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NEW ORDERS AMONG HILBERT SPACE OPERATORS

MOHAMMAD SABABHEH ∗ AND HAMID REZA MORADI

(Communicated by M. S. Moslehian)

Abstract. This article introduces several new relations among related Hilbert space operators. In
particular, we prove some Löewner partial orderings among T , |T | , RT , I T , |T |+ |T ∗| and
many other related forms, as a new discussion in this field; where RT and I T are the real and
imaginary parts of the operator T . Our approach will be based on proving the positivity of some
new matrix operators, where several new forms for positive matrix operators will be presented
as a key tool in obtaining the other ordering results. As an application, we present some results
treating numerical radius inequalities in a way that extends some known results in this direction,
in addition to some results about the singular values.

1. Introduction

Let H be a complex Hilbert space, endowed with the inner product 〈·, ·〉 , and
let B(H ) denote the C∗ -algebra of all bounded linear operators on H . An operator
A ∈ B(H ) is said to be positive if 〈Ax,x〉 � 0 for all x ∈ H . Such operator is then
denoted by A � O . If A � O is invertible, we write A > O. Unlike real numbers, the
algebra B(H ) is not totally ordered. That is, if A ∈ B(H ) , then it is not necessary
that A � O or −A � O. A possible ordering among elements of B(H ) is the so
called Löewner partial ordering; where we say that A � B for two self-adjoint operators
A,B ∈ B(H ), if A−B � O.

Among the most well established operator inequalities is the well known arithmetic-
geometric mean inequality which has more than one form. If ‖ · ‖ denotes the usual
operator norm on B(H ) , that is ‖T‖ = sup‖x‖=1 ‖Tx‖ , then for any two operators
S,T one has the inequality [10]

‖ST ∗‖ � 1
2
‖ |S|2 + |T |2‖ (1)

where T ∗ denotes the conjugate of T and |T | is the unique positive square root of
T ∗T. This inequality is referred to as an arithmetic-geometric mean inequality since it
extends the scalar inequality ab � a2+b2

2 , for the real numbers a,b . Although (1) is
true, its Löewner version is not. That is, we cannot have

ST ∗ � 1
2
(|S|2 + |T |2) (2)

Mathematics subject classification (2020): 47A08, 47A12, 47A30, 47A60.
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in general. A simple reasoning here is that ST∗ is not necessarily self-adjoint, so the
ordering in (2) does not make sense, to begin with.

If T ∈ B(H ) , the real and imaginary parts of T are defined by RT = T+T ∗
2

and I T = T−T ∗
2i . A possible extension of (1) would be to compare 2R(ST) with

|S|2 + |T |2 . We notice here that the triangle inequality immediately implies

2‖RT‖ � ‖T‖+‖T∗‖.
At this point, it might be asked about the validity of the stronger version

2|RT | � |T |+ |T∗|, T ∈ B(H ). (3)

Unfortunately, this inequality is wrong in general, as one can easily check the example

T =

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ .

To see this, we note that

λ2(|2RT |) = λ
1
2
2

⎛
⎝
⎡
⎣ 1 0 1

0 2 0
0 0 1

⎤
⎦
⎞
⎠=

√
2 �� 1 = λ2

⎛
⎝
⎡
⎣ 1 0 0

0 2 0
0 0 1

⎤
⎦
⎞
⎠= λ2(|T |+ |T ∗|).

In fact, even the simpler inequality RT � |T | is not true in general, as one can easily
check with the example

T =
[

0 1
0 0

]
since we have

|T |−RT =
[

0 − 1
2

− 1
2 1

]
� O.

The latter matrix is not positive since its eigenvalues are −√
2+1
2 and

√
2+1
2 .

Thus, it is valid to search possible orderings (without the norm) between

• RT and |T |.
• 2RT and |T |+ |T ∗|.
• 2R(ST) and |S|2 + |T |2.

The sole goal of this paper is to discuss this problem more broadly, leading to several
new relations in a more generalized form. However, we will deal with particular forms
of matrix operators that imply the desired links. Our discussion will also lead to exciting
relations among the singular values and numerical radius inequalities. Here we recall
that the numerical radius of an operator T is defined by

ω(T ) = sup{|〈Tx,x〉 | : ||x|| = 1}.
Our method that we use to prove the desired results is based mainly on block

techniques. For this, we need some results from the literature, as follows.
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LEMMA 1. [8, Chapter 1] The following statements are mutually equivalent, for
A,B,C ∈ B(H ):

(i)

[
A C
C∗ B

]
� O.

(ii)

[
B C∗
C A

]
� O.

LEMMA 2. [1, Theorem 3.4] Let C be self-adjoint and

[
A C
C B

]
� O. Then A,B �

O and
±C � A�B

where the geometric mean A�B for A,B > O is defined as A�B = A
1
2

(
A− 1

2 BA− 1
2

) 1
2
A

1
2 .

If A,B � O, we define A�B = limε↓0(A+ εI)�(B+ εI).

LEMMA 3. [18, Lemma 1] Let A,B,C ∈ B (H ) , where A,B � O. Then[
A C∗
C B

]
� O ⇔ |〈Cx,y〉|2 � 〈Ax,x〉〈By,y〉 ;x,y ∈ H .

REMARK 1. It follows from Lemma 3 that if

[
A C∗
C B

]
� O , then for any x ∈ H ,

| 〈Cx,x〉 | �
√
〈Ax,x〉〈Bx,x〉

� 〈Ax,x〉+ 〈Bx,x〉
2

=
〈

A+B
2

x,x

〉
.

Consequently, for any x∈H , R 〈Cx,x〉�
〈

A+B
2 x,x

〉
. But since R 〈Cx,x〉= 〈RCx,x〉 ,

it follows that RC � A+B
2 . Further, since | 〈Cx,x〉 |= | 〈−Cx,x〉 |, it follows that −RC �

A+B
2 . Thus, we conclude the following implication[

A C∗
C B

]
� O ⇒±RC � A+B

2
. (4)

LEMMA 4. [27, Lemma 1.4] Let A,B � O be invertible operators. Then

[
A C
C∗ B

]
�

O if and only if CB−1C∗ � A.

LEMMA 5. [1, Lemma 3.1] Let A1,A2,B1,B2,C∈B (H ) , where A1,A2,B1,B2 �
O. Then [

Ai C
C∗ Bi

]
� O (i = 1,2) ⇒

[
A1�A2 C
C∗ B1�B2

]
� O.
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The following lemma treats the singular values of a matrix. By Mn , we refer to
the algebra of complex n× n matrices. Although this lemma is stated originally for
compact operators, we limit it here to matrices. In the sequel, if T ∈ Mn , s j(T ) will
denote the jth largest eigenvalue of |T |.

LEMMA 6. [4, Theorem 2.1] Let A,B,C ∈ Mn be such that

[
A C∗
C B

]
� O. Then

s j (C) � s j (A⊕B) for j = 1,2, . . . ,n. Here we denote the block matrix

[
A O
O B

]
by

A⊕B.

LEMMA 7. [23] Let A,B,C ∈ Mn be such that

[
A C∗
C B

]
� O. Then

2s j (C) � s j

([
A C∗
C B

])

for j = 1,2, . . . ,n.

Related to the singular values of matrices, we recall that a unitarily invariant norm
‖ · ‖u on Mn is a matrix norm that satisfies ‖UAV‖u = ‖A‖u for all A ∈ Mn and all
unitary matrices U,V.

In treating the inequality RT � |T | , we present a class that satisfies this relation.
Here, we recall that an operator T ∈ B(H ) is said to be semi-hyponormal if |T ∗| �
|T | ; see [24]. For example, normal operators are semi-hyponormal.

We will be also interested in the so called (α,β )-normal operators. For real num-
bers α and β with 0 < α � 1 � β , an operator T ∈ B (H ) is called (α,β ) -normal
[12], if

α2|T |2 � |T ∗|2 � β 2|T |2. (5)

According to this definition, if T is (α,β ) -normal operator, then T and T ∗ majorize
each other.

2. Operator inequalities

In this section, we present our main results. This will be done in two subsections,
where we study inequalities involving one operator in the first section, then we discuss
two-operator inequalities.

2.1. One-operator inequalities

From [8, Corollary 1.3.8 ], we know that if T is a normal operator, then[|T | T ∗
T |T |

]
� O. (6)

This inequality can be extended to semi-hyponormal operators as follows.
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PROPOSITION 1. Let T ∈ B (H ) be a semi-hyponormal operator. Then (6)
holds.

Proof. By the mixed Cauchy-Schwarz inequality [16], we have for any x,y ∈ H

|〈Tx,y〉|2 � 〈|T |x,x〉 〈|T ∗|y,y〉 .
Since T is a semi-hyponormal, then

|〈Tx,y〉|2 � 〈|T |x,x〉 〈|T |y,y〉
which is equivalent to (6), thanks to Lemma 3. �

Now we are ready to present the following possible relation between RT and |T |,
for semi-hyponormal operators.

THEOREM 1. Let T ∈ B (H ) be a semi-hyponormal operator. Then

±RT � |T | .

Proof. First proof. By Proposition 1 and Lemma 1, we have[|T | T ∗
T |T |

]
� O and

[|T | T
T ∗ |T |

]
� O. (7)

Therefore, by adding the latter two matrix operators,[ |T | RT
RT |T |

]
� O. (8)

This implies,
±RT � |T |

thanks to Lemma 2, which completes the proof.
Second proof. Using [18, Theorem 3], we have

| 〈Tx,x〉 | � 〈|T |x,x〉 , ∀x ∈ H .

Thus we have

〈±RTx,x〉 = ±R 〈Tx,x〉 � | 〈Tx,x〉 | � 〈|T |x,x〉 , ∀x ∈ H .

Hence, ±RT � |T |. �
We remind the reader that for a general T , the inequality ±RT � |T | is not true,

explaining the significance of Theorem 1 for a particular class of operators.
Semi-hyponormal operators satisfy further interesting inequalities. In the next

result, we present a singular-value inequality satisfied by these operators. To see the
significance of this result, we notice first that an arbitrty matrix T ∈ Mn does not
satisfy the arithmetic-geometric mean inequality

s j (RT ) � 1
2
s j

(
|T |⊕

∣∣∣T ∗∣∣∣) .

However, semi-hyponormal matrices satisfy the following.
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COROLLARY 1. Let T ∈ Mn be semi-hyponormal. Then

s j (RT ) � s j (|T |⊕ |T |)
for j = 1,2, . . . ,n.

Proof. This follows from (8), with Lemma 6. �
We remark that Corollary 1 was shown already in [15].
Now we move to the study of the other interesting class, namely (α,β )-normal

operators.

THEOREM 2. Let T ∈B (H ) and 0 < α � 1 � β . Then the following are equiv-
alent:

(i) [
1

α2 |T ∗|2 |T |2
|T |2 1

α2 |T ∗|2
]

� O and

[
β 2|T |2 |T ∗|2
|T ∗|2 β 2|T |2

]
� O.

(ii)
α2|T |2 � |T ∗|2 � β 2|T |2. (9)

Proof. (ii)⇒(i) We show that if α2|T |2 � |T ∗|2 � β |T |2 , then[
1

α2 |T ∗|2 |T |2
|T |2 1

α2 |T ∗|2
]

� O.

By Lemma 3, it suffices to show that

∣∣〈|T |2x,y〉∣∣2 �
〈

1
α2 |T ∗|2x,x

〉〈
1

α2 |T ∗|2y,y
〉

(10)

for all x,y∈H . By the mixed Cauchy-Schwarz inequality [16], we have, for x,y∈H ,∣∣〈|T |2x,y〉∣∣2 �
〈|T |2x,x〉〈|T |2y,y〉

�
〈

1
α2 |T ∗|2x,x

〉〈
1

α2 |T ∗|2y,y
〉

where we have used the assumption |T |2 � 1
α2 |T ∗|2 to obtain the last inequality. This

proves (10), which is equivalent to

[
1

α2 |T ∗|2 |T |2
|T |2 1

α2 |T ∗|2
]

� O. Following the same idea,

we can show the positivity of the other matrix in (i).

(i)⇒(ii) Suppose that

[
1

α2 |T ∗|2 |T |2
|T |2 1

α2 |T ∗|2
]

� O . By Lemma 3, we get (10). Hence〈
|T |2x,x

〉
�
〈

1
α2 |T ∗|2x,x

〉
, for all x ∈ H . This proves α2|T |2 � |T ∗|2 . Following

the same idea we show |T ∗|2 � β 2|T |2 . �
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In Theorem 1, we showed a possible relation between the real part and the semi-
hyponormal operator. In the following, we give the analogous result for (α,β )-normal
operator.

THEOREM 3. Let 0 < α � 1 � β and let T be a (α,β )-normal operator. Then

±RT � 4

√
β
α
|T |� |T ∗| .

Proof. Let T be a (α,β )-normal operator and let x,y ∈ H be any vectors. Re-
call that the function f (x) =

√
x is operator monotone on [0,∞) ; [8, Theorem 1.5.9 ].

Therefore, by the mixed Schwarz inequality and the property of (α,β )-normal opera-
tor, we have

|〈Tx,y〉|2 � 〈|T |x,x〉 〈|T ∗|y,y〉 � 1
α
〈|T ∗|x,x〉 〈|T ∗|y,y〉 (11)

and
|〈Tx,y〉|2 � 〈|T |x,x〉 〈|T ∗|y,y〉 � β 〈|T |x,x〉 〈|T |y,y〉 . (12)

Applying Lemma 3 gives[
1√
α |T ∗| T ∗

T 1√
α |T ∗|

]
� O and

[√
β |T | T ∗

T
√

β |T |
]

� O. (13)

It follows from (13) and Lemma 5 that if T is a (α,β )-normal operator, then⎡
⎣ 4
√

β
α (|T ∗| � |T |) T ∗

T 4
√

β
α (|T ∗| � |T |)

⎤
⎦� O. (14)

Because of Lemma 3, the above inequality has the following equivalent form

|〈Tx,y〉|2 �
√

β
α
〈|T |� |T ∗|x,x〉〈|T | � |T ∗|y,y〉 ,

for any vectors x,y ∈ H . In particular,

|〈Tx,x〉| � 4

√
β
α
〈|T |� |T ∗|x,x〉 , ∀x ∈ H .

Since
〈±RTx,x〉 = ±R 〈Tx,x〉 � |〈Tx,x〉| (15)

for any vectors x ∈ H , it follows that

±RT � 4

√
β
α
|T |� |T ∗|

as desired. �
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COROLLARY 2. Let T ∈ Mn be (α,β )-normal. Then for j = 1,2, · · · ,n,

s j (T ) � 4

√
β
α

s j ((|T | � |T ∗|)⊕ (|T | � |T ∗|)) .

In particular, if ‖ · ‖u is an arbitrary unitarily invariant norm on Mn , then

‖T‖u � 4

√
β
α
‖ |T |� |T ∗| ‖u.

Proof. This follows from (14) and Lemma 6. �

The following is a simpler relation between RT, |T | and |T ∗| for (α,β )-normal
operators.

THEOREM 4. Let 0 < α � 1 � β and let T be a (α,β )-normal operator. Then

±RT �
√

β |T | and ±RT � 1√
α
|T ∗| .

Proof. It follows from (11), that

|〈Tx,x〉| � 1√
α
〈|T ∗|x,x〉

for any vector x ∈ H . Combining it with (15), gives

±RT � 1√
α
|T ∗| .

In the same way, from (12), we get

±RT �
√

β |T | .

This completes the proof. �

While |RT | , in general, is not comparable with |T | nor |T ∗| , the following is an
explicit comparison for (α,β )-normal operators. We point out here that Theorem 4
deals with RT , while Theorem 5 deals with |RT |.

THEOREM 5. Let 0 < α � 1 � β and let T be a (α,β )-normal operator. Then

|RT | �
√

1+ α2

2α2 |T ∗| and |RT | �
√

1+ β 2

2
|T | .
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Proof. According to the assumption

(RT )2 =
1
4

(
|T |2 + |T ∗|2 +2RT2

)
� 1

4

(
|T |2 + β 2|T |2 +2RT2

)
=

1
4

((
1+ β 2) |T |2 +2RT2

)
.

The inequality stated above shows

(RT )2 �
(

1+ β 2

2

)
|T |2 − (I T )2

�
(

1+ β 2

2

)
|T |2

where we have used the fact that

(RT )2 −RT2 = (I T )2

to obtain the first inequality, and the fact that (I T )2 � O to obtain the second inequal-
ity.

Then the second inequality follows by the operator monotonicity of f (x) =
√

x.
The other inequality can be obtained by the same way. �
The following is an example explaining Theorem 5.

EXAMPLE 1. Take T =
[
1 0
1 1

]
. Then T will be (α,β ) -normal operator with

α2 = 3−√
5

2 and β 2 = 3+
√

5
2 . Then

|RT | =
[

1 0.5
0.5 1

]
�

√
1+ β 2

2
|T | ≈

[
1.8043 0.6014
0.6014 1.2028

]
.

The left term in the above inequality is also strictly less than√
1+ α2

2α2 |T ∗| ≈
[
1.2028 0.6014
0.6014 1.8043

]
.

2.2. Two-operator inequalities

In this section, we present various results treating two Hilbert space operators,
continuing with the same theme of the paper. First, we have the following positive
operator matrix.

LEMMA 8. Let S,T ∈ B (H ) . If f ,g are non-negative continuous functions on
[0,∞) satisfying f (t)g(t) = t , (t � 0) , then[

f 2 (|T |) T ∗S∗
ST Sg2 (|T ∗|)S∗

]
� O.
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Proof. Let x,y ∈ H . It follows from [18, Theorem 1] that

|〈STx,y〉| = |〈Tx,S∗y〉|
� ‖ f (|T |)x‖‖g(|T ∗|)S∗y‖
=
√
〈 f 2 (|T |)x,x〉 〈Sg2 (|T ∗|)S∗y,y〉.

Now, by Lemma 3, we get the desired result. �
Now we are ready to present the following inequality about R(ST ) .

THEOREM 6. Let S,T ∈ B (H ) . If f ,g are non-negative continuous functions
on [0,∞) satisfying f (t)g(t) = t , (t � 0) , then

±R (ST ) �
(
Sg2 (|T ∗|)S∗

)
�|S∗|2 + f (|T |) |T |
2

. (16)

Proof. Let x,y ∈ H . For S,T ∈ B (H ) , we have by the Cauchy-Schwartz
inequality,

|〈STx,y〉| = |〈Tx,S∗y〉|
� ‖Tx‖‖S∗y‖

=
√〈

|T |2x,x
〉〈

|S∗|2y,y
〉

which implies, by Lemma 1 and Lemma 3,[|S∗|2 ST
T ∗S∗ |T |2

]
� O. (17)

On the other hand, by Lemma 8 and Lemma 1, we have[
Sg2 (|T ∗|)S∗ ST

T ∗S∗ f 2 (|T |)
]

� O. (18)

The inequalities (17) and (18), with Lemma 5 give[(
Sg2 (|T ∗|)S∗

)
�|S∗|2 ST

T ∗S∗ f 2 (|T |) �|T |2
]

� O. (19)

Since f 2 (|T |) |T |2 = |T |2 f 2 (|T |) (see [14, Theorem 1.13]), we have f 2(|T |)�|T |2 =
f (|T |)|T | . Now, noting (19), then applying (4), we get the desired result. �

REMARK 2.

(i) Taking S = I , the identity operator, in Theorem 6, then we have

±RT � g(|T ∗|)+ f (|T |) |T |
2

.
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(ii) If we replace S by iS∗ , in Theorem 6, we get

±I (T ∗S) �
(
S∗g2 (|T ∗|)S

)
�|S|2 + f (|T |) |T |
2

.

The next result follows from Remark 2 (ii) and Theorem 6.

COROLLARY 3. Let S,T ∈B (H ) . If f ,g are non-negative continuous functions
on [0,∞) satisfying f (t)g(t) = t , (t � 0) , then

±(R (ST ∗)+I (TS∗)) �
(
Sg2 (|T |)S∗

)
�|S∗|2 + f (|T ∗|) |T ∗|.

In particular,
±(RT +I T ) � g(|T |)+ f (|T ∗|) |T ∗|.

Theorem 6 can be extended to the sum of operators by using the linearity of R .

COROLLARY 4. Let T1,T2,T3,T4 ∈ B (H ) . If f ,g are non-negative continuous
functions on [0,∞) satisfying f (t)g(t) = t , (t � 0) , then

±R (T1T2±T3T4)

� 1
2

((
T1g

2 (|T2
∗|)T1

∗)�|T1
∗|2 +

(
T3g

2 (|T4
∗|)T3

∗)�|T3
∗|2 + f (|T2|) |T2|+ f (|T4|) |T4|

)
.

(20)
In particular,

±R (T1T2±T3T4) � 1
2

(
(T1 |T2

∗|T1
∗) �|T1

∗|2 +(T3 |T4
∗|T3

∗)�|T3
∗|2 + |T2|

3
2 + |T4|

3
2

)
.

(21)

Proof. From Theorem 6, we have

±R (T1T2 +T3T4)
= ±R (T1T2)±R (T3T4)

� 1
2

((
T1g

2 (|T2
∗|)T1

∗)�|T1
∗|2 +

(
T3g

2 (|T4
∗|)T3

∗)�|T3
∗|2 + f (|T2|) |T2|+ f (|T4|) |T4|

)
.

This proves (20). The inequality (21) follows from (20) by setting f (x) = g(x) =√
x . �

COROLLARY 5. Let S,T ∈ Mn . Then, for any 0 � t ′,v′ � 3
2 ,

±R (S±T ) � 1
2

(
|S|t′ + |S∗|2−t′ + |T |v′ + |T ∗|2−v′

)
.
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Proof. Let S = U |S| and T = V |T | be the polar decomposition of S and T ,
respectively. For 0 � t ′,v′ � 3

2 , let t = 2
3 t, and v = 2

3v′. Then 0 � t,v � 1. If we

put T1 = U |S|1−t , T2 = |S|t , T3 = V |T |1−v , and T4 = |T |v , where 0 � t,v � 1, in the
inequality (21), we get

±R (S±T ) � 1
2

(
|S|t′ + |S∗|2−t′ + |T |v′ + |T ∗|2−v′

)
, 0 � t ′,v′ � 3

2

as desired. �

REMARK 3. Taking T = iT , in Corollary 5, we infer that

±R (S± iT ) � 1
2

(
|S|t′ + |S∗|2−t′ + |T |v′ + |T ∗|2−v′

)
.

In particular,

±RT � 1
2

(
|RT |t′ + |RT |2−t′ + |I T |v′ + |I T |2−v′

)
due to the Cartesian decomposition of T (for any X ∈ B (H ) , we have X = RX +
iI X ).

REMARK 4. Lemma 7, together with (19), implies

2s j (ST ) � s j

([(
Sg2 (|T ∗|)S∗

)
�|S∗|2 ST

T ∗S∗ f (|T |) |T |
])

, j = 1,2, . . . ,n,

for S,T ∈ Mn . This implies for any unitarily invariant norm ‖·‖u on Mn ,

‖ST‖u � 1
2

∥∥∥∥
[(

Sg2 (|T ∗|)S∗
)
�|S∗|2 ST

T ∗S∗ f (|T |) |T |
]∥∥∥∥

u

.

It is shown in [4] that Lemma 6 is equivalent to the following: If A is self-adjoint,
B is positive, and ±A � B , then

s j (A) � s j (B⊕B)

for j = 1,2, . . . ,n . Thus, for S,T ∈ Mn , Corollary 5 gives

s j (R (S±T))

� 1
2
s j

(
|S|t′ + |S∗|2−t′ + |T |v′ + |T ∗|2−v′ ⊕ |S|t′ + |S∗|2−t′ + |T |v′ + |T ∗|2−v′

)
.

Letting t ′ = v′ = 1 and T = O , we get

s j (RS) � 1
2
s j (|S|+ |S∗|⊕ |S|+ |S∗|)

which is a known result [11, Theorem 6].
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COROLLARY 6. Let T1,T2,T3,T4 ∈ Mn and let f ,g : [0,∞) → [0,∞) be non-
negative continuous functions such that f (t)g(t) = t. Then for j = 1, · · · ,n,

s j (T1T2 ±T3T4)

� s j

(
T1g

2 (|T2
∗|)T1

∗�|T1
∗|2 +T3g

2 (|T4
∗|)T3

∗�|T3
∗|2 ⊕ f (|T2|) |T2|+ f (|T4|) |T4|

)
.

(22)
In particular, if S,T ∈ Mn , then for j = 1, · · · ,n,

s j (S± iT ) � s j (g(|S∗|)+g(|T ∗|)⊕ f (|S|) |S|+ f (|T |) |T |)
and

s j (S± iT ) � s j (|S∗|+ |T ∗|⊕ |S|+ |T |) .

Proof. If T1,T2,T3,T4 ∈ B(H ) , then by (19), we have[
T1g2 (|T2

∗|)T1
∗�|T1

∗|2 T1T2

T2
∗T1

∗ f (|T2|) |T2|
]

� O,

and [
T3g2 (|T4

∗|)T3
∗�|T3

∗|2 ±T3T4

±T4
∗T3

∗ f (|T4|) |T4|
]

� O.

Therefore,[
T1g2 (|T2

∗|)T1
∗�|T1

∗|2 +T3g2 (|T4
∗|)T3

∗�|T3
∗|2 T1T2 ±T3T4

T2
∗T1

∗ ±T4
∗T3

∗ f (|T2|) |T2|+ f (|T4|) |T4|
]

� O.

By Lemma 6, we get

s j (T1T2 ±T3T4)

� s j

(
T1g

2 (|T2
∗|)T1

∗�|T1
∗|2 +T3g

2 (|T4
∗|)T3

∗�|T3
∗|2 ⊕ f (|T2|) |T2|+ f (|T4|) |T4|

)
which proves (22).

For the other two inequalities, let T1 = T3 = I , T4 = iT , and T2 = S , in (22). Then

s j (S± iT ) � s j (g(|S∗|)+g(|T ∗|)⊕ f (|S|) |S|+ f (|T |) |T |) .

By letting f (t) = tμ and g(t) = t1−μ for 0 � μ � 1 in the latter inequality we obtain

s j (S± iT ) � s j

(
|S∗|1−μ + |T ∗|1−μ ⊕|S|1+μ + |T |1+μ

)
,

which implies the last required inequality by letting μ = 0. This completes the proof. �

REMARK 5. A related inequality to Corollary 6, in [2] it has been shown that for
positive semi-definite matrices S and T , one has

s j (S+ iT ) � s j (S+T) .
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3. Numerical radius inequalities

Theorem 6 can be utilized to obtain an upper bound for the numerical radius of the
product of two operators. An exciting application of the following result can be seen
in Remark 6 below. We remark that in recent years, a considerable research work is
devoted to numerical radius inequalities, as one can see in [5, 6, 13, 22, 26].

COROLLARY 7. Let S,T ∈B (H ) . If f ,g are non-negative continuous functions
on [0,∞) satisfying f (t)g(t) = t , (t � 0) , then

ω (ST ) � 1
2

∥∥∥Sg2 (|T ∗|)S∗�|S∗|2 + f (|T |) |T |
∥∥∥ .

In particular,

ω (ST ) � 1
2

∥∥∥S|T ∗|2(1−t)S∗�|S∗|2 + |T |1+t
∥∥∥ ,0 � t � 1. (23)

Proof. If we replace S by eiθ S , (θ ∈ R) , in (16), we get

R
(
eiθ ST

)
� Sg2 (|T ∗|)S∗�|S∗|2 + f (|T |) |T |

2
.

This operator inequality implies the following norm inequality

∥∥∥R(eiθ ST
)∥∥∥� 1

2

∥∥∥Sg2 (|T ∗|)S∗�|S∗|2 + f (|T |) |T |
∥∥∥ .

Now, the result follows by taking supremum over θ ∈ R , since [25]

sup
θ∈R

∥∥∥R(eiθ A
)∥∥∥= ω (A) .

The inequality (23) follows from the above inequality by taking g(x)= x1−t and f (x)=
xt with 0 � t � 1. �

REMARK 6. In this remark we explain the importance of Corollary 7, where we
retrieve two celebrated inequalities for the numerical radius. Thus, Corollary 7 is a gen-
eralized form that can be used to obtain several inequalities upon choosing appropriate
functions and parameters.

(i) The case t = 1 in the inequality (23), reduces to

ω (ST ) � 1
2

∥∥∥|S∗|2 + |T |2
∥∥∥ .

The above inequality has been given in [19].
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(ii) If we set S = I and t = 0 in the inequality (23), we get

ω (T ) � 1
2
‖|T |+ |T ∗|‖

which was proved in [17].

REMARK 7. It must be emphasized that inequality (23) provides a non-trivial es-
timates for the numerical radius of the product of two operators. To show this, we
recall that Kittaneh [19, Theorem 2] proved if Ti ∈ B (H ) , (i = 1,2, . . . ,6) , then for
any 0 � t � 1,

ω (T1T2T3 +T4T5T6) � 1
2

∥∥∥T1|T ∗
2 |2(1−t)T ∗

1 +T ∗
3 |T2|2tT3 +T4|T ∗

5 |2(1−t)T ∗
4 +T ∗

6 |T5|2tT6

∥∥∥ .
(24)

Setting T1 = S , T2 = T , T3 = I , and T5 = O , in (24). Therefore, we have

ω (ST) � 1
2

∥∥∥S|T ∗|2(1−t)S∗ + |T |2t
∥∥∥ . (25)

The case T1 = S , T2 = I , T3 = T , T5 = O , also implies

ω (ST ) � 1
2

∥∥∥|S∗|2 + |T |2
∥∥∥ . (26)

From the relations (25) and (26), we infer that

ω (ST ) � 1
4

∥∥∥S|T ∗|2(1−t)S∗+ |T |2t
∥∥∥+

1
4

∥∥∥|S∗|2 + |T |2
∥∥∥ . (27)

On the other hand, it follows from the inequality (23) that

ω (ST ) � 1
2

∥∥∥(S|T ∗|2(1−t)S∗�|S∗|2
)

+ |T |1+t
∥∥∥

=
1
2

∥∥∥(S|T ∗|2(1−t)S∗�|S∗|2
)

+
(
|T |2t�|T |2

)∥∥∥
� 1

2

∥∥∥(S|T ∗|2(1−t)S∗ + |T |2t
)

�
(
|S∗|2 + |T |2

)∥∥∥
(by [2, Corollary I. 2.1])

� 1
4

∥∥∥S|T ∗|2(1−t)S∗+ |T |2t + |S∗|2 + |T |2
∥∥∥

(by the operator arithmetic-geometric mean inequality)

� 1
4

∥∥∥S|T ∗|2(1−t)S∗+ |T |2t
∥∥∥+

1
4

∥∥∥|S∗|2 + |T |2
∥∥∥ .

Indeed our estimate (23) is a refinement of the inequality (27), obtained via Kittaneh
inequality (24).
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THEOREM 7. Let 0 < α � 1 � β . If T is (α,β ) -normal operator, then

1
2

max

{√
1+

1
β 2 ,
√

1+ α2

}
‖T‖ � ω (T ) . (28)

Proof. We have

1+ α2

2
‖T‖2 =

2
(
1+ α2

)
4

∥∥∥ |T |2 ∥∥∥
� 1

4

(∥∥∥(1+ α2) |T |2 +T 2 +(T ∗)2
∥∥∥+
∥∥∥(1+ α2) |T |2−(T 2 +(T ∗)2

)∥∥∥)
� 1

4

(∥∥∥|T |2 + |T ∗|2 +T 2 +(T ∗)2
∥∥∥+
∥∥∥|T |2 + |T ∗|2−

(
T 2 +(T ∗)2

)∥∥∥)

=

∥∥∥∥∥
(

T +T ∗

2

)2
∥∥∥∥∥+

∥∥∥∥∥
(

T −T ∗

2i

)2
∥∥∥∥∥

= ‖RT‖2 +‖I T‖2

� 2ω2 (T ) ,

where the triangle inequality for the usual operator norm implies the first inequality,
the second inequality is achieved because of the first inequality in (5), and the last
inequality is obtained from the fact that

|〈Tx,x〉| =
√
〈RTx,x〉2 + 〈I Tx,x〉2; x ∈ H ,‖x‖ = 1.

Consequently, √
1+ α2 1

2
‖T‖ � ω (T ) .

In the same way, one can show that√
1+

1
β 2

1
2
‖T‖ � ω (T ) .

Combining the above two inequalities implies the desired result (28). �

Of course, 1 � max
{√

1+ 1
β 2 ,

√
1+ α2

}
. Consequently, (28) improves consid-

erably the following well-known inequality for general operators

1
2
‖T‖ � ω (T ) . (29)

It is also interesting to note that in the case of the hyponormal operator (in the
sense that |T |2 � |T ∗|2 ), by applying the same method as in the above (in fact α = 1),
we get the following refinement of (29) for hyponormal operators

1√
2
‖T‖ � ω (T ) .
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We remark that the last inequality is known for accretive-dissipative operators, see
[21].

REMARK 8. We remark here that [12, (3.1)] should be written in the following
correct form (

1+ α2)‖T‖2 � 1
2

(
‖T +T∗‖2 +‖T −T ∗‖2

)
.
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