the following orthogonality property.

THEOREM 2.1. Let f1, f2,g1,g2 ∈ L2(Rd) such that g1 �= 0 and g2 �= 0 .
Then, the functions Vg1( f1) and Vg2( f2) belong to L2(Rd × R̂d) , and we have the

following orthogonality relation,〈
Vg1( f1),Vg2( f2)

〉
Rd×R̂d = 〈 f1, f2〉Rd 〈g1,g2〉Rd , (2.8)

where 〈·, ·〉Rd (resp. 〈·, ·〉
Rd×R̂d ) is the usual inner product on L2(Rd) (resp. L2(Rd ×

R̂d)). In particular, for every f ,g ∈ L2(Rd) such that g �= 0 , we have the following
Plancherel’s formula

‖Vg( f )‖2,2d = ‖ f‖2,d‖g‖2,d. (2.9)

THEOREM 2.2. Let g be a window function and f ∈ L2(Rd) . Then,

i) For every 2 � p < +∞ , Vg( f ) ∈ Lp(Rd × R̂d) and we have

∫
Rd×R̂d

∣∣Vg( f )(x,ω)
∣∣p dμ2d(x,ω) �

(
2
p

)d

‖ f‖p
2,d‖g‖p

2,d. (2.10)

2i) For every 1 � p � 2 , we have

∫
Rd×R̂d

∣∣Vg( f )(x,ω)
∣∣p dμ2d(x,ω) �

(
2
p

)d

‖ f‖p
2,d‖g‖p

2,d. (2.11)

PROPOSITION 2.3. i) Let 1 < p,q < +∞ such that 1
p + 1

q = 1 and let g ∈
L2(Rd)∩Lq(Rd) be a window function. Then, for every function f ∈ L2(Rd)∩
Lp(Rd) , we have

‖Vg( f )‖∞,2d � ‖ f‖p,d‖g‖q,d. (2.12)

2i) Let g ∈ L∞(Rd)∩L2(Rd) be a window function. Then, for every function f ∈
L1(Rd)∩L2(Rd) , we have

‖Vg( f )‖∞,2d � ‖ f‖1,d‖g‖∞,d. (2.13)
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PROPOSITION 2.4. Let g ∈ L2(Rd) be a window function. Then, for every f ∈
L2(Rd) , we have

∀(x,ω) ∈ Rd × R̂d, Vg( f )(x,ω) = e−i〈ω,x〉Vĝ( f̂ )(ω ,−x). (2.14)

In the following we denote by M (Rd) the vector space of measurable functions
f : Rd −→ C . For every λ > 0 and f ∈ M (Rd) , we denote by fλ the dilate of f
defined on Rd , by

fλ (x) = λ
d
2 f (λx). (2.15)

PROPOSITION 2.5. For every λ > 0 and f ∈ L2(Rd) , the dilate fλ belongs to
L2(Rd) and we have

‖ fλ‖2,d = ‖ f‖2,d. (2.16)

PROPOSITION 2.6. Let g ∈ L2(Rd) be a window function. Then, for every λ > 0
and for every f ∈ L2(Rd) , we have

∀(x,ω) ∈ Rd × R̂d, Vgλ ( fλ )(x,ω) = Vg( f )
(

λx,
ω
λ

)
(2.17)

Proof. See [14]. �

THEOREM 2.7. Let g ∈ S(Rd) be a window function. Then, the following asser-
tions are equivalents:

(i) f ∈ S(Rd) .

(ii) Vg( f ) ∈ S
(
Rd × R̂d

)
.

Proof. See [15]. �
In signal analysis, the short time Fourier transform is closely related to other com-

mon and well known time frequency distributions as the radar ambiguity function and
the cross Wigner transform.

DEFINITION 2.8. Let g ∈ L2(Rd) be a window function and f ∈ L2(Rd) . The
radar ambiguity function A ( f ,g) is defined by

∀(x,ω) ∈ Rd × R̂d, A ( f ,g)(x,ω) =
∫

Rd
f
(
t +

x
2

)
g
(
t − x

2

)
e−i〈t,ω〉dμd(t). (2.18)

PROPOSITION 2.9. Let g ∈ L2(Rd) be a window function. Then, for every func-
tion f ∈ L2(Rd) , we have

∀(x,ω) ∈ Rd × R̂d , A ( f ,g)(x,ω) = e
i
2 〈x,ω〉Vg( f )(x,ω). (2.19)

In particular,

∀(x,ω) ∈ Rd × R̂d, |A ( f ,g)(x,ω)| = |Vg( f )(x,ω)|. (2.20)
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Proof. See [14]. �

DEFINITION 2.10. Let f ,g ∈ L2(Rd) . The cross Wigner transform of f and g is
defined by,

∀(x,ω) ∈ Rd × R̂d, W ( f ,g)(x,ω) =
∫

Rd
f
(
x+

t
2

)
g
(
x− t

2

)
e−i〈t,ω〉dμd(t). (2.21)

PROPOSITION 2.11. Let g∈ L2(Rd) be a window function. Then, for every func-
tion f ∈ L2(Rd) , we have

∀(x,ω) ∈ Rd × R̂d, W ( f ,g)(x,ω) = 2de2i〈x,ω〉Vǧ( f )(2x,2ω). (2.22)

In particular,

∀(x,ω) ∈ Rd × R̂d, |W ( f ,g)(x,ω)| = 2d|Vǧ( f )(2x,2ω)|, (2.23)

where
∀x ∈ Rd , ǧ(x) = g(−x). (2.24)

Proof. See [14]. �

REMARK 2.12. According to Proposition 2.9 and Proposition 2.11, one can see
that all the results that will be shown for the short-time Fourier transform, could be
naturally and easily deduced for the radar ambiguity function and the cross Wigner
transform as well.

3. Uncertainty inequalities for the short time Fourier transform

The purpose of this section is to prove the main results of this paper, more pre-
cisely we will establish many uncertainty inequalities related to the short time Fourier
transform.

3.1. Nash type inequalities

In the next we recall the well known classical Nash’s inequality in the Euclidean
case [26].

THEOREM 3.1. There exists a constant C(d) � 0 such that for every function
f ∈ L1(Rd)∩L2(Rd) , we have

‖ f‖2+ 4
d

2,d � C(d)‖ f‖
4
d
1,d‖|ξ | f̂‖2

2,d. (3.1)

In the following we shall prove an analogous of Nash’s inequality for the STFT.
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PROPOSITION 3.2. (Nash type inequality) Let g∈ L∞(Rd)∩L2(Rd) be a window
function. Then,

i) For every s > 0 and for every function f ∈ L1(Rd)∩L2(Rd) , we have

‖g‖2+ 2s
d

2,d ‖ f‖2+ 2s
d

2,d � C(s,d)‖ f‖
2s
d
1,d‖g‖

2s
d

∞,d‖|(x,ω)|sVg( f )‖2
2,2d , (3.2)

where

C(s,d) =
(

s+d
d

) s+d
d
(

1
2dsΓ(d)

) s
d

,

and Γ denotes the Euler gamma function.

2i) For every s � 1 and for every function f ∈ L1(Rd)∩L2(Rd) , we have

‖g‖2+ 2s
d

2,d ‖ f‖2+ 2s
d

2,d � C(s,d)‖ f‖
2s
d
1,d‖g‖

2s
d

∞,d‖|x|sVg( f )‖2,2d‖|ω |sVg( f )‖2,2d , (3.3)

where

C(s,d) = 2s+1
(

s+d
d

) s+d
d
(

1
2dsΓ(d)

) s
d

.

Proof. Let r > 0, we denote by Br the open ball given by

Br = {(x,ω) ∈ Rd × R̂d; |(x,ω)| < r}.

By using Plancherel’s theorem, we obtain

‖ f‖2
2,d‖g‖2

2,d = ‖Vg( f )‖2
2,2d = ‖χBrVg( f )‖2

2,2d +‖χBc
r
Vg( f )‖2

2,2d .

By using (2.13), we get

‖χBrVg( f )‖2
2,2d =

∫
Br

∣∣Vg( f )(x,ω)
∣∣2dμ2d (x,ω)

� μ2d(Br)
∥∥Vg( f )

∥∥2
∞,2d

� μ2d(Br)‖ f‖2
1,d‖g‖2

∞,d

=
r2d

2ddΓ(d)
‖ f‖2

1,d‖g‖2
∞,d .

On the other hand

‖χBc
r
Vg( f )‖2

2,2d =
∫

Bc
r

∣∣Vg( f )(x,ω)
∣∣2dμ2d (x,ω)

� r−2s
∫

Bc
r

|(x,ω)|2s∣∣Vg( f )(x,ω)
∣∣2dμ2d (x,ω)

� r−2s‖|(x,ω)|sVg( f )‖2
2,2d .
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Hence,

‖ f‖2
2,d‖g‖2

2,d � 1
2ddΓ(d)

‖ f‖2
1,d‖g‖2

∞,dr
2d +‖|(x,ω)|sVg( f )‖2

2,2dr
−2s. (3.4)

By minimizing the right-hand side of inequality (3.4) with respect to the variable r > 0,
we get

‖ f‖2
2,d‖g‖2

2,d � s+d
d

(
1

2dsΓ(d)

) s
s+d

‖ f‖
2s

s+d
1,d ‖g‖

2s
s+d
∞,d ‖|(x,ω)|sVg( f )‖

2d
s+d
2,2d. (3.5)

Then, (3.2) is proved. On the other hand, we have

‖g‖2+ 2s
d

2,d ‖ f‖2+ 2s
d

2,d � C(s,d)‖ f‖
2s
d
1,d‖g‖

2s
d

∞,d‖|(x,ω)|sVg( f )‖2
2,2d

� 2sC(s,d)‖ f‖
2s
d
1,d‖g‖

2s
d

∞,d

(‖|x|sVg( f )‖2
2,2d +‖|ω |sVg( f )‖2

2,2d

)
.

Let λ > 0, replacing f ,g by fλ ,gλ in the last inequality and by using (2.16) and (2.17)
we get

‖g‖2+ 2s
d

2,d ‖ f‖2+ 2s
d

2,d � 2sC(s,d)‖ f‖
2s
d
1,d‖g‖

2s
d

∞,d

( 1
λ 2s ‖|x|sVg( f )‖2

2,2d +λ 2s‖|ω |sVg( f )‖2
2,2d

)
,

(3.6)
by minimizing the right-hand side of (3.6) with respect to the variable λ > 0, we get

‖g‖2+ 2s
d

2,d ‖ f‖2+ 2s
d

2,d � 2s+1C(s,d)‖ f‖
2s
d
1,d‖g‖

2s
d

∞,d‖|x|sVg( f )‖2,2d‖|ω |sVg( f )‖2,2d . �

In the folowing we recall the well known Carlson’s inequality that we shall use
later, we will also give the proof for sake of completeness.

PROPOSITION 3.3. (Carlson inequality) Let s > 0 , 0 < p < 2 and 0 < q < +∞
such that 1

p = 1
2 + 1

q . Then, for every function f ∈ Lp(Rd)∩L2(Rd) , we have

‖ f‖1+ sq
d

p,d � C(s,d,q)‖ f‖
sq
d
2,d‖|ξ |s f‖p,d, (3.7)

where

C(s,d,q) =
sq
d

(
1+

d
sq

)1+ sq
d
(

1

2
d
2−1dΓ

(
d
2

)
) s

d

.

Proof. By using Hölder’s inequality we obtain

‖ f‖p,d = ‖χBr f ‖p,d +‖χBc
r f‖p,d

� (μd(Br))
1
q ‖ f‖2,d + r−s‖|ξ |s f ‖p,d

=

(
1

2
d
2−1dΓ( d

2 )

) 1
q

r
d
q ‖ f‖2,d + r−s‖|ξ |s f ‖p,d. (3.8)
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By minimizing the right-hand side of inequality (3.8) with respect to the variable r , we
get

‖ f‖p,d �
(

sq+d
sq

)(sq
d

) d
d+sq

(
1

2
d
2 −1dΓ( d

2 )

) s
d+sq

‖ f‖
sq

d+sq
2,d ‖|ξ |s f ‖

d
d+sq
p,d . (3.9)

Which is the desired result. �

THEOREM 3.4. Let g ∈ L2(Rd)∩L∞(Rd) be a window function. Then, for every
s � 1 and for every function f ∈ L1(Rd)∩L2(Rd) , we have

‖g‖2+ 2s
d

2,d ‖ f‖2
2,d‖ f‖1,d � C(s,d)‖g‖

2s
d

∞,d‖|ξ |s f‖1,d‖|x|sVg( f )‖2,2d‖|ω |sVg( f )‖2,2d ,
(3.10)

where

C(s,d) =
(

s+d
d

) s+d
d
(

1
2dsΓ(d)

) s
d 2s

d

(
1+

d
2s

)1+ 2s
d
(

1

2
d
2−1dΓ

(
d
2

)
) s

d

.

Proof. The proof is a consequence of (3.3) and (3.7) for p = 1. �

REMARK 3.5. From (2.11) and Carlson’s inequality (3.7), we can deduce the fol-
lowing well known Heisenberg’s type inequality for the short-time Fourier transform,
that is for every window function g ∈ S(Rd) , for every 1 � p < 2, s > 0 such that
sp � 2 and for all 0 < q < +∞ such that 1

p = 1
2 + 1

q , we have for every f ∈ S(Rd)

‖ f‖2
2,d‖g‖2

2,d � C(s,d,q, p)‖|x|sVg( f )‖p,2d‖|ω |sVg( f )‖p,2d , (3.11)

where

C(s,d,q, p) =
(

2
p

) 2
p (d+ sq

2 )

2−
2
p (1+ sp

2 )

(
sq
2d

(
1+

2d
sq

)1+ sq
2d
(

1
2ddΓ(d)

) s
2d
)−2

.

PROPOSITION 3.6. Let 1 < p,q < +∞ such that 1
p + 1

q = 1 , g∈ Lq(Rd)∩L2(Rd)
be a window function. Then, for every s > 0 and for every f ∈ Lp(Rd)∩L2(Rd) , we
have

‖g‖2+ 2s
d

2,d ‖ f‖2+ 2s
d

2,d � C(s,d)‖ f‖
2s
d
p,d‖g‖

2s
d
q,d‖|(x,ω)|sVg( f )‖2

2,2d , (3.12)

where

C(s,d) =
(

s+d
d

) s+d
d
(

1
2dsΓ(d)

) s
d

.

If s � 1 , we have

‖g‖2+ 2s
d

2,d ‖ f‖2+ 2s
d

2,d � C(s,d)‖ f‖
2s
d
p,d‖g‖

2s
d
q,d‖|x|sVg( f )‖2,2d‖|ω |sVg( f )‖2,2d , (3.13)
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where

C(s,d) = 2s+1
(

s+d
d

) s+d
d
(

1
2dsΓ(d)

) s
d

.

Proof. Let r > 0, by using Plancherel’s theorem we obtain

‖ f‖2
2,d‖g‖2

2,d = ‖Vg( f )‖2
2,2d = ‖χBrVg( f )‖2

2,2d +‖χBc
r
Vg( f )‖2

2,2d .

By using (2.12), we get

‖χBrVg( f )‖2
2,2d =

∫
Br

∣∣Vg( f )(x,ω)
∣∣2dμ2d (x,ω)

� μ2d(Br)
∥∥Vg( f )

∥∥2
∞,2d

� μ2d(Br)‖ f‖2
p‖g‖2

q

=
r2d

2ddΓ(d)
‖ f‖2

p‖g‖2
q.

On the other hand

‖χBc
rVg( f )‖2

2,2d =
∫

Bc
r

∣∣Vg( f )(x,ω)
∣∣2dμ2d (x,ω)

� r−2s
∫

Bc
r

|(x,ω)|2s∣∣Vg( f )(x,ω)
∣∣2dμ2d (x,ω)

� r−2s‖|(x,ω)|sVg( f )‖2
2,2d .

Hence,

‖ f‖2
2,d‖g‖2

2,d � 1
2ddΓ(d)

‖ f‖2
p‖g‖2

qr
2d +‖|(x,ω)|sVg( f )‖2

2,2dr
−2s. (3.14)

By minimizing the right-hand side of that inequality over r > 0, we get

‖ f‖2
2,d‖g‖2

2,d � s+d
d

(
1

2dsΓ(d)

) s
s+d

‖ f‖
2s

s+d
p ‖g‖

2s
s+d
q ‖|(x,ω)|sVg( f )‖

2d
s+d
2,2d. (3.15)

We get the desired result. �

3.2. Sobolev inequality

First we recall the following classical Sobolev inequality in the Euclidean case.

THEOREM 3.7. (Classical Sobolev inequality) Let d � 3 . Then, for every func-
tion f ∈ C ∞

c (Rd) , we have

‖ f‖ 2d
d−2 ,d � Cd‖|ξ | f̂‖2,d, (3.16)
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where C ∞
c (Rd) denotes the vector space of smooth functions with compact support and

Cd =
1

(2π)−
d+1
2 πd(d−2)

(
Γ(d)
Γ
(

d
2

)) 2
d

.

Proof. See [29]. �

THEOREM 3.8. (Sobolev’s inequality for STFT) Let d � 3 , g ∈ C ∞
c (Rd) be a

window function. Then, for every f ∈ C ∞(Rd) , we have

‖g‖2,d‖ f‖ 2d
d−2 ,d � Cd‖|ω |Vg( f )‖2,2d , (3.17)

where C ∞(Rd) denotes the vector space of smooth functions.

Proof. Since f ∈C ∞(Rd) and g∈C ∞
c (Rd) then for every x∈Rd , f Txg∈C ∞

c (Rd) .
Then, by using the classical Sobolev inequality (3.16) we obtain(∫

Rd
| f (ω)| 2d

d−2 |Txg(ω)| 2d
d−2 dμd(ω)

) d−2
d

� C2
d

∫
Rd

|ω |2|Vg( f )(x,ω)|2dμd(ω).

(3.18)
Hence, by integrating both sides of equation (3.18) with respect to the variable x and
Minkowski’s inequality for integrals, we get

‖g‖2
2‖ f‖2

2d
d−2 ,d

=

(∫
Rd

(∫
Rd

| f (ω)|2|Txg(ω)|2dμd(x)
) d

d−2

dμd(ω)

) d−2
d

�
∫

Rd

(∫
Rd

| f (ω)| 2d
d−2 |Txg(ω)| 2d

d−2 dμd(ω)
) d−2

d

dμd(x)

� C2
d

∫
Rd×R̂d

|ω |2|Vg( f )(x,ω)|2dμ2d(x,ω),

which corresponds to the desired result. �
In the following we shall deduce type of Nash’s inequality from Sobolev inequal-

ity.

COROLLARY 3.9. Let g ∈ C ∞
c (Rd) be a window function. Then, for every func-

tion f ∈ C ∞(Rd) , we have

‖g‖1+ 2
d

2,d ‖ f‖1+ 2
d

2,d � ‖g‖
2
d
2,d‖ f‖

2
d
1,dCd‖|ω |Vg( f )‖2,2d , (3.19)

Proof. By interpolation theorem, we get

‖ f‖2,d � ‖ f‖1−θ
1,d ‖ f‖θ

q,d ,



INEQUALITIES IN TIME-FREQUENCY ANALYSIS 387

where q = 2d
d−2 , 1

2 = θ
q +1−θ , and θ = d

d+2 . Moreover, by (3.17), we obtain

‖g‖2,d‖ f‖2,d � ‖g‖2,d‖ f‖
2

d+2
1,d ‖ f‖

d
d+2
2d

d−2 ,d

= ‖g‖1− d
d+2

2,d ‖ f‖
2

d+2
1,d

(
‖g‖2,d‖ f‖ 2d

d−2 ,d

) d
d+2

� C
d

d+2
d ‖g‖

2
d+2
2,d ‖ f‖

2
d+2
1,d ‖|ω |Vg( f )‖

d
d+2
2,2d ,

hence, we get the desired result. �

COROLLARY 3.10. Let g ∈ C ∞
c (Rd) be a window function. Then, for every func-

tion f ∈ C ∞(Rd) , we have

‖g‖2,d‖ f‖1+ 2
d

2+ 4
d ,d

� Cd‖ f‖
2
d
2,d‖|ω |Vg( f )‖2,2d . (3.20)

Proof. By interpolation theorem, we have

‖ f‖p,d � ‖ f‖1−θ
2,d ‖ f‖θ

q,d,

where p = 2 + 4
d , q = 2d

d−2 , 1
p = θ

q + 1−θ
2 and θ = 1− 2

d+2 . Therefore, by using
Sobolev’s inequality (3.17), we get the result for the STFT. �

Now, we will show that Sobolev’s inequality (3.17) implies a logarithmic Sobolev
inequality.

COROLLARY 3.11. Let d � 3 and g ∈ C ∞
c (Rd) be a window function. Then, for

every function f ∈ C ∞(Rd)\ {0} , we have

∫
Rd

| f (x)|2
‖ f‖2

2,d

ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x) � d

2
ln

(
C2

d‖|ω |Vg( f )‖2
2,2d

‖ f‖2
2,d‖g‖2

2,d

)
. (3.21)

Proof. Let g∈C ∞
c (Rd) be a window function and f ∈C ∞(Rd) such that ‖g‖2,d =

‖ f‖2,d = 1. Then, by using Jensen’s inequality and Sobolev’s inequality (3.17) we ob-
tain

2
d−2

∫
Rd

| f (x)|2 ln(| f (x)|2)dμd(x) � ln

(∫
Rd

| f (x)|2+ 4
d−2 dμd(x)

)
=

2d
d−2

ln
(
‖ f‖ 2d

d−2 ,d

)
=

2d
d−2

ln
(
‖ f‖ 2d

d−2 ,d‖g‖2,d

)
� 2d

d−2
ln
(
Cd‖|ω |Vg( f )‖2,2d

)
.
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Then, ∫
Rd

| f (x)|2 ln(| f (x)|2)dμd(x) � d
2

ln
(
C2

d‖|ω |Vg( f )‖2
2,2d

)
. (3.22)

If f is a nonzero function of C ∞(Rd) then by replacing f ,g by
f

‖ f‖2,d
,

g
‖g‖2,d

in

(3.22) we get the result. �

3.3. Pitt’s Inequalities

In the following we recall the classical Pitt’s inequality in the Euclidean case.

THEOREM 3.12. For every f ∈ S(Rd) and 0 � α < d , we have

∫
Rd

|y|−α | f̂ (y)|2dμd(y) � 1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2 ∫
Rd

|x|α | f (x)|2dμd(x). (3.23)

Proof. See [2]. �

THEOREM 3.13. (Pitt’s inequality for STFT) Let g ∈ S(Rd) be a window func-
tion. Then, for every function f ∈ S(Rd) and 0 � α < d , we have

∫
Rd×R̂d

|ω |−α |Vg( f )(x,ω)|2dμ2d(x,ω)� 1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2

‖g‖2
2,d

∫
Rd

|t|α | f (t)|2dμd(t).

(3.24)

Proof. Since g, f ∈ S(Rd) this implies that for every x ∈ Rd , f Txg ∈ S(Rd) . Us-
ing (2.5) and replacing f by f Txg in (3.23), we obtain∫

Rd
|ω |−α |Vg( f )(x,ω)|2dμd(ω) =

∫
Rd

|ω |−α | f̂ Txg(w)|2dμ2d(ω)

� 1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2 ∫
Rd

|t|α | f Txg(t)|2dμd(t).

(3.25)

Hence, by integrating both sides of (3.25) with respect to the variable x , we get∫
Rd×R̂d

|ω |−α |Vg( f )(x,ω)|2dμ2d(x,ω)

� 1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2 ∫
Rd×R̂d

|t|α | f Txg(t)|2dμ2d(t,x)

=
1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2

‖g‖2
2,d

∫
Rd

|t|α | f (t)|2dμd(t). �
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THEOREM 3.14. Let g∈ S(Rd) be a window function. Then, for every f ∈ S(Rd)
and 0 � α < d , we have

∫
Rd×R̂d

|x|−α |Vg( f )(x,ω)|2dμ2d(x,ω)� 1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2

‖g‖2
2,d

∫
Rd

|t|α | f̂ (t)|2dμd(t).

(3.26)

Proof. By using (2.5) and (2.14) we have∫
Rd×R̂d

|x|−α |Vg( f )(x,ω)|2dμ2d(x,ω)

=
∫

Rd×R̂d
|x|−α |Vĝ( f̂ )(ω ,−x)|2dμ2d(x,ω)

=
∫

Rd×R̂d
|x|−α |̂̂f Tω ĝ(−x)|2dμ2d(x,ω)

=
∫

Rd×R̂d
|x|−α |̂̂f Tω ĝ(x)|2dμ2d(x,ω)

By using (3.23) we obtain∫
Rd×R̂d

|x|−α |̂̂f Tω ĝ(x)|2dμ2d(x,ω)

� 1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2 ∫
Rd×R̂d

|y|α | f̂ (y)|2|Tω ĝ(y)|2dμ2d(y,ω)

=
1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2

‖Tω ĝ‖2,d

∫
Rd

|y|α | f̂ (y)|2dμd(y)

=
1
2α

(
Γ
(

d−α
4

)
Γ
(

d+α
4

))2

‖g‖2,d

∫
Rd

|y|α | f̂ (y)|2dμd(y),

which is the desired result. �

3.4. Other form of Pitt’s inequality

In the following, we give the classical sharp Pitt’s inequality that we shall use.

THEOREM 3.15. Let 1 � p < 2 and 1
p + 1

p′ = 1 . Then, for every f ∈ S(Rd) , we
have ∫

Rd
|ξ |d(1− 2

p )| f̂ (ξ )|2dμd(ξ ) � Kp‖ f‖2
p,d, (3.27)

where

Kp = 2
d
2 − d

p
Γ
(

d
p′
)

Γ
(

d
p

)
⎛⎝ Γ(d)

Γ
(

d
p

)
⎞⎠ 2

p−1

.
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Proof. See [2]. �

REMARK 3.16. (Pitt’s inequality for STFT) From (2.5) and (3.27), one can easily
deduce the following well known Pitt’s inequality for STFT that is for a window func-
tion g ∈ S(Rd) and for every 1 � p < 2 and 1

p + 1
p′ = 1, we have for every f ∈ S(Rd)

∫
Rd×R̂d

|ω |d(1− 2
p )|Vg( f )(x,ω)|2dμ2d(x,ω) � Kp‖g‖2

2,d‖ f‖2
p,d. (3.28)

3.5. Generalized Pitt’s inequality

In the following we first recall the generalized Pitt’s inequality in the Euclidean
case which will allow us to prove a generalized Pitt’s inequality type for the STFT.

THEOREM 3.17. Let 1 < p � q < ∞ , 0 < α < d
q , 0 < β < d

p′ and d � 2 . Then,

there is a nonnegative constant A such that for every f ∈ S(Rd) , we have

(∫
Rd

||x|−α f̂ (x)|qdμd(x)
) 1

q

� A

(∫
Rd

||x|β f (x)|pdμd(x)
) 1

p

, (3.29)

with the index constraint

d
p

+
d
q

+ β −α = d,
1
p

+
1
p′

= 1.

Proof. See [3]. �

THEOREM 3.18. (Generalized Pitt’s inequality for STFT) Let g∈ S(Rd) be a win-
dow function , 1 < p � q < +∞ , 0 < α < d

q , 0 < β < d
p′ and d � 2 . Then, there is a

nonnegative constant A such that for every f ∈ S(Rd) , we have

‖|ω |−αVg( f )‖q,2d � A‖g‖q,d‖|x|β f‖p,d, (3.30)

with the index constraint

d
p

+
d
q

+ β −α = d,
1
p

+
1
p′

= 1.

Proof. Since g, f ∈ S(Rd) this implies that for every x ∈ Rd , f Txg ∈ S(Rd) .
We use (2.5) and we replace f by f Txg in (3.29) we obtain

∫
Rd

||w|−αVg( f )(x,ω)|qdμd(ω) � Aq
(∫

Rd
||ω |β f (ω)Txg(ω)|pdμd(ω)

) q
p

. (3.31)
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Hence, by integrating both sides of equation (3.31) with respect to the variable x and
using Minkowski’s inequality for integrals, we get∫

Rd×R̂d
||w|−αVg( f )(x,ω)|qμ2d(x,ω)

� Aq
∫

Rd

(∫
Rd

||ω |β f (ω)Txg(ω)|pdμd(ω)
) q

p

dμd(x)

� Aq

(∫
Rd

(∫
Rd

||ω |β f (ω)Txg(ω)|qdμd(x)
) p

q

dμd(ω)

) q
p

= Aq
(∫

Rd
| f (ω)|p|ω |β p‖g‖p

qdμd(ω)
) q

p

= Aq‖g‖q
q

(∫
Rd

| f (ω)|p|ω |β pdμd(ω)
) q

p

,

which corresponds to the desired result. �

3.6. Logarithmic uncertainty principle

In this subsection, we use the Beckner’s logarithmic uncertainty principle for the
classical Fourier transform in the Euclidean case to obtain the Logarithmic uncertainty
principle for the STFT.

THEOREM 3.19. (Beckner’s logarithmic uncertainty principle) For every f ∈ S(Rd)
we have ∫

Rd
ln |x|| f (x)|2dμd(x)+

∫
Rd

ln |y|| f̂ (y)|2dμd(y)

�
(

ψ
(

d
4

)
+ ln(2)

)∫
Rd

| f (x)|2dμd(x), (3.32)

where ψ is the digamma function given by

ψ(t) =
d
dt

[lnΓ(t)] .

Proof. See [2]. �

THEOREM 3.20. (Logarithmic uncertainty for STFT) Let g ∈ S(Rd) be a win-
dow function. Then, for every f ∈ S(Rd) , we have∫

Rd×R̂d
ln |ω ||Vg( f )(x,ω)|2dμ2d(x,ω)+‖g‖2

2,d

∫
Rd

ln |t|| f (t)|2dμd(t)

�
(

ψ
(

d
4

)
+ ln(2)

)
‖ f‖2

2,d‖g‖2
2,d. (3.33)
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Proof. Since g, f ∈ S(Rd) , this implies that for every x ∈ Rd , f Txg ∈ S(Rd) .
Using (2.5) and replacing f by f Txg in Theorem 3.19, we obtain∫

Rd
ln |ω ||Vg( f )(x,ω)|2dμd(ω)+

∫
Rd

ln |t|| f (t)Txg(t)|2dμd(t)

=
∫

Rd
ln |ω || f̂ Txg(ω)|2dμd(ω)+

∫
Rd

ln |t|| f (t)Txg(t)|2dμd(t)

�
(

ψ
(

d
4

)
+ ln(2)

)∫
Rd

| f (t)Txg(t)|2dμd(t), (3.34)

then, by integrating both sides of equation (3.34) with respect to the variable x , we get∫
Rd×R̂d

ln |ω || f̂ Txg(ω)|2dμ2d(x,ω)+
∫

Rd×R̂d
ln |t|| f (t)Txg(t)|2dμ2d(t,x)

�
(

ψ
(

d
4

)
+ ln(2)

)∫
Rd×R̂d

| f (t)Txg(t)|2dμ2d(t,x),

hence∫
Rd×R̂d

ln |ω ||Vg( f )(x,ω)|2dμ2d(x,ω)+
∫

Rd×R̂d
ln |t|| f (t)|2|g(t− x)|2dμ2d(t,x)

�
(

ψ
(

d
4

)
+ ln(2)

)∫
Rd×R̂d

| f (t)|2|g(t− x)|2dμ2d(t,x),

we get ∫
Rd×R̂d

ln |ω ||Vg( f )(x,ω)|2dμ2d(x,ω)+‖g‖2
2,d

∫
Rd

ln |t|| f (t)|2dμd(t)

�
(

ψ
(

d
4

)
+ ln(2)

)
‖ f‖2

2,d‖g‖2
2,d,

which corresponds to the desired result. �
Now, we give another proof of Beckner’s Logarithmic uncertainty principle by

using Pitt’s inequality for STFT.

Proof. For 0 � α < d , let c(α) = 1
2α

(
Γ( d−α

4 )
Γ( d+α

4 )

)2

and

h(α) =
∫

Rd×R̂d
|ω |−α |Vg( f )(x,ω)|2dμ2d(x,ω)− c(α)‖g‖2

2,d

∫
Rd

|t|α | f (t)|2dμd(t).

Then,

h′(α) = −
∫

Rd×R̂d
ln |ω ||ω |−α |Vg( f )(x,ω)|2dμ2d(x,ω)

− c(α)‖g‖2
2,d

∫
Rd

ln |t||t|α | f (t)|2dμd(t)

− c′(α)‖g‖2
2,d

∫
Rd

|t|α | f (t)|2dμd(t) (3.35)
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By (3.24), h(α) � 0 and h(0) = 0 which implies that h′(0+) � 0. Hence, by (3.35) we
get

−c′(0)‖g‖2
2,d‖ f‖2

2,d

�
∫

Rd×R̂d
ln |ω ||Vg( f )(x,ω)|2dμ2d(x,ω)+‖g‖2

2,d

∫
Rd

ln |t|| f (t)|2dμd(t),

hence we obtain (3.33). �

THEOREM 3.21. Let g ∈ S(Rd) be a window function. Then, for every function
f ∈ S(Rd) , we have∫

Rd×R̂d
ln |x||Vg( f )(x,ω)|2dμ2d(x,ω)+‖g‖2

2,d

∫
Rd

ln |t|| f̂ (t)|2dμd(t)

�
(

ψ
(

d
4

)
+ ln(2)

)
‖ f‖2

2,d‖g‖2
2,d . (3.36)

Proof. By using (2.5) and (2.14) we have∫
Rd

ln |x||Vg( f )(x,ω)|2dμd(x) =
∫

Rd
ln |x||̂̂f Tω ĝ(−x)|2dμd(x)

=
∫

Rd
ln |x||̂̂f Tω ĝ(x)|2dμd(x).

Since f ,g ∈ S(Rd) then for every ω ∈ Rd , we have f̂ Tω ĝ ∈ S(Rd) , we apply (2.5) we
obtain ∫

Rd
ln |x||Vg( f )(x,ω)|2dμd(x)+

∫
Rd

ln |x|| f̂ Tω ĝ(x)|2dμd(x)

�
(

ψ
(

d
4

)
+ ln(2)

)∫
Rd

| f̂ Tω ĝ(x)|2dμd(x). (3.37)

Then, by integrating both sides of equation (3.37) with respect to the variable ω , we
get∫

Rd×R̂d
ln |x||Vg( f )(x,ω)|2dμ2d(x,ω)+

∫
Rd×R̂d

ln |x|| f̂ Tω ĝ(x)|2dμ2d(x,ω)

=
∫

Rd×R̂d
ln |x||Vg( f )(x,ω)|2dμ2d(x,ω)

+
∫

Rd
ln |x|| f̂ (x)|2

∫
Rd

|Tω ĝ(x)|2dμd(ω)dμd(x)

=
∫

Rd×R̂d
ln |x||Vg( f )(x,ω)|2dμ2d(x,ω)+‖ĝ‖2

2,d

∫
Rd

ln |x|| f̂ (x)|2dμd(x)

=
∫

Rd×R̂d
ln |x||Vg( f )(x,ω)|2dμ2d(x,ω)+‖g‖2

2,d

∫
Rd

ln |x|| f̂ (x)|2dμd(x)

�
(

ψ
(

d
4

)
+ ln(2)

)∫
Rd×R̂d

| f̂ Tω ĝ(x)|2dμ2d(x,ω)
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=
(

ψ
(

d
4

)
+ ln(2)

)∫
Rd

| f̂ (x)|2
∫

Rd
|Tω ĝ(x)|2dμd(ω)dμd(x)

=
(

ψ
(

d
4

)
+ ln(2)

)
‖ĝ‖2

2,d‖ f̂‖2
2,d

=
(

ψ
(

d
4

)
+ ln(2)

)
‖g‖2

2,d‖ f‖2
2,d,

which corresponds to the desired result. �

3.7. Gross’s inequality

We denote by H1(Rd) the Sobolev space defined by

H1(Rd) = { f ∈ L2(Rd)|∇ f ∈ L2(Rd)},

where ∇ f is the standard gradiant function.

THEOREM 3.22. For every d � 2 and f ∈ H1(Rd)\{0}, we have

∫
Rd

| f (x)|2
‖ f‖2

2,d

ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x) � d

2
ln

(
1

dπ2e

‖|ξ | f̂‖2
2,d

‖ f‖2
2,d

)
. (3.38)

Proof. See [4]. �

Let g ∈ S(Rd) be a window function, for β > 0 we define the Gabor modulation
space with respect to the frequency polynomial weight on Rd , by

Mβ
2 (Rd) =

{
f ∈ L2(Rd) :

(
1+ |ω |2) β

2 Vg( f ) ∈ L2(Rd ×Rd)
}

.

For every nonzero function f ∈ Mβ
2 (Rd) , we define the measure dη2d by

dη2d(x,ω) =
|Vg( f )(x,ω)|2
‖ f‖2

2,d‖g‖2
2,d

dμ2d(x,ω).

By Jensen’s inequality and Plancherel’s formula, we get∫
Rd×R̂d

|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω)

=
1

2β
‖ f‖2

2,d‖g‖2
2,d

∫
Rd×R̂d

ln(|ω |2β )dη2d(x,ω)

� 1
2β

‖ f‖2
2,d‖g‖2

2,d ln

(‖|ω |β Vg( f )‖2
2,2d

‖ f‖2
2,d‖g‖2

2,d

)
< +∞. (3.39)
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THEOREM 3.23. Let g∈ S(Rd) be a window function. Then, for every f ∈ S(Rd)
such that ‖ f‖2,d = 1 , we have

d
2

∫
Rd×R̂d

|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω) � A2‖g‖2
2,d

∫
Rd

| f (x)|2 ln | f (x)|dμd(x).

(3.40)

Proof. Let f ∈ S(Rd) such that ‖ f‖2,d = 1 and h is the function defined by

∀p ∈]1,2[, h(p) = ‖|ω | d
2 − d

p Vg( f )‖2
2,2d −A2‖g‖2

2,d‖ f‖2
p,d,

h′(p) =
2d
p2

∫
Rd×R̂d

|ω |d(1− 2
p )|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω) (3.41)

+
2
p
A2‖g‖2

2,d‖ f‖2
p,d

(
ln(‖ f‖p,d)−‖ f‖−p

p,d

∫
Rd

| f (x)|p ln | f (x)|dμd(x)
)

.

By (3.30), h(p) � 0 and h(2) = 0 which implies that h′(2−) � 0.
Hence, by (3.42) we get

A2‖g‖2
2,d

∫
Rd

| f (x)|2 ln | f (x)|dμd(x) � d
2

∫
Rd

|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω). �

COROLLARY 3.24. Let g ∈ L2(Rd) be a window function and β > 0 .
Then, for every f ∈ M1

2 (Rd)\ {0} , we have

∫
Rd

| f (x)|2
‖ f‖2

2,d

ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x) � d

2A2 ln

(‖|ω |Vg( f )‖2
2,2d

‖ f‖2
2,d‖g‖2

2,d

)
. (3.42)

Proof. By replacing f by
f

‖ f‖2,d
in (3.40), we obtain the desired result. �

3.8. Logarithmic Sobolev inequalities

THEOREM 3.25. For every f ∈ S(Rd) with ‖ f‖2,d = 1 , we have

d
2

∫
Rd

| f̂ (ξ )|2 ln |ξ |dμd(ξ ) �
∫

Rd
| f (x)|2 ln | f (x)|dμd(x)+Bd, (3.43)

where

Bd = (2π)−
d
2

(
d
2

ψ(
d
2
)+

d
2

ln2+
d
4

lnπ − 1
2

ln

(
Γ(d)
Γ( d

2 )

))

up to conformal automorphism, extremal functions are of the form A(1+ |x|2)− d
2 .

Proof. See [2]. �
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THEOREM 3.26. (Logarithmic Sobolev’s inequality for STFT) Let g ∈ S(Rd) be
a window function. Then, for every f ∈ S(Rd) such that ‖ f‖2,d = 1 , we have

d
2

∫
Rd×Rd

|Vg( f )(x,ω)|2 ln |ω |dμd(x,ω)� ‖g‖2
2,d

∫
Rd

| f (x)|2 ln | f (x)|dμd(x)+Bd‖g‖2
2,d,

(3.44)

where Bd =
d
4

ln(2)− lnΓ(d)
2

+
Γ(d)

2
+

d
2

ψ
(d

2

)
.

Proof. Let f ∈ S(Rd) such that ‖ f‖2,d = 1. Let p ∈]1,2[ and h is the function
defined by

h(p) = ‖|ω | d
2 Vg( f )‖2

2,2d − c(p)‖g‖2
2,d‖ f‖2

p,d,

h′(p) =
2d
p2

∫
Rd×R̂d

|ω |d(1− 2
p )|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω)

+
2
p
c(p)‖g‖2

2,d‖ f‖2
p,d

(
ln(‖ f‖p,d)−‖ f‖−p

p,d

∫
Rd

| f (x)|p ln | f (x)|dμd(x)
)

−c′(p)‖g‖2
2,d‖ f‖2

p,d. (3.45)

By (3.28), h(p) � 0 and h(2) = 0 which implies that h′(2−) � 0.
Hence, by (3.45) we get

‖g‖2
2,d

∫
Rd

| f (x)|2 ln | f (x)|dμd(x)

� d
2

∫
Rd

|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω)−h′(2)‖g‖2
2,d. �

THEOREM 3.27. For every f ∈ H1(Rd)\{0} , we have∫
Rd

| f (x)|2 ln

( | f (x)|2
‖ f‖2

)
dμd(x) � d

2

∫
Rd

| f̂ (ξ )|2 ln
(
Sd |ξ |2

)
dμd(ξ )−dψ

(
d
2

)
‖ f‖2

2,d,

(3.46)

where Sd =
1
4π

(
Γ(d)
Γ( d

2 )

) 2
d

is the best possible. This constant is attained by up to

conformal automorphism f (x) =
(
1+ |x|2)− d

2 .

Proof. See [19]. �

COROLLARY 3.28. Let g∈ L2(Rd) be a window function and f ∈M1(Rd)\{0}.
Then, we have

‖g‖2
2,d

∫
Rd

| f (x)|2 ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x)

� d
2

∫
Rd×R̂d

|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω)−Bd‖g‖2
2,d‖ f‖2

2,d . (3.47)
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Proof. By replacing f by
f

‖ f‖2,d
in (3.44), we obtain the desired result.

�

COROLLARY 3.29. Let β > 0 and g∈ L2(Rd) be a window function. Then, there

exists a constant D(β ,d) such that for every f ∈ Mβ
1 (Rd)\ {0} we have

∫
Rd

| f (x)|2
‖ f‖2

2,d

ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x) � d

4β
ln

(
D(β ,d)

‖|ω |β Vg( f )‖2
2,2d

‖ f‖2
2,d‖g‖2

2,d

)
. (3.48)

Proof. By using (3.47) and (3.39) we get the desired result with D(β ,d)= e−
4β
d Bd .

�

We denote by

Lp
b(Rd) = { f ∈ Lp

Loc(R
d)|(1+ |x|2) b

2 f ∈ Lp(Rd)}.

THEOREM 3.30. Let 1 < b < +∞ . Then, for every f ∈ L1
b(R

d)\ {0}, we have

−
∫

Rd
| f (x)| ln

( | f (x)|
‖ f‖1,d

)
dμd(x) � d

∫
Rd

| f (x)| ln(Cd,b(1+ |x|b))dμd(x), (3.49)

where

Cd,b =

(
2π

d
2 Γ( d

b )Γ( d
b′ )

bΓ(d)Γ( d
2 )

) 1
d

is the best possible and 1
b + 1

b′ = 1 . Moreover, it is attained up to conformal automor-
phism by f (x) = (1+ |x|b)−d .

Proof. See [19]. �

If f ∈ L2
b(R

d)\ {0} , then | f |2 ∈ L1
2b(R

d)\ {0} and by (3.49) we get

−
∫

Rd
| f (x)|2 ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x) � d

∫
Rd

| f (x)|2 ln(Cd,2b(1+ |x|2b)dμd(x). (3.50)

COROLLARY 3.31. Let g ∈ L2(Rd) be a window function. Then, there exists a
constant C(d) such that for every f ∈ L2

1(R
d)∩M1

2(Rd)\ {0}, we have∫
Rd

| f (x)|2 ln(1+ |x|2)dμd(x)+
1

2‖g‖2
2,d

∫
Rd×R̂d

|Vg( f )(x,ω)|2 ln |ω |dμ2d(x,ω)

� C(d)‖ f‖2
2,d . (3.51)
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Proof. Let f ∈ L2
1(R

d)∩M1
2(Rd)\ {0} . By using (3.50) and (3.47) we get

−d
∫

Rd
| f (x)|2 ln

(
Cd,2(1+ |x|2))dμd(x)

�
∫

Rd
| f (x)|2 ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x)

� d

2‖g‖2
2,d

∫
Rd×R̂d

ln |ω ||Vg( f )(x,ω)|2dμ2d(x,ω)−Bd‖ f‖2
2,d,

hence,(
Bd

d
− lnCd,2

)
‖ f‖2

2,d

�
∫

Rd
| f (x)|2 ln(1+ |x|2)dμd(x)+

1

2‖g‖2
2,d

∫
Rd×R̂d

ln |ω ||Vg( f )(x,ω)|2dμ2d(x,ω).

Which corresponds to the desired result. �

COROLLARY 3.32. (Shannon’s inequality) Let 1 < b < +∞ . Then, for every f ∈
L1

b(R
d)\ {0} , we have

−
∫

Rd
| f (x)| ln

( | f (x)|
‖ f‖1,d

)
dμd(x) � d

b
‖ f‖1,d ln

(
C′

d,b

‖ f‖1,d

∫
Rd

|x|b| f (x)|dμd(x)

)
,

(3.52)
where

C′
d,b = bb(b−1)1−b

(
2π

d
2 Γ
(

d
b

)
Γ
(

d
b′
)

bΓ(d)Γ
(

d
2

) ) b
d

.

Proof. See [19]. �

THEOREM 3.33. Let β > 0 and 1
2 < b < +∞ and g∈ L2(Rd) be a window func-

tion. Then, for every f ∈ L2
b(R

d)∩Mβ
1 (Rd)\ {0} we have

‖|x|b f‖β
2,d‖|ω |β Vg( f )‖

b
2
2,2d � C(d,β ,b)‖ f‖

b
2 +β
2,d ‖g‖

β
2
2,d. (3.53)

Proof. By replacing b by 2b and f by | f |2 in (3.52), we get

−
∫

Rd
| f (x)|2 ln

(
| f (x)|2
‖ f‖2

2,d

)
dμd(x) � d

2b
‖ f‖2

2,d ln

(
C′

d,2b

‖ f‖2
2,d

‖|x|b f‖2
2,d

)
, (3.54)

and by (3.48) we get

ln

⎛⎝( C′
d,2b

‖ f‖2
2,d

‖|x|b f‖2
2,d

) 1
2b
(

D(β ,d)
‖|ω |β Vg( f )‖2

2,2d

‖ f‖2
2,d‖g‖2

2,d

) 1
4β
⎞⎠� 0. (3.55)

Which implies the desired result with C(d,β ,b) = D(β ,d)
−1
4β C′ −1

2b
d,2b . �
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