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EQUIVALENT QUASI–NORMS ON GENERALIZED ORLICZ SPACES
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(Communicated by P. T. Perez)

Abstract. In this paper we show that the equivalence among the classical quasi-norms of the
generalized Orlicz spaces XΦ — the Orlicz quasi-norm, the Luxemburg quasi-norm and the
Amemiya quasi-norm — holds under some mild conditions on the underlying quasi-Banach
function space X — mainly the weak Fatou property — improving previous results of [4] for
which some lattice convexity requirements for the quasi-Banach function space X were needed.

1. Introduction

The construction of the classical Orlicz spaces LΦ(μ) lies in the structure of the
space of Lebesgue integrable functions L1(μ) . Indeed, given an N -function Φ , the
finiteness of a given integral modular provides a criterion for determining when a given
function belongs to the corresponding Orlicz space. In this case, it is well-known that
the so-called Orlicz and Luxemburg norms are equivalent.

The same ideas that allow the construction of the Orlicz spaces can be applied
using as underlying space any other (quasi-) Banach function space X of measurable
functions instead of L1(μ). In this way, for a Young function (or N-function) Φ we
can construct the generalized Luxemburg XΦ

L , Amemiya XΦ
A or Orlicz XΦ

O space. As
we will see later we will always have the equality XΦ

L = XΦ
A . The inclusion XΦ

L ⊆ XΦ
O

always holds. However it is worth mentioning that generalized Orlicz spaces defined
a la Orlicz and a la Luxemburg are in general different (see [4, Example 4.1]). In this
case it is natural to ask under what conditions these spaces coincide and, when this
occurs, if the equivalences among the different quasi-norms for the generalized Orlicz,
Luxemburg or Amemiya spaces remain true.

In recent years, some authors have devoted some attention to this question. Among
them, and starting from the results that were published by Jain, Persson and Upreti in
[6], some of the authors of the present paper, together with other mathematicians, have
proved in [4, Theorem 5.5] for an N-function Φ and a quasi-Banach function space
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X over a finite measure μ with the σ -Fatou property and having a strictly monotone
quasi-renorming the equality XΦ

L = XΦ
O holds, and the equivalence of the corresponding

Luxemburg and Orlicz quasi-norms.
On the other hand, also in [4] it is shown that every quasi-Banach function space

that satisfies a minimal requirement of convexity (the so-called L-convexity used by
Kalton in [7]) allows a quasi-renorming that is strictly monotone. This result entails
obtaining the equality XΦ

L = XΦ
O and the equivalence of the Luxemburg and Orlicz

quasi-norms for a quasi-Banach function space X over a finite measure μ with the σ -
Fatou property and an N-function Φ if X is lattice r -convex for some 0 < r < ∞ (see
[4, Corollary 6.6]).

In this paper, continuing the work started in [4], we are interested in showing that
these results can be strongly improved. In fact, we will show that we can remove the
hypothesis on the lattice convexity of the space X , and we will also replace the σ -
Fatou hypothesis by a weaker request, the so-called weak Fatou property, to obtain the
equivalence of the Orlicz and Luxemburg quasi-norms on the generalized Orlicz space.
For this purpose, we will use as a technical resource the Amemiya quasi-norm: we will
prove that it is equivalent to both the Luxemburg and the Orlicz quasi-norms.

2. Preliminaries and notation

In this article we will consider function spaces over a measure space (Ω,Σ,μ) ,
where Ω is a nonempty set, Σ is a σ -algebra of subsets of Ω and μ is a finite posi-
tive measure defined on Σ. We will denote by L0(μ) the space of (μ -a.e. equivalence
classes of) measurable functions f : Ω −→ R equipped with the topology of conver-
gence in measure.

A quasi-normed function space over μ is any order ideal X ⊆ L0(μ) which is
a quasi-normed lattice with respect to the μ -a.e. order, that is, if f ∈ L0(μ), g ∈ X
and | f | � |g| μ -a.e., then f ∈ X and ‖ f‖X � ‖g‖X , where ‖·‖X is the quasi-norm of
X . We usually denote by C � 1 a quasi-triangle constant of X , that is, ‖ f +g‖X �
C (‖ f‖X +‖g‖X) for all f ,g ∈ X . We will always assume that characteristic function
of Ω , χΩ, belongs to X . Note that any quasi-normed function space over μ is con-
tinuously embedded into L0(μ), as it is proved in [10, Proposition 2.2]. A complete
quasi-normed function space is called a quasi-Banach function space. If, in addition,
the quasi-norm happens to be a norm, then X is called a Banach function space.

We say that a quasi-normed function space X has the σ -Fatou property if for any
positive increasing sequence ( fn)n in X with sup

n�1
‖ fn‖X < ∞, we have that sup

n�1
fn ∈ X

and

∥∥∥∥sup
n�1

fn

∥∥∥∥
X

= sup
n�1

‖ fn‖X . We say that a quasi-normed function space X has the weak

Fatou property if for any positive increasing sequence ( fn)n in X , with sup
n�1

‖ fn‖X < ∞,

we have that sup
n�1

fn ∈ X . It is known that if a quasi-normed function space has the σ -

Fatou property (weak Fatou property), then it is complete and hence a quasi-Banach
function space (see [10, Proposition 2.35]).
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Note that the only difference among the σ -Fatou and the weak Fatou properties

is that the first one requires in addition that

∥∥∥∥sup
n�1

fn

∥∥∥∥
X

= sup
n�1

‖ fn‖X . Thus, each quasi-

normed function space X with the σ -Fatou property obviously satisfies also the weak
Fatou property. However, in general the σ -Fatou property is not quasi-renorming in-
variant, while the weak Fatou property clearly is. This fact will be relevant for us, since
we will use quasi-renormings in several steps of our work.

The following result is the adaptation (regarding the proof; the statement is exactly
the same) for quasi-Banach function spaces of a well-known result of Amemiya for

Banach function spaces. It states that although the equality

∥∥∥∥sup
n�1

fn

∥∥∥∥
X

= sup
n�1

‖ fn‖X is

not guaranteed by the weak Fatou property, it implies a weaker inequality that properly

relates the norm

∥∥∥∥sup
n�1

fn

∥∥∥∥
X

with sup
n�1

‖ fn‖X . The proof of next result is adapted from

Theorem 2 in [12, Ch. 15 § 65], that refers to an original proof of Amemiya [2].

THEOREM 1. (Amemiya) Let X be a quasi-Banach function space with the weak
Fatou property. Then there is a constant G � 1 (only depending on ‖·‖X ) such that
‖ f‖X � Gsup

n�1
‖ fn‖X whenever 0 � fn ↑ f ∈ X .

Proof. Let C � 1 be a quasi-triangular constant for ‖·‖X . Suppose by contradic-
tion that there is no such a constant G � 1. Then for each natural number p � 1 there
is a sequence ( fpn)n ⊆ X and a function fp ∈ X such that 0 � fpn ↑ fp and∥∥ fp

∥∥
X > p3Cp sup

n�1

∥∥ fpn
∥∥

X , p = 1,2, . . . (1)

By multiplying by appropriate constants we can further assume that

sup
n�1

∥∥ fpn
∥∥

X =
1

p2Cp , p = 1,2, . . . (2)

From (1) and (2) we have that
∥∥ fp
∥∥

X � p for all p = 1,2, . . . Take now the functions
gn := f1n + f2n + · · ·+ fnn, n = 1,2, . . . Then 0 � g1 � g2 � · · · , and for every n � 1
we have

‖gn‖X =

∥∥∥∥∥
n

∑
p=1

fpn

∥∥∥∥∥
X

�
n

∑
p=1

Cp
∥∥ fpn

∥∥
X

�
n

∑
p=1

Cp 1
p2Cp

�
∞

∑
p=1

1
p2 < ∞.

Thus, sup
n�1

‖gn‖X < ∞ and then g := sup
n�1

gn ∈ X , as a consequence of the weak Fatou

property of X . But this gives a contradiction, since for each natural number p � 1, if
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we take n � p we get

g � gn = f1n + f2n + · · ·+ fnn � fpn, n � p

and so g � fp for all p = 1,2, . . . We conclude that ‖g‖X �
∥∥ fp
∥∥

X � p for all p =
1,2, . . . , what gives a contradiction. �

Finally, recall that a quasi-normed function space X is said to be σ -order contin-
uous if for any positive increasing sequence ( fn)n in X converging μ -a.e. to a function
f ∈ X , we have that ‖ f − fn‖X → 0.

3. Young functions and N-functions

We collect here some results, all known, on Young’s functions that we will need
next.

A Young function is any strictly increasing convex function (and so continuous)
Φ : [0,∞) −→ [0,∞) such that Φ(0) = 0 and lim

x→∞
Φ(x) = ∞. From the convexity of Φ

we have the following useful inequality

Φ(αx) � α Φ(x) if 0 � α � 1, x � 0. (3)

A Young function Φ is called an N-function if Φ satisfies the two limit conditions

lim
x→0

Φ(x)
x

= 0 and lim
x→∞

Φ(x)
x

= ∞. The complementary function of the Young function

Φ is defined as Φ̂(y) := sup
x�0

{xy−Φ(x)}, for all y � 0. From the definition of Φ̂ it is

clear that Φ and Φ̂ satisfy the Young inequality

xy � Φ(x)+ Φ̂(y), x,y � 0. (4)

Every Young function Φ has a right derivative, that is, a non-decreasing, right

continuous function ϕ : [0,∞) −→ [0,∞), with ϕ(0) = 0, such that Φ(x) =
∫ x

0
ϕ(t)dt

for all x ∈ [0,∞) (see [9, Theorem 1.1] or [11, Theorem 1.3.1]). This function ϕ also
satisfies the following equality (see [9, (2.7)] or [11, Theorem 1.3.3]) that we will use
later

xϕ(x) = Φ(x)+ Φ̂(ϕ(x)) , x � 0. (5)

A Young function Φ has the Δ2 -property, written Φ∈Δ2, if there exists a constant
K > 1 such that Φ(2x) � KΦ(x) for all x � 0.

Next lemma is well-known and will be used later. The proof can be seen in [9,
Ch. I § 1 p. 9]

LEMMA 1. Let Φ be an N-function and take its right derivative ϕ . Then we have
that lim

x→∞
ϕ(x) = ∞ and lim

x→0
ϕ(x) = 0.
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4. Quasi-norms on generalized Orlicz spaces

In this section we introduce the Luxemburg, Amemiya and Orlicz quasi-Banach
function spaces whose relations, mainly the equivalence of their quasi-norms, will be
the aim of our work. The reader can find information about in [3] and [4], in which there
is an analysis of the relations among two of them, and in [6], where the same topic is
studied for the Banach space case under the assumption of the σ -Fatou property.

Let Φ be a Young function and let X be a quasi-normed function space over a
finite measure μ .

The (generalized) Luxemburg space XΦ
L is defined as the following set:

XΦ
L :=

{
f ∈ L0(μ) : ∃c > 0 : Φ

( | f |
c

)
∈ X

}
.

Given f ∈ XΦ
L , we define the Luxemburg lattice quasi-norm of f by

‖ f‖XΦ
L

:= inf

{
c > 0 : Φ

( | f |
c

)
∈ X , with

∥∥∥∥Φ
( | f |

c

)∥∥∥∥
X

� 1

}
. (6)

The (generalized) Amemiya space XΦ
A is defined as the following set:

XΦ
A :=

{
f ∈ L0(μ) : ∃k > 0 : Φ(k| f |) ∈ X

}
.

Given f ∈ XΦ
A , we define the Amemiya lattice quasi-norm of f by

‖ f‖XΦ
A

:= inf

{
1
k

(1+‖Φ(k| f |)‖X ) , k > 0

}
. (7)

The Luxemburg and Amemiya spaces defined above, equippedwith their corresponding
quasi-norms, are really quasi-normed function spaces over the finite measure μ with
the same quasi-triangle constant as the one of the quasi-norm of the space X .

PROPOSITION 1. Let (X ,‖·‖X) be a quasi-normed function space over the mea-
sure μ with the weak Fatou property. Let Φ be Young function. Then the Amemiya
space XΦ

A has also the weak Fatou property.

This is a consequence of the equality XΦ
A = XΦ

L , the equivalence of the quasi-
norms ‖ · ‖XΦ

A
and ‖ · ‖XΦ

L
which will be shown in Theorem 2, and of the fact that the

Luxemburg space XΦ
L has the weak Fatou property (see [3, Theorem 4]).

Now, let Φ be an N-function. The corresponding (generalized) Orlicz space XΦ
O

is defined as the following set:

XΦ
O :=

{
f ∈ L0(μ) : ‖ f‖XΦ

O
< ∞

}
,

where ‖·‖XΦ
O

is the Orlicz quasi-norm defined by

‖ f‖XΦ
O

:= sup
{‖ f g‖X : Φ̂(|g|) ∈ X ,

∥∥Φ̂(|g|)∥∥X � 1
}

. (8)
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As we have pointed out above XΦ
A = XΦ

L as sets. Nevertheless, the spaces XΦ
L and

XΦ
O are in general different (see [4, Example 4.1]), but we proved in [4, Proposition 3.3])

that the inclusion XΦ
L ⊆ XΦ

O holds and

‖ f‖XΦ
O

� 2C‖ f‖XΦ
L

, f ∈ XΦ
L , (9)

where C � 1 is a quasi-triangular constant for X .

5. Equivalence of the Amemiya and Luxemburg quasi-norms

Let us now check the inequalities that relate the Amemiya and Luxemburg quasi-
norms. The next result provides the main tool in order to do it.

PROPOSITION 2. Let X be a quasi-normed function space over a measure μ , and
let Φ be a Young function. Given a function f ∈ XΦ

L , we have that

‖ f‖XΦ
L

= inf

{
max

{
1
k
,
1
k
‖Φ(k| f |)‖X

}
,k > 0

}

= inf

{
1
k

max{1,‖Φ(k| f |)‖X} ,k > 0

}
. (10)

Proof. Let us show first the inequality

‖ f‖XΦ
L

� inf

{
max

{
1
k
,
1
k
‖Φ(k| f |)‖X

}
,k > 0

}
.

Let k > 0. If ‖Φ(k| f |)‖X � 1, then (by the definition of ‖ f‖XΦ
L

) we can conclude that

‖ f‖XΦ
L

� 1
k
. On the other hand, if we have ‖Φ(k| f |)‖X > 1, using (3) we get

∥∥∥∥∥Φ

(
| f |

1
k ‖Φ(k| f |)‖X

)∥∥∥∥∥
X

=
∥∥∥∥Φ
(

k| f |
‖Φ(k| f |)‖X

)∥∥∥∥
X

� ‖Φ(k| f |)‖X

‖Φ(k| f |)‖X
= 1.

In this second case we have that ‖ f‖XΦ
L

� 1
k
‖Φ(k| f |)‖X . And in any case, we have

that

‖ f‖XΦ
L

� max

{
1
k
,
1
k
‖Φ(k| f |)‖X

}
for all k > 0. Computing the infimum with respect to k > 0, we conclude that

‖ f‖XΦ
L

� inf

{
max

{
1
k
,
1
k
‖Φ(k| f |)‖X

}
,k > 0

}
.

Let us show now the converse inequality, that is,

inf

{
max

{
1
k
,
1
k
‖Φ(k| f |)‖X

}
,k > 0

}
� ‖ f‖XΦ

L
.
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Let c > 0 such that

∥∥∥∥Φ
( | f |

c

)∥∥∥∥
X

� 1. Then

inf

{
max

{
1
k
,
1
k
‖Φ(k| f |)‖X

}
,k > 0

}
� max

{
c,c

∥∥∥∥Φ
( | f |

c

)∥∥∥∥
X

}
� c.

Computing the infimum with respect to c > 0, we get that

inf

{
max

{
1
k
,
1
k
‖Φ(k| f |)‖X

}
,k > 0

}
� ‖ f‖XΦ

L
. �

The next result establishes the equivalence of the Amemiya and Luxemburg quasi-
norms.

THEOREM 2. Let X be a quasi-normed function space over a measure μ and Φ
a Young function. Then the quasi-norms ‖·‖XΦ

A
and ‖·‖XΦ

L
are equivalent in XΦ

A = XΦ
L .

In particular, we have that

‖ f‖XΦ
L

� ‖ f‖XΦ
A

� 2‖ f‖XΦ
L
, (11)

for all f ∈ XΦ
A = XΦ

L .

Proof. It is enough to consider Proposition 2 and the inequality

max{1,x} � 1+ x � 2max{1,x},
for all x � 0. So we get

1
k

max{1,‖Φ(k| f |)‖X} � 1
k

(1+‖Φ(k| f |)‖X) � 2
k

max{1,‖Φ(k| f |)‖X}

and then we obtain the equivalence among the quasi-norms just by computing the infi-
mum on k > 0. �

6. Stability of generalized Orlicz spaces by equivalence
of Young functions and quasi-renorming of X

Later we will need to renormalize the underlying space X and change the function
Φ for another one with better properties. In this section we will check that these changes
will not affect the corresponding generalized Orlicz space. Something similar will be
shown for the Luxemburg space and the Amemiya space. Most of these results are
probably known, and, in many cases, the proofs are straightforward.

DEFINITION 1. Let Φ and Ψ Young functions. We say that Ψ is stronger than
Φ if there is a constant a > 0 such that Φ(x) � Ψ(ax), for all x � 0. In this case we
write Φ ≺ Ψ. We say that Φ and Ψ are equivalent if Φ ≺ Ψ and Ψ ≺ Φ. In this case
we write Φ ≡ Ψ.
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REMARK 1. It is proved in [11, Theorem 2, p. 16] that if Φ and Ψ are N-functions
such that Φ ≺ Ψ, then Ψ̂ ≺ Φ̂. In particular, if Φ ≡ Ψ, then Φ̂ ≡ Ψ̂.

PROPOSITION 3. Let Φ and Ψ be Young functions such that Φ ≺ Ψ with con-
stant a > 0. Then XΨ

L ⊆ XΦ
L , and we also have that ‖ f‖XΦ

L
� a‖ f‖XΨ

L
for all f ∈ XΨ

L .

In particular, if Φ ≡ Ψ then XΦ
L = XΨ

L and the quasi-norms ‖ · ‖XΦ
L

and ‖ · ‖XΨ
L

are
equivalent.

We have similar results for the Amemiya and Orlicz quasi-norms.

PROPOSITION 4. Let Φ and Ψ be Young functions such that Φ ≺ Ψ with con-
stant a > 0. Then XΨ

A ⊆ XΦ
A and ‖ f‖XΦ

A
� a‖ f‖XΨ

A
for all f ∈ XΨ

A , and if Φ ≡ Ψ then

XΦ
A = XΨ

A and the quasi-norms ‖ · ‖XΦ
A

and ‖ · ‖XΨ
A

are equivalent.

PROPOSITION 5. Let Φ and Ψ be N-functions such that Φ ≺ Ψ. Let b > 0 a
constant associated to Ψ̂ ≺ Φ̂. Then ‖ f‖XΦ

O
� b‖ f‖XΨ

O
for all f ∈ XΨ

O . Thus XΨ
O ⊆ XΦ

O .

In particular, if Φ ≡ Ψ then XΦ
O = XΨ

O and the quasi-norms ‖ · ‖XΦ
O

and ‖ · ‖XΨ
O

are

equivalent.

To conclude the first part of this section we present the following result that will
allow us to assume that the Young function (N-function) Φ used for the construction of
the spaces XΦ

O , XΦ
A and XΦ

L can be chosen with a continuous derivative.

PROPOSITION 6. Let Φ be a Young function (an N-function). Then there is a
Young function (an N-function) Ψ with continuous derivative such that Φ ≡ Ψ.

Proof. Given the Young function (N-function) Φ, let us consider its right deriva-
tive ϕ : [0,∞) −→ [0,∞). We know that it is non-decreasing, right continuous and

Φ(x) =
∫ x

0
ϕ(t)dt for all x ∈ [0,∞). Consider now the function Ψ : [0,∞) −→ [0,∞),

given by

Ψ(x) :=
∫ x

0

Φ(u)
u

du =
∫ x

0

[
1
u

∫ u

0
ϕ(t)dt

]
du =

∫ x

0
ϕ(t) log

x
t
dt. (12)

Let us see that it satisfies the requirements of the statement of the proposition.
i) There is a > 0 such that Ψ(x) � Φ(x) � Ψ(ax), for all x � 0. Indeed, let us

prove that the above inequalities are satisfied for a = 2. Since the function
Φ(u)

u
is

increasing (due to the fact that Φ is convex), we have that

Ψ(x) =
∫ x

0

Φ(u)
u

du � Φ(x)
x

x = Φ(x)

for all x � 0. On the other hand,

Ψ(2x) =
∫ 2x

0

Φ(u)
u

du �
∫ 2x

x

Φ(u)
u

du � Φ(x)
x

x = Φ(x)
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for all x � 0. In fact, it can be proved that Φ(x) � Ψ(ax) for all x � 0 and each a � 1.
ii) We claim that Ψ has continuous derivative. Indeed, note that the function

x → 1
x

∫ x

0
ϕ(u)du is continuous, and by the Fundamental Theorem of Calculus, we

have that Ψ′(x) =
1
x

∫ x

0
ϕ(u)du for all x � 0.

iii) It is also clear that Ψ is increasing, since Ψ′(x) � 0 for all x � 0.
iv) We also have that Ψ is convex. Indeed, at the points where ϕ is continuous

(except countable many points), the function Ψ′ has a derivative and it is given by

Ψ′′(x) =
1
x

ϕ(x)− 1
x2

∫ x

0
ϕ(u)du, for all x � 0. Now it is clear that Ψ′′(x) � 0 if and

only if xϕ(x) �
∫ x

0
ϕ(u)du and the last inequality holds since ϕ is non-decreasing. In

fact, any function Ψ given by formula (12) is convex.
Now, assume that Φ is an N-function. Then we have as a direct consequence of i)

that lim
x→0

Ψ(x)
x

= 0 and lim
x→∞

Ψ(x)
x

= ∞. �

Finally, we will show that, if we renorm the space X we get equivalent (quasi-)
norms for the associated generalized Orlicz spaces. For the proof, see [4, Proposi-
tion 5.10].

PROPOSITION 7. Let Φ be a Young function and let X an ideal of L0(μ). Con-
sider two equivalent lattice quasi-norms ‖·‖1 and ‖·‖2 on X , and denote by X1 :=
(X ,‖·‖1) and X2 := (X ,‖·‖2) the corresponding quasi-normed function spaces. Then

1) the Luxemburg quasi-norms ‖·‖XΦ
1L

and ‖·‖XΦ
2L

are also equivalent, and

2) the Amemiya quasi-norms ‖·‖XΦ
1A

and ‖·‖XΦ
2A

are equivalent too.

If moreover, Φ is an N-function, then

3) the Orlicz quasi-norms ‖·‖XΦ
1O

and ‖·‖XΦ
2O

are equivalent.

Recall that a quasi-norm ‖ · ‖ on X is not necessarily a continuous function ‖ · ‖ :
x ∈ X −→ ‖x‖ ∈ [0,+∞); which of course it is if ‖ · ‖ is a norm.

DEFINITION 2. Let 0 < p � 1. A p -norm on a linear space X is a function ‖| ·‖| :
X −→ [0,+∞) satisfying

a) ‖|x‖|= 0 if and only if x = 0.

b) ‖|αx‖|= |α|‖|x‖|, α ∈ R, x ∈ X .

c) ‖|x+ y‖|p � ‖|x‖|p +‖|y‖|p, x,y ∈ X .

A p -norm on X is a quasi-normwith quasi-triangular constant C = 2
1
p−1, which is

always continuous in X . Let us recall that the Aoki-Rolewicz Theorem guarantees that
we can always find an equivalent continuous quasi-norm for the quasi-normed space
X .
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THEOREM 3. (Aoki-Rolewicz) Let (X ,‖·‖X) be a quasi-normed space with quasi-
triangular constant C � 1. Then there are 0 < p � 1 and a p-norm ‖| · ‖| on X such

that ‖|x‖|� ‖x‖X � 2C‖|x‖| for all x ∈ X , with C = 2
1
p−1.

Proof. It can be found in [8, p. 7]. In fact, we can use the following definition as
associated p -norm

‖|x‖| = inf

⎧⎨
⎩
[

n

∑
k=1

‖xk‖p
X

] 1
p

: x =
n

∑
k=1

xk, n � 1

⎫⎬
⎭ . (13)

In light of (13) and the Riesz Decomposition Lemma (see [1, p. 11]), it is easy to
see that if the quasi-norm ‖·‖X is a lattice quasi-norm, then the p -norm ‖| · ‖| is also a
lattice p -norm. �

7. Equivalences of the Amemiya, Luxemburg and Orlicz quasi-norms

In this last and main section we will establish the equality of the spaces XΦ
A , XΦ

L
and XΦ

O (being Φ an N-function) and the corresponding equivalence of their quasi-
norms when the space X has the weak Fatou property, without any additional assump-
tions. In the absence of the weak Fatou property for the space X , we will prove the
equivalence of the three quasi-norms in the smallest space XΦ

A = XΦ
L whenever X has

σ -order continuous quasi-norm. The proofs of all these results are consequence of the
following proposition which is inspired by similar results given in [9] and [5].

PROPOSITION 8. Let Φ be an N-function. For every simple function f we have
that

‖ f‖XΦ
A

� 2‖ f‖XΦ
O
. (14)

Proof. As we have seen above, we can assume for the proof that the quasi-norm
‖·‖X is continuous in X and the N-function Φ has a continuous derivative ϕ .

Let us prove inequality (14). Consider a non-null simple function 0 � f . Write

f =
N

∑
n=1

αnχAn , with αn > 0, where An ∈ Σ are pairwise disjoint, n = 1,2, . . . ,N. Note

that Φ̂(ϕ(k f )) ∈ X , for all k > 0, since it is also a simple function. In fact, it is easy to

see that Φ̂(ϕ(k f )) =
N

∑
n=1

Φ̂(ϕ(kαn))χAn . On the other hand we have that β χB � f �

αχA, where α := max{α1, . . . ,αn}, β := min{α1, . . . ,αn} = αn0 , A := A1 ∪ ·· · ∪AN

and B := An0 . Since f is non-null, ‖χB‖X > 0 and also ‖χA‖X > 0. Therefore we have

Φ̂(ϕ(kβ ))χB = Φ̂(ϕ(kβ χB)) � Φ̂(ϕ(k f )) � Φ̂(ϕ(kαχA)) = Φ̂(ϕ(kα))χA

for all k > 0. Computing the quasi-norm we get

Φ̂(ϕ(kβ ))‖χB‖X =
∥∥Φ̂(ϕ(kβ χB))

∥∥
X �

∥∥Φ̂(ϕ(k f ))
∥∥

X �
∥∥Φ̂(ϕ(kαχA))

∥∥
X

= Φ̂(ϕ(kα))‖χA‖X
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for all k > 0. Since Φ̂ is an N-function, Lemma 1 gives that lim
x→∞

Φ̂(ϕ(x)) = ∞, and

lim
x→0

Φ̂(ϕ(x))= 0. Thus, we also have lim
k→0

∥∥Φ̂(ϕ(k f ))
∥∥

X = 0 and lim
k→∞

∥∥Φ̂(ϕ(k f ))
∥∥

X = ∞.

The function
H : k ∈ [0,∞) −→ H(k) :=

∥∥Φ̂(ϕ(k f ))
∥∥

X ∈ [0,∞)

is continuous since the quasi-norm ‖·‖X : X −→ [0,∞) is continuous and the function

k ∈ [0,∞)→ Φ̂(ϕ(k f )) =
N

∑
n=1

Φ̂(ϕ(kαn))χAn ∈ X is continuous (addition of continuous

functions), since Φ̂ and ϕ are continuous. Now, as a consequence of the Darboux
property there exists k0 > 0 such that

H(k0) =
∥∥Φ̂(ϕ(k0 f ))

∥∥
X = 1. (15)

Taking into account Φ̂(ϕ(k0 f )) � 0 and Φ(k0 f ) � 0 in X , and (5), we obtain

‖ f‖XΦ
A

� 1
k0

(1+‖Φ(k0 f )‖X ) =
1
k0

(∥∥Φ̂(ϕ(k0 f ))
∥∥

X +‖Φ(k0 f )‖X

)
� 2

k0

(∥∥Φ̂(ϕ(k0 f ))+ Φ(k0 f )
∥∥

X

)
=

2
k0

‖k0 fϕ(k0 f ))‖X

= 2‖ fϕ(k0 f ))‖X � 2‖ f‖XΦ
O
.

The last inequality is due to the definition of quasi-norm of Orlicz and (15). This
concludes the proof. �

THEOREM 4. Let (X ,‖·‖X ) be a quasi-Banach function space over a measure μ
with the weak Fatou property, and let Φ be an N-function. Then XΦ

A = XΦ
O and the

Amemiya and Orlicz quasi-norms are equivalent.

Proof. We can assume for the proof that the quasi-norm ‖·‖X is continuous in X
and the N-function Φ has a continuous derivative ϕ .

Let us show first that ‖ f‖XΦ
O

� C‖ f‖XΦ
A

for all f ∈ XΦ
A for a triangular constant

C � 1 for the space X . Indeed, given g ∈ L0(μ), with Φ̂(g) ∈ X and
∥∥Φ̂(|g|)∥∥X � 1,

and any k > 0, by Young inequality (4) we get the following inequality

‖ f g‖X =
1
k
‖k f g‖X � 1

k

∥∥Φ(k| f |)+ Φ̂(|g|)∥∥X � C
k

(‖Φ(k| f |)‖X +1) .

Computing the supremum for g we get ‖ f‖XΦ
O

� C
k

(‖Φ(k| f |)‖X +1) , for all k > 0.

Taking now the infimum for k > 0 we can conclude that ‖ f‖XΦ
O

� C‖ f‖XΦ
A
, for all

f ∈ XΦ
A .
Let us now look at the opposite inequality. Since X has the weak Fatou property,

we know that the Amemiya space XΦ
A also has it. Therefore by Amemiya’s theorem

(Theorem 1), there is a constant G > 0 such that ‖g‖XΦ
A

� Gsup
n�1

‖gn‖XΦ
A

for every
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sequence (gn)n ⊆ XΦ
A and all g ∈ XΦ

A such that 0 � gn ↑ g ∈ XΦ
A . In particular, we are

going to prove that
‖ f‖XΦ

A
� 2G‖ f‖XΦ

O
, (16)

for all f ∈ XΦ
O , and consequently the inclusion XΦ

O ⊆ XΦ
A . Indeed, recalling the in-

equality (14), if f ∈ XΦ
O , there is a sequence ( fn)n of positive simple functions such

that 0 � fn ↑ | f | pointwise μ -a.e. (since f is a measurable function). In particular,
sup
n�1

‖ fn‖XΦ
O

� ‖ f‖XΦ
O
. From (14) we get that

‖ fn‖XΦ
A

� 2‖ fn‖XΦ
O

� 2‖ f‖XΦ
O

for all n = 1,2, . . . By the weak Fatou property of XΦ
A we get that f ∈ XΦ

A . Moreover,
‖ f‖XΦ

A
� Gsup

n�1
‖ fn‖XΦ

A
� 2Gsup

n�1
‖ fn‖XΦ

O
� 2G‖ f‖XΦ

O
, for all f ∈ XΦ

O , which is exactly

(16). �

COROLLARY 1. Let (X ,‖ · ‖X) be a quasi-Banach function space over the mea-
sure μ , with the weak Fatou property, and let Φ be an N-function. Then XΦ

L = XΦ
A =

XΦ
O and the Amemiya, Luxemburg and Orlicz quasi-norms are equivalent.

Another consequence of the Proposition 8 is the following result.

THEOREM 5. Let (X ,‖·‖X ) be a quasi-normed function space over a measure μ
that is σ -order continuous, and let Φ be an N -function with the Δ2 property. Then the
Luxemburg and Orlicz quasi-norms are equivalent in XΦ

L .

Proof. We know by (9) that ‖ f‖XΦ
O

� 2C‖ f‖XΦ
L

for every f ∈ XΦ
L , where C � 1

is a quasi-triangular constant for X . Suppose now that X is σ -order continuous and
Φ ∈ Δ2. Then the quasi-norm of XΦ

L is also σ -order continuous (see [3, Theorem 5]).
Let f ∈ XΦ

L and take ε > 0. Since f is measurable we get a simple function g
such that 0 � g � | f | and ‖| f |−g‖XΦ

L
< ε. Then, taking into account (14), we have

‖ f‖XΦ
L

= ‖| f |−g+g‖XΦ
L

� C
(
‖| f |−g‖XΦ

L
+‖g‖XΦ

L

)
� ε C+C‖g‖XΦ

L

� ε C+C‖g‖XΦ
A

� ε C+2C‖g‖XΦ
O

� εC+2C‖ f‖XΦ
O
.

Since ε is arbitrary, we obtain the result. �

COROLLARY 2. Let (X ,‖·‖X ) be a quasi-normed function space over the mea-
sure μ that is σ -order continuous, and let Φ an N-function with the Δ2 property.
Then the Amemiya, Luxemburg and Orlicz quasi-norms are equivalent in XΦ

L .

The hypothesis of X being σ -order continuous in Corollary 2 is clearly not nec-
essary for the equivalence of the quasi-norms. It is well-known that, if Φ ∈ Δ2 then the
Luxemburg, Amemiya and Orlicz norms are equivalent in XΦ

L (see [4, Remark 6.8]).



EQUIVALENT QUASI-NORMS ON GENERALIZED ORLICZ SPACES 413

RE F ER EN C ES

[1] C. D. ALIPRANTIS AND O. BURKINSHAW, Positive Operators, Academic Press, Inc., Pure and Ap-
plied Mathematics, 119, Orlando, FL, 1985.

[2] I. AMEMIYA, A generalization of Riesz-Fischer’s theorem, J. Math. Soc. Japan 5, 3–4 (1953), 353–
354.
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