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MULTILINEAR OFF–DIAGONAL LIMITED RANGE EXTRAPOLATIONS

YASUO KOMORI-FURUYA

(Communicated by P. T. Perez)

Abstract. We study the Rubio de Francia’s extrapolation theorem. We prove an off-diagonal
limited range extrapolation theorem. Using this theorem, we obtain a multilinear off-diagonal
limited range extrapolation theorem. Our results generalize and refine known results by Duoandi-
koetxea (2011), Cruz-Uribe and Martel (2018) and Li, Martell and Ombrosi (2020).

Since Rubio de Francia [17, 18] proved the celebrated extrapolation theorem,
many studies have been done, The book [6] provides a comprehensive treatment of
extrapolation theory; see also [3] for latest results. The classical extrapolation theorem
says that if a linear operator T is bounded on weighted Lp0 space for some 1 < p0 < ∞
uniformly in weights in Ap0 :

ˆ
Rn

|T f (x)|p0 w(x)dx � C
ˆ

Rn
| f (x)|p0 w(x)dx for all w ∈ Ap0 ,

then T is bounded on weighted Lp spaces for all 1 < p < ∞ :
ˆ

Rn
|T f (x)|p w(x)dx � C

ˆ
Rn

| f (x)|p w(x)dx for all w ∈ Ap.

For the precise statement of the theorem, in particular, the meaning of “uniformly in
weights ”, see Section 3.

On the contrary, there are many important operators that are bounded only on Lp

where p− < p < p+ . Theories for these operators are called limited range extrapola-
tions [1], and ones for operators that are bounded from Lp to Lq are called off-diagonal
extrapolations [12, 2]. There are two theorems for off-diagonal limited range extrapo-
lations by Duoandikoetxea [8] and Cruz-Uribe and Martell [5]. We prove two theorems
in a unified manner (Theorem 1) and also refine them.

Since the ceminal work by Lacey and Thiele [14, 15] for Calderón’s conjecture
about the bilinear Hilbert transform, many studies have been done for bilinear and
multilinear operators. A multilinear diagonal limited range extrapolation theorem is
obtained by Li, Martell and Ombrosi [16], see also [5, 8, 11]. By using Theorem 1, we
prove a multilinear off-diagonal limited range extrapolation theorem. As a corollary we
can prove their theorem. Furthermore our theorem generalizes theirs. For the simplicity
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of notation we consider bilinear cases (Theorem 2 in Section 5) . In the final section we
shall state a multilinear theorem and show an outline of the proof.

This paper is organized as follows. In Section 2 we define notation and symbols
which are used for linear extrapolation theorems. In Section 3 we state Theorem 1 and
as corollaries we prove some known results and refine them. In Section 4 we shall
prove Theorem 1. In Section 5 we consider bilinear extrapolation theorems and prove
Theorem 2. In Section 6 we state a multilinear extrapolation theorem.

1. Preliminaries

For elementary properties about weight functions, see [9, 10], and see [6] about
extrapolation theorems. We define some notation. For a nonnegative locally integrable
function w ,

Lp(w) :=
{

f ;‖ f‖Lp(w) :=
(ˆ

Rn
| f (x)|pw(x)dx

)1/p

< ∞
}
.

When 1 < p < ∞ , p′ = p
p−1 is the conjugate exponent of p . We use the conventions

that 1′ = ∞ , 1
∞ = 0 and ∞′ = 1. For a ball Q , |Q| denotes the volume of Q .

DEFINITION 1. 
Q

w(x)dx :=
1
|Q|

ˆ
Q

w(x)dx and w(Q) :=
ˆ

Q
w(x)dx.

We define some weight classes.

DEFINITION 2. Let 1 < p < ∞ . For a nonnegative locally integrable function w ,
we say that w ∈ Ap if

[w]Ap := sup
Q

( 
Q

w(x)dx

)( 
Q

w(x)−1/(p−1) dx

)p−1

< ∞,

where the supremum is taken over all balls. We say that w ∈ A1 if

[w]A1 := sup
Q

( 
Q

w(x)dx

)
esssup

x∈Q
w−1(x) < ∞.

Let 1 < α < ∞ and 0 < β < ∞. We say that w ∈ A(α;β ) if

[w]A(α ;β ) := sup
Q

( 
Q

w(x)β dx

)1/β ( 
Q

w(x)−α ′
dx

)1/α ′

< ∞,

and

[w]A(1;β ) := sup
Q

( 
Q

w(x)β dx

)1/β
esssup

x∈Q
w−1(x).



MULTILINEAR OFF-DIAGONAL LIMITED RANGE EXTRAPOLATIONS 467

The symbol A(α;β ) is unfamiliar compared to the standard symbol Ap,r . How-
ever using this symbol, we can state Corollary 1 (a linear case) and Theorem 2 (a
bilinear case) in a unified manner.

The next lemma is easily obtained by the definitions.

LEMMA 1. Let 1 < p < ∞ , 1 � α < ∞ and 0 < β < ∞ . A weight w ∈ Ap if and

only if w
1

1−p ∈ Ap′ and

[w1/(1−p)]Ap′ = [w]p
′−1

Ap
.

A weight w ∈ A(α;β ) if and only if wβ ∈ A1+β/α ′ and

[w]βA(α ;β ) = [wβ ]A1+β/α′ .

The following two lemmas are very important for the extrapolation theorem, see
[6] and [8].

LEMMA 2. ([8, Lemma 2.1]) Let 1 � p < p0 < ∞ . If u ∈ Ap and v ∈ A1 , then
u · vp−p0 ∈ Ap0 and

[u · vp−p0]Ap0
� [u]Ap [v]

p0−p
A1

.

Let 1 � p0 < p < ∞ . If u ∈ Ap and v ∈ A1 , then
(
up0−1 · vp−p0

)1/(p−1) ∈ Ap0 and[(
up0−1 · vp−p0

)1/(p−1)
]
Ap0

� [u](p0−1)/(p−1)
Ap

[v](p−p0)/(p−1)
A1

.

LEMMA 3. ([6, p. 18]) Let 1 < p < ∞ , H � 0 and H ∈ Lp(w) where w ∈ Ap . By
the Rubio de Francia algorithm, we can make the function RH(x) such that

H(x) � RH(x)a.e., ‖RH‖Lp(w) � 2‖H‖Lp(w) and [RH]A1 � C([w]Ap),

where C([w]Ap) is a positive constant depending only on [w]Ap .

We use the following notation: C(X ,Y ) is a positive constant depending only on
X and Y , and not necessarily same at each occurrence. In this paper we use symbols
C([w]Ap) and C([w]A(α ;β )) frequently.

2. Linear extrapolations

By the studies in [4, 7], we know that operators do not play a role in extrapolation
theorems, see also [6]. Following the notation in [8], we state our theorems.

THEOREM 1. Let 0 < p,q < ∞ , 1 � α < ∞ and 0 < β < ∞ . Assume that for
some family of pairs of nonnegative functions ( f ,g) , and for all weights w such that
wβ ∈ Aα , (ˆ

Rn
gqwq dx

)1/q

� C([wβ ]Aα )
(ˆ

Rn
f pwp dx

)1/p

.
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Then (ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

for all weights w such that wβ̃ ∈ Aα̃ , where

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1

β̃
− 1

β
, α̃ > 1, β̃ > 0, (1)

α̃
β̃

=
α
β

, (2)

max

(
1
p
− 1

q
,
1
p
− 1

β

)
<

1
p̃

<
1
p
− 1

β
+

α
β

. (3)

REMARKS . The limited range (3) is necessary for the existence of 0 < q̃ < ∞ ,
α̃ > 1 and β̃ > 0. When max(1/p− 1/q,1/p− 1/β ) � 0, the first inequality in (3)
means p̃ < ∞ . When α = 1, the second inequality in (3) means p̃ > p .

It may be natural to write initial condition by using indices p0 and q0 . However,
when we consider bilinear cases in Section 5, we use many subscripts p1, p2, . . . , so we
use p̃ in that section. We use this notation from consistency.

We state some corollaries of this theorem. We shall prove them later.
The next corollary shows the beautiful correspondence between the linear theorem

(Corollary 1) and the bilinear theorem (Theorem 2 in Section 5).

COROLLARY 1. Let 0 < p,q < ∞ , 1 � α < ∞ and 0 < β < ∞ . Assume that for
some family of pairs of nonnegative functions ( f ,g) , and for all weights w ∈ A(α;β ) ,(ˆ

Rn
gqwq dx

)1/q

� C([w]A(α ;β ))
(ˆ

Rn
f pwp dx

)1/p

. (4)

Then (ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([w]
A(α̃ ;β̃ ))

(ˆ
Rn

f p̃wp̃ dx

)1/ p̃

for all weights w ∈ A(α̃; β̃ ) , where α̃ > 1 , β̃ > 0 and

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1
α̃
− 1

α
=

1

β̃
− 1

β
, (5)

max

(
1
p
− 1

q
,
1
p
− 1

α
,
1
p
− 1

β

)
<

1
p̃

<
1
p
− 1

α
+1. (6)

REMARK . The condition (6) is necessary for 0 < q̃ < ∞ , α̃ > 1 and β̃ > 0.

We obtain three theorems by Duoandikoetxea [8] and Cruz-Uribe and Martell [5],
and also refine their theorems.
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THEOREM A. ([8, Theorem 5.1]) Let 1 � p < ∞ and 0 < q,r < ∞ . Assume that
for some family of pairs of nonnegative functions ( f ,g) , and for all weights w∈A(p;r) ,(ˆ

Rn
gqwq dx

)1/q

� C([w]A(p;r))
(ˆ

Rn
f pwp dx

)1/p

.

Then (ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([w]A( p̃;r̃))
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

for all weights w ∈ A(p̃; r̃) , where 0 < q̃, r̃ < ∞ and

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1
r̃
− 1

r
, (7)

1
p
− 1

r
<

1
p̃

< 1. (8)

REMARKS . The condition (8) is not explicitly written in [8], but this condition is
necessary for r̃ > 0. Under this formulation, the condition p � 1 is necessary, since
A(p;r) is defined for p � 1. Compare this theorem with Corollary 1.

THEOREM B. ([8, Theorem 7.1]) Let 0 < p < ∞ , 1 � q < ∞ and β � 1 . Assume
that for some family of pairs of nonnegative functions ( f ,g) , and for all weights w such
that wβ ∈ Aq , (ˆ

Rn
gpwdx

)1/p

� C([wβ ]Aq)
(ˆ

Rn
f pwdx

)1/p

.

Then (ˆ
Rn

gp̃wdx

)1/ p̃

� C([wβ̃ ]Aq̃
)
(ˆ

Rn
f p̃wdx

)1/ p̃

for all weights w such that wβ̃ ∈ Aq̃ where 1 < q̃ < ∞ ,

1
p̃
− 1

p
=

1

β̃ p̃
− 1

β p
(9)

β̃ p̃
q̃

=
β p
q

,

1
p
− 1

β p
<

1
p̃

<
1
p
− 1

β p
+

q
β p

. (10)

REMARKS . In [8], the condition (9) is written as q/q̃−1 = β (p/ p̃−1) . We can
remove the condition β � 1. When β < 1, the left side of (10) means p̃ > 0. See the
proof below.

To state the next theorem, we need a new definition.
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DEFINITION 3. Let 1 < s < ∞ . We say that w ∈ RHs if

[w]RHs := sup
Q

(ffl
Q ws dx

)1/s

ffl
Q wdx

< ∞.

THEOREM C. ([5, Theorem 1.8]) Given 0 < p− < p+ � ∞ . Let 0 < p,q < ∞ ,
p− � p < p+ and 1/q− 1/p+ 1/p+ � 0 . Assume that for all weights w such that
wp ∈ Ap/p− ∩RH(p+/p)′ ,(ˆ

Rn
gqwq dx

)1/q

� C([wp]Ap/p− , [wp]RH(p+/p)′ )
(ˆ

Rn
f pwp dx

)1/p

.

Then (ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([wp̃]Ap̃/p− , [wp̃]RH(p+/ p̃)′ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

for all weights w such that wp̃ ∈ Ap̃/p− ∩RH(p+/ p̃)′ , where p− < p̃ < p+ , 0 < q̃ < ∞
and 1/ p̃−1/q̃ = 1/p−1/q.

When p+ = ∞ , the condition wp ∈ Ap/p− ∩RH(p+/p)′ is wp ∈ Ap/p− .

REMARKS . We can remove the condition 1/q−1/p+1/p+ � 0. In [5], the lim-
ited range (p−, p+) is defined first, and the proof is long. In our theorem, the limited
range is determined by the initial conditions for indices p,q,α and β , see (3).

In [5], the theorem is proved even when p− = 0 or p = p+ . However, in these
cases, they are proved independently. We do not know how to prove them in a uniform
way, since the classes A∞ and RH∞ are different from Ap and RHs .

In [1, Theorem 4.9], this theorem is prove where p = q .

Now we prove corollaries of Theorem 1.

Proof of Corollary 1. Assume that (4) holds and indices satisfy (5) and (6). By
Lemma 1, we have(ˆ

Rn
gqwq dx

)1/q

� C([wβ ]A1+β/α′

(ˆ
Rn

f pwp dx

)1/p

.

By (5) and (6)

β̃
1+ β̃/α̃ ′ =

β
1+ β/α ′ , (11)

and

max

(
1
p
− 1

q
,
1
p
− 1

β

)
<

1
p̃

<
1
p
− 1

β
+

1+ β/α ′

β
.
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Applying Theorem 1, we have(ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([wβ̃ ]A
1+β̃/α̃′

(ˆ
Rn

f p̃wp̃ dx

)1/ p̃

,

and we obtain(ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([w]
A(α̃ ,β̃ ))

(ˆ
Rn

f pwp̃ dx

)1/ p̃

. �

In Theorems A, B and C, the condition 0 < q̃ < ∞ is assumed, that is, 1/ p̃−1/p+
1/q > 0. Therefore we use Theorem 1 under the following conditions:

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1

β̃
− 1

β
, 0 < q̃ < ∞, α̃ > 1, β̃ > 0, (1′)

α̃
β̃

=
α
β

,

1
p
− 1

β
<

1
p̃

<
1
p
− 1

β
+

α
β

. (3′)

Proof of Theorem A. If w ∈ A(p;r) then wr ∈ A1+r/p′ by Lemma 1. When p =
1,w ∈ A1 . Let α = 1 + r/p′ and β = r in Theorem 1. Then for any w such that

wβ̃ ∈ Aα̃ , (ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

,

where

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1

β̃
− 1

r
,

α̃
β̃

− 1+ r/p′

r
,

1
p
− 1

r
<

1
p̃

<
1
p
− 1

r
+

1+ r/p′

r
= 1.

By (7) we can take β̃ = r̃ . Then

α̃ = β̃
(

1
r

+
1
p′

)
= β̃

(
− 1

p̃
+

1
p

+
1

β̃
+

1
p′

)

= 1+
β̃

(p̃)′
= 1+

r̃
(p̃)′

.
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Therefore we obtain by Lemma 1(ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([w]A( p̃;r̃))
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

for all weights w ∈ A(p̃; r̃) . �

Proof of Theorem B. We do not use the condition β � 1. The assumption of the
theorem is written as follows.(ˆ

Rn
gp(w1/p)p dx

)1/p

� C([wβ ]Aq)
(ˆ

Rn
f p(w1/p)p dx

)1/p

,

and (ˆ
Rn

gpvp dx

)1/p

� C([vβ p]Aq)
(ˆ

Rn
f pvp dx

)1/p

.

By Theorem 1, we have(ˆ
Rn

gp̃vp̃ dx

)1/ p̃

� C([vβ̃ ]Aq̃
)
(ˆ

Rn
f p̃vp̃ dx

)1/ p̃

, (12)

where

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1

β̃
− 1

β p
,

q̃

β̃
=

q
β p

1
p
− 1

β p
<

1
p̃

<
1
p
− 1

β p
+

q
β p

.

We write (12) as (ˆ
Rn

gp̃wdx

)1/ p̃

� C([wβ̃/ p̃]Aq̃
)
(ˆ

Rn
f p̃wdx

)1/ p̃

(13)

and substituting β̃ for β̃
p̃ in (13), we have(ˆ

Rn
gp̃wdx

)1/ p̃

� C([wβ̃ ]Aq̃
)
(ˆ

Rn
f p̃wdx

)1/ p̃

,

where

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1

β̃ p̃
− 1

β p
,

β̃ p̃
q̃

=
β p
q

1
p
− 1

β p
<

1
p̃

<
1
p
− 1

β p
+

q
β p

. �
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To prove Theorem C, we need some lemmas.

LEMMA 4. ([13, (P6)], see also [5, Lemma 2.1]) Let 1 � r < ∞ and 1 � s < ∞.
Then w ∈ Ar ∩RHs if and only if ws ∈ A1+s(r−1) and

[ws]A1+s(r−1) � [w]sAr
[w]sRHs

, [w]Ar � [ws]1/s
A1+s(r−1)

and [w]RHs � [ws]1/s
A1+s(r−1)

.

The next lemma is elementary.

LEMMA 5. Let p− � r < p+ . Then the indices defined above satisfy the following
equalities.

r
( p+

r

)′
=

r · p+

p+− r
,

1+
( p+

r

)′( r
p−

−1

)
=

r(p+ − p−)
p−(p+− r)

By these lemmas we obtain the following lemma.

LEMMA 6. Let p− � r < p+ . Then wr ∈ Ar/p− ∩RH(p+/r)′ if and only if wβ ∈ Aα
where

α =
r(p+ − p−)
p−(p+− r)

and β =
r · p+

p+− r
.

Proof of Theorem C. We do not use the condition 1/q−1/p+1/p+ � 0.
Case p+ < ∞ . Let

α =
p(p+− p−)
p−(p+− p)

, and β =
p · p+

p+ − p
.

If wp ∈ Ap/p− ∩RH(p+/p)′ then wβ ∈ Aα by Lemma 6. Using Theorem 1, we have for

all w such that wβ̃ ∈ Aα̃ ,(ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

,

where

1
p̃
− 1

p
=

1
q̃
− 1

q
=

1

β̃
− 1

β
, 0 < q̃ < ∞, α̃ > 1, β̃ > 0 (14)

α̃
β̃

=
α
β

(15)

1
p
− 1

β
<

1
p̃

<
1
p
− 1

β
+

α
β

(16)
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The condition (16) is equivalent to

1
p+

<
1
p̃

<
1
p−

.

By (14),
1
p̃
− 1

p
=

1

β̃
− p+− p

p · p+
.

We have

β̃ =
p̃ · p+

p+− p̃
.

By (15),

α̃ = β̃
(

1
p−

− 1
p+

)
=

p̃(p+ − p−)
p−(p+− p̃)

> 1.

Therefore by Lemma 6, the condition wβ̃ ∈ Aα̃ is equivalent to

wp̃ ∈ Ap̃/p− ∩RH(p+/ p̃)′ .

Case p+ = ∞ . Since wp ∈ Ap/p− . We can apply Theorem 1 for α = p/p− ,

β = p , α̃ = p̃/p− and β̃ = p̃ . The limited range is

1
p
− 1

p
<

1
p̃

<
1
p
− 1

p
+

p/p−
p

.

We obtain
p− < p̃ < ∞ = p+.

This proves Theorem C. �

3. Proof of Theorem 1

The following lemma is elementary but important for our proof. Assume that all
indices satisfy (1), (2) and (3).

LEMMA 7. Let 1/s = 1− q̃/q and 1/t = 1− p/ p̃ . Then the indices defined
above satisfy the following equalities.(

p̃
p
−1

)
α̃β

α̃ −α
= p̃, (17)(

p̃
p
− β̃

β

)
α̃β

α̃ −α
+ β̃ = p̃, (18)

(α − α̃)q̃s
β

= α̃, (19)
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1− β̃

β

)
q̃s = β̃ . (20)

α̃ ′(q̃−q)
q̃

=
(α̃ −α)q
(α̃ −1)β

, (21)(
β̃

1− α̃
− q̃

)
q̃−q

q̃
+ q̃ =

(α −1)β̃q
(α̃ −1)β

, (22)

(α̃ −α)pt
(α̃ −1)β

= α̃ ′, (23)(
(α −1)β̃ p
(α̃ −1)β

− p

)
t =

β̃
1− α̃

. (24)

Proof. We shall prove only (18), (22) and (24). The proofs for the others are easy.
The equality (18) is equivalent to the following:

p̃
p
− β̃

β
+

(α̃ −α)β̃
α̃β

=
p̃(α̃ −α)

α̃β
,

p̃
p
− β̃

β
+

(
1− β

β̃

)
β̃
β

=
p̃
β

(
1− β

β̃

)
,

and the last equality is easily proved.
The equality (22) is written as follows.

β̃
1− α̃

q̃−q
q̃

+q =
(α −1)β̃q
(α̃ −1)β

,

β̃
(

1
q̃
− 1

q

)
+ α̃ −1 =

β̃
β

(α −1),

β̃

(
1

β̃
− 1

β

)
+ α̃ −1 =

β̃
β

(α −1).

We can prove the last equality easily.
We write (24) as

(α −1)β̃
β

− α̃ +1 = −β̃
(

1
p
− 1

p̃

)
,

(α −1)β̃
β

− α̃ +1 = −β̃

(
1
β
− 1

β̃

)
.

This is easily proved. �
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Proof of Theorem 1. We follow the argument in [8, p. 1894].

Case p̃ < p. Assume that wβ̃ ∈ Aα̃ and f ∈ Lp̃(wp̃) . Let

H(x) :=
(

f (x)
p̃
p−1w(x)

p̃
p− β̃

β

)β/(α̃−α)

.

By (17) and (18),

H(x)α̃w(x)β̃ = f (x) p̃w(x) p̃ and H ∈ Lα̃(wβ̃ ).

Using Lemma 3 we can make the function RH(x) such that

H(x) � RH(x), ‖RH‖
Lα̃(wβ̃ )

� 2‖H‖
Lα̃(wβ̃ )

and [RH]A1 � C([wβ̃ ]Aα̃ ).

Let

V (x) := w(x)
β̃
β RH(x)

α̃−α
β .

By Lemma 2, we have [V β ]Aα � C([wβ̃ ]Aα̃ ) . Since q̃ < q , we write(ˆ
Rn

gq̃wq̃ dx

)1/q̃

=
(ˆ

Rn
gq̃V q̃ ·V−q̃wq̃ dx

)1/q̃

�
(ˆ

Rn
gqVq dx

)1/q(ˆ
Rn

(
V−q̃wq̃)s dx

)1/sq̃

=: I1/q · II1/sq̃,

where 1/s = 1− q̃/q . By the assumption

I1/q � C([V β ]Aα )
(ˆ

Rn
f pV p dx

)1/p

� C([wβ̃ ]Aα̃ )
(ˆ

Rn
f pV p dx

)1/p

.

Since α̃ < α , we have

f (x)pV (x)p = f (x)pw(x)
β̃ p
β (RH)

(α̃−α)p
β � f (x)pw(x)

β̃ p
β H(x)

(α̃−α)p
β = f (x) p̃w(x) p̃.

Therefore we obtain

I1/q � C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/p

. (25)

By (19) and (20)

(V (x)−q̃w(x)q̃)s =
(
w(x)−

β̃
β (RH(x))

α−α̃
β
)q̃s = (RH(x))α̃w(x)β̃ ,
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and we have

II =
ˆ

Rn
(RH)α̃wβ̃ dx � 2α̃

ˆ
Rn

H α̃wβ̃ dx = 2α̃
ˆ

Rn
f p̃wp̃ dx. (26)

By (25) and (26), we obtain(ˆ
Rn

gq̃wq̃ dx

)1/q̃

� C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/p+1/sq̃

= C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

.

Case p < p̃ . Assume that wβ̃ ∈ Aα̃ . By duality, we can take a nonnegative
function h such that (ˆ

Rn
gq̃wq̃ dx

) 1
q̃

=
(ˆ

Rn
gqhwq̃ dx

)1/q

(27)

and ˆ
Rn

h
q̃

q̃−q wq̃ dx = 1.

Let

H(x) :=
(

h(x)
q̃

q̃−q w(x)q̃− β̃
1−α̃

)1/α̃ ′

.

Then

H(x)α̃ ′
w(x)

β̃
1−α̃ = h(x)

q̃
q̃−q w(x)q̃

and ˆ
Rn

H α̃ ′
w

β̃
1−α̃ dx = 1. (28)

By Lemma 1 we have w(x)β̃/(1−α̃) ∈ Aα̃ ′ . Using Lemma 3, we can make the function
RH(x) such that

H(x) � RH(x), ‖RH‖
Lα̃′ (wβ̃/(1−α̃))

� 2‖H‖
Lα̃′ (wβ̃/(1−α̃))

= 2

and
[RH]A1 � C([wβ̃/(1−α̃)]Aα̃′ ) � C([wβ̃ ]Aα̃ ).

Since q̃ > q , by the definition of H we have

h(x) =
(

H(x)α̃ ′
w(x)

β̃
1−α̃ −q̃

)(q̃−q)/q̃

�
(

RH(x)α̃ ′
w(x)

β̃
1−α̃ −q̃

)(q̃−q)/q̃

.
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By (27), (21) and (22), we have(ˆ
Rn

gq̃wq̃ dx

) 1
q̃

�
(ˆ

Rn
gq
(

(RH)α̃ ′
w

β̃
1−α̃ −q̃

)(q̃−q)/q̃

wq̃ dx

)1/q

=
(ˆ

Rn
gq
(
wβ̃ (α−1)(RH)α̃−α

)q/(α̃−1)β
dx

)1/q

.

Let

V (x) :=
(
w(x)β̃ (α−1)RH(x)α̃−α

)1/(α̃−1)β
.

Since α̃ > α , we have V β ∈ Aα and [V β ]Aα � C([wβ̃ ]Aα̃ ) by Lemma 2. Let 1/t =
1− p/ p̃. By the assumption and (23), (24) and (28), we have(ˆ

Rn
gq̃wq̃ dx

)1/q̃

�
(ˆ

Rn
gqVq dx

)1/q

� C([V β ]Aα )
(ˆ

Rn
f pV p dx

)1/p

�C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p
(
wβ̃ (α−1)(RH)α̃−α

)p/(α̃−1)β
dx

)1/p

=C([wβ̃ ]Aα̃ )

(ˆ
Rn

f pwp · (RH)
(α̃−α)p
(α̃−1)β w

β̃ (α−1)p
β(α̃−1) −p

dx

)1/p

�C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃
(ˆ

Rn
(RH)

(α̃−α)pt
(α̃−1)β w

(
β̃(α−1)p
β(α̃−1) −p

)
t
dx

)1/pt

=C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃(ˆ
Rn

(RH)α̃ ′
w

β̃
1−α̃ dx

)1/pt

�C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃(ˆ
Rn

H α̃ ′
w

β̃
1−α̃ dx

)1/pt

=C([wβ̃ ]Aα̃ )
(ˆ

Rn
f p̃wp̃ dx

)1/ p̃

. �

4. Bilinear extrapolations

We defne a new weight class.

DEFINITION 4. Let α1,α2 � 1 and β > 0. For a pair of weights w1 and w2 , we
say (w1,w2) ∈ A(α1,α2;β ) if

[(w1,w2)]A(α1,α2;β ) := sup
Q

( 
Q

(
w1(x)w2(x)

)β
dx

)1/β 2

∏
i=1

( 
Q

wi(x)−α ′
i dx

)1/α ′
i

< ∞.

When αi = 1,
(ffl

Q wi(x)−α ′
i dx
)1/α ′

i
:= esssupx∈Q wi(x)−1.
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Statements of bilinear extrapolations are a little complicated, so we use the fol-
lowing notation for short.

DEFINITION 5. If some family of 3-tuple of nonnegative functions ( f1, f2,g) sat-
isfies the next inequalities:

(ˆ
Rn

gq(w1w2)q dx

)1/q

� C([(w1,w2)]A(α1,α2;β ))
(ˆ

Rn
f p1
1 wp1

1 dx

)1/p1
(ˆ

Rn
f p2
2 wp2

2 dx

)1/p2

for all (w1,w2) ∈ A(α1,α2;β ) , then we say

( f1, f2,g) satisfies weighted Lp1 ×Lp2 → Lq for A(α1,α2;β ).

Our result is the following.

THEOREM 2. Let p1, p2,q > 0 , α1,α2 � 1 and β > 0 . If

( f1, f2,g) satisfies weighted Lp1 ×Lp2 → Lq for A(α1,α2;β ),

then

( f1, f2,g) satisfies weighted Lp̃1 ×Lp̃2 → Lq̃ for A(α̃1, α̃2; β̃ ),

where p̃1, p̃2, q̃ > 0 , α̃1, α̃2 > 1 , β̃ > 0 and

1
p̃i

− 1
pi

=
1
α̃i

− 1
αi

i = 1,2, (29)

1
q̃
− 1

q
=

2

∑
i=1

(
1
p̃i

− 1
pi

)
=

1

β̃
− 1

β
, (30)

1
pi

− 1
αi

<
1
p̃i

<
1
pi

− 1
αi

+1 i = 1,2, (31)

max

(
2

∑
i=1

1
pi

− 1
q
,

2

∑
i=1

1
pi

− 1
β

)
<

2

∑
i=1

1
p̃i

. (32)

REMARKS . When 1/pi − 1/αi � 0 in (31), this means p̃i < ∞ . The condition
(31) is necessary for 1 < α̃i < ∞ and (32) is necessary for q̃ > 0 and β̃ > 0.

As a corollary we can prove the diagonal extrapolation theorem by Li, Martell and
Ombrosi [16]. Note that they prove a multilinear extrapolation theorem. We restate
their theorem for the bilinear case. Let 1 � r1 � p1 < ∞ , 1 � r2 � p2 < ∞ , 1 � r3 < ∞
and r′3 > p1p2/(p1+ p2) be fixed, and let 1/p := 1/p1+1/p2. We define a new weight
class.
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DEFINITION 6.

[(w1,w2)]A(p1,p2;r1,r2,r3)

:= sup
Q

( 
Q

(
w1/p1

1 w1/p2
2

) pr′3
r′3−p

)1/p−1/r′3 2

∏
i=1

( 
Q
(w1/pi

i )
−piri
pi−ri

)1/ri−1/pi

.

THEOREM D. (Theorem 1.1 in [5]) If

(ˆ
Rn

gp (w1/p1
1 w1/p2

2

)p
dx

)1/p

� C([(w1,w2)]A(p1,p2;r1,r2,r3))
(ˆ

Rn
f p1
1 w1 dx

)1/p1
(ˆ

Rn
f p2
2 w2 dx

)1/p2

(33)

for all weights w such that [(w1,w2)]A(p1,p2;r1,r2,r3) < ∞ , then

(ˆ
Rn

gp̃ (w1/ p̃1
1 w1/ p̃2

2

) p̃
dx

)1/q

� C([(w1,w2)]A( p̃1, p̃2;r1,r2,r3))
(ˆ

Rn
f p̃1
1 w1 dx

)1/ p̃1
(ˆ

Rn
f p̃2
2 w2 dx

)1/ p̃2

(34)

for all weights w such that [(w1,w2)]A( p̃1, p̃2;r1,r2,r3) < ∞ , where 1 � p̃1, p̃2 < ∞ , 1/ p̃ =
1/ p̃1 +1/ p̃2 and

r1 < p̃1, r2 < p̃2, r′3 >
p̃1 p̃2

p̃1 + p̃2
. (35)

REMARK . This theorem assumes that 1 � ri � pi and 1 � p̃i (i = 1,2) . We can
weaken this condition as follows.

0 � 1
ri
− 1

pi
< 1 and 0 � 1

ri
− 1

p̃i
< 1, see the proof below.

Proof of Theorem D. Assume that indices satisfy 1/ p̃ = 1/ p̃1 + 1/ p̃2 and (35).
As in the proof of Theorem B, we rewrite (33) as follows.

(ˆ
Rn

gp (v1v2)pdx

)1/p

� C([(vp1
1 ,vp2

2 )]A(p1,p2;r1,r2,r3))
(ˆ

Rn
f p1
1 vp1

1 dx

)1/p1
(ˆ

Rn
f p2
2 vp2

2 dx

)1/p2

.

We define αi and β as

α ′
i =

piri

pi − ri
and β =

pr′3
r′3− p

.
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Note that if r3 = 1 we define β = p . Then

[(vp1
1 ,vp2

2 )]A(p1,p2;r1,r2,r3) = [(v1,v2)]A(α1,α2;β )

and we have(ˆ
Rn

gp (v1v2)pdx

)1/p

� C([(v1,v2)]A(α1,α2;β ))
(ˆ

Rn
f p1
1 vp1

1 dx

)1/p1
(ˆ

Rn
f p2
2 vp2

2 dx

)1/p2

.

Let
1
α̃i

=
1
p̃i

− 1
pi

+
1
αi

,
1

β̃
=

1
p̃
− 1

p
+

1
β

, q = p and q̃ = p̃.

Then all indices satisfy the assumption of Theorem 2 and we have(ˆ
Rn

gp̃ (v1v2) p̃dx

)1/ p̃

� C([(v1,v2)]A(α̃1,α̃2;β̃ ))
(ˆ

Rn
f p̃1
1 vp̃1

1 dx

)1/ p̃1
(ˆ

Rn
f p̃2
2 vp̃2

2 dx

)1/ p̃2

.

Since

α̃ ′
i =

p̃iri

p̃i− ri
and β̃ =

p̃r′3
r′3 − p̃

,

we obtain (34) by the same argument above. �

4.1. Proof of Theorem 2

By the method of freezing one parameter, we can reduce the proof of Theorem 2
to the following theorem, see [16] Section 4.

THEOREM 3. If

( f1, f2,g) satisfies weighted Lp1 ×Lp2 → Lq for A(a,b;c),

then

(i) ( f1, f2,g) satisfies weighted Lp1 ×Lp̃2 → Lq̃2 for A(a, b̃; c̃2)

where b̃ > 1 and

1
p̃2

− 1
p2

=
1
q̃2

− 1
q

=
1

b̃
− 1

b
=

1
c̃2

− 1
c
,

max

(
1
p2

− 1
q
,

1
p2

− 1
b
,

1
p2

− 1
c
,

)
<

1
p̃2

<
1
p2

− 1
b

+1,
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and

(ii) ( f1, f2,g) satisfies weighted Lp̃1 ×Lp2 → Lq̃1 for A(ã,b; c̃1)

where ã > 1 and

1
p̃1

− 1
p1

=
1
q̃1

− 1
q

=
1
ã
− 1

a
=

1
c̃1

− 1
c
,

max

(
1
p1

− 1
q
,

1
p1

− 1
a
,

1
p1

− 1
c
,

)
<

1
p̃1

<
1
p1

− 1
a

+1.

REMARK . We prove Theorem 2 by using Theorem 3. We shall prove Thereom 3
in the next subsection. The notation A(a,b;c) is not standard, but we substitute several
indices into a,b and c in the proof of Theorem 2.

To prove Theorem 2, we need a lemma. Assume that all indices satisfy (29)–(32).

LEMMA 8. When β < q,

1
p1

− 1
q

<
1
p̃1

or
1
p2

− 1
q

<
1
p̃2

. (36)

When β � q,
1
p1

− 1
β

<
1
p̃1

or
1
p2

− 1
β

<
1
p̃2

. (37)

Proof. When β < q , assume that both inequalities in (36) do not hold, then

1
q
− 1

q̃
=

1
p1

− 1
p̃1

+
1
p2

− 1
p̃2

� 2
q
.

Therefore −1/q̃ � 1/q. This is a contradiction. The proof for the case β � q is the
same. �

Proof of Theorem 2 by using Theorem 3. Let β < q . Taking account of Lemma 8,
we assume that 1/p1−1/q < 1/ p̃1 . We define auxiliary indices q̃1 and β̃1 as follows.

1
q̃1

:=
1
p̃1

− 1
p1

+
1
q

> 0,
1

β̃1

:=
1

α̃1
− 1

α1
+

1
β

> 0.

Then
1
p̃1

− 1
p1

=
1
q̃1

− 1
q

=
1

α̃1
− 1

α1
=

1

β̃1

− 1
β

and

max

(
1
p1

− 1
q
,

1
p1

− 1
α1

,
1
p1

− 1
β

)
<

1
p̃1

<
1
p1

− 1
α1

+1.



MULTILINEAR OFF-DIAGONAL LIMITED RANGE EXTRAPOLATIONS 483

Applying Theorem 3 (ii) for a = α1 , ã = α̃1 , b = α2 , c = β and c̃1 = β̃1 ,

( f1, f2,g) satisfies weighted Lp̃1 ×Lp2 → Lq̃1 for A(α̃1,α2; β̃1).

By the definitions of indices, we have

1
p̃2

− 1
p2

=
1
q̃
− 1

q̃1
=

1
α̃2

− 1
α2

=
1

β̃
− 1

β̃1

and

max

(
1
p2

− 1
q̃1

,
1
p2

− 1
α2

,
1
p2

− 1

β̃1

)
<

1
p̃2

<
1
p2

− 1
α2

+1.

Therefore we can apply Theorem 3 (i) for a = α̃1 , b = α2 , b̃ = α̃2 , c = β̃1 , c̃2 = β̃ ,
q = q̃1 and q̃2 = q̃ , and have that

( f1, f2,g) satisfies weighted Lp̃1 ×Lp̃2 → Lq̃ for A(α̃1, α̃2; β̃ ).

The proofs for the cases 1/p2−1/q < 1/ p̃2 and β � q are similar. �

4.2. Proof of Theorem 3

Now return back to the standard notation and we shall prove (i) for the following
formula. The proof of (ii) is the same.

THEOREM 3’ . If

( f1, f2,g) satisfies weighted Lp1 ×Lp2 → Lq for A(α1,α2;β ),

then

(i) ( f1, f2,g) satisfies weighted Lp1 ×Lp̃2 → Lq̃2 for A(α1, α̃2; β̃ )

where α̃2 > 1 and

1
p̃2

− 1
p2

=
1
q̃
− 1

q
=

1
α̃2

− 1
α2

=
1

β̃
− 1

β
, (38)

max

(
1
p2

− 1
q
,

1
p2

− 1
α2

,
1
p2

− 1
β

,

)
<

1
p̃2

<
1
p2

− 1
α2

+1.

For the proof we define a new weight class.

DEFINITION 7. Let μ be a measure on R
n . When p > 1, we say that w∈Ap(dμ)

if

[w]Ap(dμ) := sup
Q

(
1

μ(Q)

ˆ
Q

wdμ
)(

1
μ(Q)

ˆ
Q

w−1/(p−1)dμ
)p−1

< ∞,

and

[w]A1(dμ) := sup
Q

(
1

μ(Q)

ˆ
Q

wdμ
)

esssup
x∈Q

w(x)−1 < ∞.
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We use a variant of Theorem 1 for measure spaces. Since its proof is same as the
one of Theorem 1, we omit the proof, see [16] Theorem 3.1.

DEFINITION 8. We say that a measure μ is a doubling measure if

sup
Q

μ(2Q)
μ(Q)

< ∞,

where 2Q is the ball with the same center as Q whose radius is twice as large.

The following lemma is well-known, see, for example, [9].

LEMMA 9. If w ∈ ∪p�1Ap , then the measure w(x)dx is a doubling measure.

THEOREM 1’ . Let μ be a doubling measure and 0 < p,q < ∞ , 1 � α < ∞ and
0 < β < ∞ . Assume that for some family of pairs of nonnegative functions ( f ,g) , and
for all weights w such that wβ ∈ Aα(dμ) ,(ˆ

Rn
gqwq dμ

)1/q

� C([wβ ]Aα (dμ))
(ˆ

Rn
f pwp dμ

)1/p

.

Then (ˆ
Rn

gq̃wq̃ dμ
)1/q̃

� C([wβ̃ ]Aα̃ (dμ))
(ˆ

Rn
f p̃wp̃ dμ

)1/ p̃

for all weights w such that wβ̃ ∈ Aα̃(dμ) , where indices satisfy (1)–(3).

We need some lemmas. Assume that all indices satisfy (38). Let

1
s

:=
1

α ′
2

+
1
β

,
1
s̃

:=
1

α̃ ′
2

+
1

β̃
. (39)

The next lemma is easily obtained from the definitions.

LEMMA 10.

s̃ = s,

β̃
β

=
1+ β̃/α̃ ′

2

1+ β/α ′
2
,

sq̃

(
1
β
− 1

q

)
+

sq̃
α̃ ′

2
+ s = q̃,

p̃2

(
−1+

s
β
− s

p2

)
+

sp̃2

α̃ ′
2

+ s = 0.

The next lemma is obtained from Hölder’s inequality.
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LEMMA 11. For any a > 0,b > 0 , cubes Q and weights w,( 
Q

wa dx

)1/a( 
Q

w−b dx

)1/b

� 1.

Proof. Let 1 = wab/(a+b) ·w−ab/(a+b) and use Hölder’s inequality. �
The next three lemmas are important for the proof of Theorem 3’.

LEMMA 12. If (w1,w2) ∈ A(α1,α2;β ) , then ws
1 ∈ A1+s/α ′

1
and

[ws
1]A1+s/α′

1
� [(w1,w2)]sA(α1,α2;β ) where 1/s = 1/α ′

2 +1/β .

Note that if α1 = 1 then ws
1 ∈ A1.

In the proof of Theorem 3’ we use the following formula.

LEMMA 1̃2 . If (w1,v2) ∈ A(α1, α̃2; β̃ ) , then ws̃
1 ∈ A1+s̃/α ′

1
and

[ws̃
1]A1+s̃/α′

1
� [(w1,v2)]s̃A(α1,α̃2;β̃ )

.

REMARK . Since s = s̃ ,

[ws
1]A1+s/α′

1
= [ws̃

1]A1+s̃/α′
1
.

This equality is used in the estimate (43) below.

Proof of Lemma 12. We prove the case that αi > 1. When αi = 1 for some i , the
proof is similar.

We write ws
1 = (w1w2)s ·w−s

2 . Using Hölder’s inequality, we have

 
Q

ws
1 dx �

( 
Q
(w1w2)β dx

)s/β ( 
Q

w−β s/(β−s)
2 dx

)(β−s)/β

=
( 

Q
(w1w2)β dx

)s/β ( 
Q

w
−α ′

2
2 dx

)s/α ′
2

,

and obtain

[ws
1]A1+s/α′

1
= sup

Q

( 
Q

ws
1 dx

)( 
Q

w
−α ′

1
1 dx

)s/α ′
1

� [(w1,w2)]sA(α1,α2;β ). �

LEMMA 13. Let ws
1 ∈ A1+s/α ′

1
. If a weight W satisfies Wβ ∈ A1+β/α ′

2
(ws

1dx) ,

then (w1,W ·w−1+s/β
1 ) ∈ A(α1,α2;β ) and[(

w1, W ·w−1+s/β
1

)]
A(α1,α2;β ) � [Wβ ]1/β

A1+β/α′
2
(ws

1dx) · [ws
1]

1/s
A1+s/α′

1

.
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Proof. We prove the case that αi > 1.( 
Q

(
w1 ·Ww−1+s/β

1

)β
dx

)1/β ( 
Q

w
−α ′

1
1 dx

)1/α ′
1
( 

Q

(
Ww−1+s/β

1

)−α ′
2 dx

)1/α ′
2

=
( 

Q
Wβ ws

1 dx

)1/β ( 
Q

w
−α ′

1
1 dx

)1/α ′
1
( 

Q
W−α ′

2ws
1 dx

)1/α ′
2

=
(

1
ws

1(Q)

ˆ
Q
Wβ ws

1 dx

)1/β ( 1
ws

1(Q)

ˆ
Q
W−α ′

2ws
1 dx

)1/α ′
2

×
( 

Q
ws

1 dx

)1/β+1/α ′
2
( 

Q
w
−α ′

1
1 dx

)1/α ′
1

�[Wβ ]1/β
A1+β/α′

2
(ws

1 dx)

( 
Q

ws
1 dx

)1/s( 
Q

w
−α ′

1
1 dx

)1/α ′
1

�[Wβ ]1/β
A1+β/α′

2
(ws

1 dx)[w
s
1]

1/s
A1+s/α′

1

. �

LEMMA 14. Assume that (w1,v2) ∈ A(α1, α̃2; β̃ ) , and let W := w
s/α̃ ′

2
1 · v2 . Then

W β̃ ∈ A
1+β̃/α̃ ′

2
(ws

1dx) and

[W β̃ ]A
1+β̃/α̃′

2
(ws

1dx) � [(w1,v2)]
β̃
A(α,α̃2;β̃ )

.

Proof. We prove the case that αi > 1. Let

I :=
(

1
ws

1(Q)

ˆ
Q
W β̃ ws

1 dx

)(
1

ws
1(Q)

ˆ
Q
W−α̃ ′

2ws
1 dx

)β̃/α ′
2

.

Note that

W β̃ ws
1 = (w1v2)β̃ and W−α̃ ′

2ws
1 = v

−α̃ ′
2

2 .

We have

I1/β̃ =
( 

Q
(w1v2)β̃ dx

)1/β̃ ( 
Q

w
−α ′

1
1 dx

)1/α ′
1
( 

Q
v
−α̃ ′

2
2 dx

)1/α̃ ′
2

×
( 

Q
w
−α ′

1
1 dx

)−1/α ′
1
( 

Q
ws

1 dx

)−1/β̃−1/α̃ ′
2

�[(w1,v2)]A(α1,α̃2;β̃ )

( 
Q

w
−α ′

1
1 dx

)−1/α ′
1
( 

Q
ws

1 dx

)−1/s

� [(w1,v2)]A(α1,α̃2;β̃ )

by Lemma 11. �
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Proof of Theorem 3’ (i). We shall prove when α1,α2 > 1. The proofs for the
cases αi = 1 are similar. We follow the argument in [16] Section 4. Let

1
s

:=
1

α ′
2

+
1
β

,
1
s̃

:=
1

α̃ ′
2

+
1

β̃
.

Note that s = s̃ by Lemma 10. Let f1 be fixed and take w1 such that

ws
1 ∈ A1+s/α ′

1

and fix. For any W such that Wβ ∈ A1+β/α ′
2
(ws

1dx) , we have by Lemma 13

(w1,W ·w−1+s/β
1 ) ∈ A(α1,α2;β ).

By the assumption of Theorem 3’,(ˆ
Rn

gq(w1 ·Ww−1+s/β
1 )q dx

)1/q

� C([Wβ ]A1+β/α′
2
(ws

1dx), [w
s
1]A1+s/α′

1
)

×
(ˆ

Rn
f p1
1 wp1

1 dx

)1/p1
(ˆ

Rn
f p2
2 (Ww−1+s/β

1 )p2 dx

)1/p2

,

and we have(ˆ
Rn

(g ·ws(1/β−1/q)
1 )qWq ·ws

1 dx

)1/q

� C([Wβ ]A1+β/α′
2
(ws

1dx), [w
s
1]A1+s/α′

1
)

×
(ˆ

Rn
f p1
1 wp1

1 dx

)1/p1
(ˆ

Rn
( f2 ·w−1+s/β−s/p2

1 )p2W p2 ·ws
1 dx

)1/p2

.

Since f1 and w1 are fixed, we can apply Theorem 1’ to the pair(
f2 ·w−1+s/β−s/p2

1 ,g ·ws(1/β−1/q)
1

)
and the weight W with respect to the measure dμ = ws

1 dx and obtain(ˆ
Rn

(g ·ws(1/β−1/q)
1 )q̃W q̃ ·ws

1 dx

)1/q̃

� C([W β̃ ]Aγ̃ (w
s
1dx), [w

s
1]A1+s/α′

1
)

×
(ˆ

Rn
f p1
1 wp1

1 dx

)1/p1
(ˆ

Rn
( f2 ·w−1+s/β−s/p2

1 ) p̃2W p̃2 ·ws
1 dx

)1/ p̃2

,

where W β̃ ∈ Aγ̃(ws
1dx) , β̃ > 0, γ̃ > 1 and

1
p̃2

− 1
p2

=
1
q̃
− 1

q
=

1

β̃
− 1

β
, (40)

β̃
γ̃

=
β

1+ β/α ′
2
, (41)

max

(
1
p2

− 1
q
,

1
p2

− 1
β

)
<

1
p̃2

<
1
p2

− 1
β

+
1+ β/α ′

2

β
. (42)
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The conditions (40) and (42) are satisfied by the assumptions of theorem. By Lemma
10 we have γ̃ = 1+ β̃/α̃ ′

2 > 1. We can write(ˆ
Rn

(g ·ws(1/β−1/q)
1 )q̃W q̃ ·ws

1 dx

)1/q̃

� C([W β̃ ]A
1+β̃/α̃′

2
(ws

1dx), [w
s
1]A1+s/α′

1
)

×
(ˆ

Rn
f p1
1 wp1

1 dx

)1/p1
(ˆ

Rn
( f2 ·w−1+s/β−s/p2

1 ) p̃2W p̃2 ·ws
1 dx

)1/ p̃2

(�)

where W β̃ ∈ A
1+β̃/α̃ ′

2
(ws

1dx) .

For any (w1,v2) ∈ A(α1, α̃2; β̃ ) , we have by Lemma 1̃2

ws̃
1 ∈ A1+s̃/α ′

1
,

and
[ws

1]A1+s/α′
1

= [ws̃
1]A1+s̃/α′

1
� [(w1,v2)]s̃A(α1,α̃2;β̃ )

. (43)

Let W := w
s/α̃ ′

2
1 · v2 . By Lemma 14 we have

W β̃ ∈ A
1+β̃/α̃ ′

2
(ws

1dx).

Therefore we can substitute W into (�) . By Lemma 10 we have

ws(1/β−1/q)q̃
1 Wq̃ws

1 = (w1v2)q̃,

w(−1+s/β−s/p2) p̃2
1 W p̃2ws

1 = vp̃2
2 .

By (43) and Lemma 14, we obtain(ˆ
Rn

gq̃(w1v2)q̃ dx

)1/q̃

� C([(w1,v2)A(α1,α̃2;β̃ )])
(ˆ

Rn
f p1
1 wp1

1 dx

)1/p1
(ˆ

Rn
f p̃2
2 vp̃2

2 dx

)1/ p̃2

. �

5. Multilinear extrapolations

Finally we consider multilinear extrapolations.

DEFINITION 9. We say that m-tuple of weights (w1,w2, . . . ,wm) ∈ A(α1,α2, . . . ,
αm;β ) if

[(w1,w2, . . . ,wm)]A(α1,α2,...,αm;β )

:= sup
Q

( 
Q
(w1w2 · · ·wm)β dx

)1/β m

∏
i=1

( 
Q

w
−α ′

i
i dx

)1/α ′
i

< ∞.
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We obtain the following.

THEOREM 4. Let pi,q > 0 , αi � 1 and β > 0 . If ( f1, f2, . . . fm,g) satisfies

weighted Lp1 ×·· ·×Lpm → Lq f or A(α1,α2, . . . ,αm;β ),

then ( f1, f2, . . . fm,g) satisfies

weighted Lp̃1 ×·· ·×Lp̃m → Lq̃ for A(α̃1, α̃2, . . . , α̃m; β̃ ),

where p̃i, q̃ > 0 , α̃i > 1 , β̃ > 0 and

1
p̃i

− 1
pi

=
1
α̃i

− 1
α̃i

i = 1,2, . . . ,m,

1
q̃
− 1

q
=

m

∑
i=1

(
1
p̃i

− 1
pi

)
=

1

β̃
− 1

β
,

1
pi

− 1
αi

<
1
p̃i

<
1
pi

− 1
αi

+1 i = 1,2, . . . ,m,

max

(
m

∑
i=1

1
pi

− 1
q
,

m

∑
i=1

1
pi

− 1
β

)
<

m

∑
i=1

1
p̃i

.

We show an outline of the proof.

Important lemmas. Corresponding to three important Lemmas 12–14, we have the
following lemmas. Let

1
si

:= ∑
j �=i

1
α j

and
1
s

:=
1

α ′
m

+
1
β

,

where ∑ j �=i means the summation over {1,2, . . . ,m} \ {i} .

LEMMA 12’ . If (w1,w2, . . . ,wm) ∈ A(α1,α2, . . . ,αm;β ) , then

wsi
i ∈ A1+si/α̃ ′

i
i = 1,2, . . . ,m,

(w1w2 · · ·wm−1)s ∈ A1+s(1/α ′
1+1/α ′

2+···+1/α ′
m−1)

.

REMARK . In fact we need to consider (w2 · · ·wm)s where 1/s = 1/α ′
1+1/β , and

so on.

LEMMA 13’ . Assume that

wsi
i ∈ A1+si/α̃ ′

i
i = 1,2, . . . ,m−1,

(w1w2 · · ·wm−1)s ∈ A1+s(1/α ′
1+1/α ′

2+···+1/α ′
m−1)

.

Then for any W such that W β ∈ A1+β/α ′
m
((w1w2 · · ·wm−1)s dx),

(w1,w2, . . . ,wm−1,W · (w1w2 · · ·wm−1)−s/α ′
m) ∈ A(α1,α2, . . . ,αm;β ).
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LEMMA 14’ . Assume that (w1, . . . ,wm−1,vm) ∈ A(α1, . . . ,αm−1, α̃m; β̃ ) , and let

W := (w1 · · ·wm−1)s/α̃ ′
m · vm.

Then
W β̃ ∈ A

1+β̃/α̃ ′
m
((w1 · · ·wm−1)s dx).

Reduction to linear cases. Corresponding to Thorem 3 we prove the following.

THEOREM 5. Let pi,q > 0 , αi � 1 and β > 0 . If ( f1, f2, . . . fm,g) satisfies

weighted Lp1 ×·· ·×Lpm → Lq for A(α1,α2, . . . ,αm;β ),

then ( f1, f2, . . . fm,g) satisfies

weighted Lp1 ×·· ·×Lpm−1 ×Lp̃m → Lq̃ for A(α1, . . .αm−1, α̃m; β̃ ),

where p̃m, q̃ > 0 , α̃m > 1 , β̃ > 0 and

1
p̃m

− 1
pm

=
1
q̃
− 1

q
=

1
α̃m

− 1
α̃m

,

max

(
1
pm

− 1
αm

,
1
pm

− 1
β

)
<

1
p̃m

<
1
pm

− 1
αm

+1.

REMARK . In fact we need to freeze several indices, for example, Lp̃1 × Lp2 ×
·· ·×Lpm → Lq̃ , and so on.

Proof of Theorem 4 by using Theorem 5. Different from the bilinear cases, it is
important what indices to be frozen.

We consider the case that β < q . By the definitions of indices, there exists 1 �
i � m such that 1/pi−1/q < 1/ p̃i . Assume that

1/pm−1/q < 1/ p̃m.

We define auxiliary indices q̃m and β̃m as follows.

1
q̃m

:=
1
p̃m

− 1
pm

+
1
q
,

1

β̃m

:=
1
p̃m

− 1
pm

+
1
β

.

By Theorem 4 we have that ( f1, f2, . . . fm,g) satsifies

weighted Lp1 ×·· ·×Lpm−1 ×Lp̃m → Lq̃m for A(α1, . . .αm−1, α̃m; β̃m).

Similarly, there exists 1 � i � m−1 such that 1/pi−1/q̃m < 1/ p̃i . Assume that

1/pm−1−1/q̃m < 1/ p̃m−1.
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Let

1
q̃m−1

:=
1

p̃m−1
− 1

pm−1
+

1
q̃m

,

1

β̃m−1

:=
1

p̃m−1
− 1

pm−1
+

1

β̃m

,

and we have that ( f1, f2, . . . fm,g) satisfies

weighted Lp1 ×·· ·×Lpm−2 ×Lp̃m−1 ×Lp̃m → Lq̃m−1 for A(α1, . . . α̃m−1, α̃m; β̃m−1).

Continuing this procedure we obtain the desired result.
The proof for the case β � q is similar. �
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