ON THE CONSTANT IN THE HARDY INEQUALITY FOR FINITE SEQUENCES

Ivan Gadjev* and Vasil Gochev

(Communicated by M. Praljak)

Abstract. We investigate the behaviour of the smallest possible constant d_{n} in the Hardy's inequality

$$
\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{j=1}^{k} a_{j}\right)^{2} \leqslant d_{n} \sum_{k=1}^{n} a_{k}^{2}, \quad\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}
$$

A new proof of the Hardy's inequality is given which allows us to give another much simpler proof of the upper estimation of d_{n}

$$
d_{n}<4-\frac{c}{\ln ^{2} n}, \quad c>0
$$

1. Introduction

In series of papers Hardy $[4,5,6]$ proved for $p>1$ the inequality

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{j=1}^{k} a_{j}\right)^{p} \leqslant C \sum_{k=1}^{n} a_{k}^{p}, \quad a_{k} \geqslant 0, \quad k=1,2, \ldots, n \tag{1}
\end{equation*}
$$

where the constant C is an absolute constant in a sense it does not depend on the sequence $\left\{a_{k}\right\}$ and n. Initially Hardy proved the inequality (1) with the constant $\frac{p^{2}}{p-1}$. Later Landau [9] proved that the constant $\left(\frac{p}{p-1}\right)^{p}$ is the smallest possible one, for which (1) holds for every n.

For p-even integer the assumption for nonnegativity of $\left\{a_{k}\right\}$ can be dropped, and for $p=2$ the inequality (1) becomes

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{j=1}^{k} a_{j}\right)^{2} \leqslant 4 \sum_{k=1}^{n} a_{k}^{2} \tag{2}
\end{equation*}
$$

[^0]There are many papers investigating different generalizations and applications of Hardy's inequality - see for instance [8] and the bibliography of the book [7].

Let allow the constant C in (1) to depend on n and let us denote it by d_{n}. Then we can write (1) for $p=2$ as

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{j=1}^{k} a_{j}\right)^{2} \leqslant d_{n} \sum_{k=1}^{n} a_{k}^{2}, \quad\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

The behavior of the constant d_{n} as a function of n was studied in many papers see, for instance, [1], [2], [10], [11], [12]. In [12] Herbert S. Wilf established the exact rate of convergence of the constant d_{n}

$$
d_{n}=4-\frac{16 \pi^{2}}{\ln ^{2} n}+O\left(\frac{\ln \ln n}{\ln ^{3} n}\right)
$$

In [3] we also studied the asymptotic behavior of d_{n} and proved that the next inequalities are true

$$
4\left(1-\frac{4}{\ln n+4}\right) \leqslant d_{n} \leqslant 4\left(1-\frac{8}{(\ln n+4)^{2}}\right), \quad n \geqslant 3
$$

i.e.

$$
\begin{equation*}
4-\frac{c_{1}}{\ln n} \leqslant d_{n} \leqslant 4-\frac{c_{2}}{\ln ^{2} n}, \quad n \geqslant 2 \tag{4}
\end{equation*}
$$

where the constants c_{1} and c_{2} do not depend on n. By considering the sequence

$$
a_{k}=\sqrt{k}-\sqrt{k-1}, \quad k=1, \ldots, n
$$

establishing the left inequality is not difficult. But the proof of the right inequality was very complicated and we used the special properties of the space ℓ_{+}^{2} where ℓ_{+}^{p} is the class of nonnegative sequences $\left\{a_{k}\right\}$.

In this paper we give a much simpler proof of the upper estimation of d_{n} in (4) which could be used (with some modifications) in order to prove a similar result for $p \neq 2$. Our main result read as follows:

THEOREM 1. The next estimation of d_{n} is true

$$
\begin{equation*}
d_{n} \leqslant 4-\frac{d}{\ln ^{2}(n+1)} \tag{5}
\end{equation*}
$$

where $d=1 / 4$ for $n \geqslant 16, d=1 / 6$ for $n \geqslant 7, d=1 / 8$ for $n \geqslant 5$ and $d=1 / 16$ for $n \geqslant 2$.

REmARK 1. The constants $1 / 4,1 / 6,1 / 8$ and $1 / 16$ in the above estimation (5) are by no means the best ones. They could be significantly improved in a lot of ways but that would have made the proof longer and much more complicated. Our goal was to keep the proof as simple as possible.

2. Proof of the Theorem 1

From Cauchy's inequality we have for every two sequences μ_{i} and $\eta_{i}, i=1, \ldots n$

$$
\left(\sum_{i=1}^{k} \mu_{i} \eta_{i}\right)^{2} \leqslant\left(\sum_{i=1}^{k} \mu_{i}^{2}\right)\left(\sum_{i=1}^{k} \eta_{i}^{2}\right)
$$

Let us denote $a_{i}=\mu_{i} \eta_{i}$. Then

$$
\left(\frac{1}{k} \sum_{i=1}^{k} a_{i}\right)^{2} \leqslant \frac{1}{k^{2}}\left(\sum_{i=1}^{k} \mu_{i}^{2}\right)\left(\sum_{i=1}^{k} \frac{a_{i}^{2}}{\mu_{i}^{2}}\right)
$$

and after changing the order of summation

$$
\sum_{k=1}^{n}\left(\frac{1}{k} \sum_{i=1}^{k} a_{i}\right)^{2} \leqslant \sum_{i=1}^{n} M_{i} a_{i}^{2} \leqslant\left(\max _{1 \leqslant i \leqslant n} M_{i}\right) \sum_{i=1}^{n} a_{i}^{2}
$$

where

$$
M_{i}=\frac{1}{\mu_{i}^{2}} M_{i}^{*}, \quad M_{i}^{*}=\sum_{k=i}^{n} \frac{1}{k^{2}} \sum_{j=1}^{k} \mu_{j}^{2}
$$

Obviously

$$
d_{n} \leqslant \max _{1 \leqslant i \leqslant n} M_{i}, \quad \text { so we want to minimize } \quad \max _{1 \leqslant i \leqslant n} M_{i}
$$

over all sequences $\mu=\left\{\mu_{i}\right\}, i=1,2, \ldots, n$, i.e. to find

$$
\min _{\mu} \max _{1 \leqslant i \leqslant n} M_{i}
$$

or, at least, to make it as small as possible.
REMARK 2. By choosing, for instance,

$$
\mu_{k}=k^{-1 / 4}, \quad k=1,2, \ldots n
$$

it is not very difficult to prove that $\max _{1 \leqslant i \leqslant n} M_{i}<4$, i.e. $d_{n}<4$. In fact, by taking the sequence

$$
\mu_{k}^{2}=\frac{k \sqrt{k}}{k+1}-\frac{(k-1) \sqrt{k-1}}{k}, \quad k=1,2, \ldots n
$$

the next upper estimation of d_{n} could be proved

$$
d_{n}<4-\frac{4}{\sqrt{n+1}}
$$

It is similar to the result in [2] where the authors proved the estimation

$$
d_{n} \leqslant n^{-1}\left(\sum_{k=1}^{n} k^{-1 / 2}\right)^{2}
$$

Although the results of this type give better estimations for some n, asymptotically they are worse.

In order to prove the estimation (5) we need to make a more complicated choice of the sequence μ_{k}.

Let

$$
\mu_{k}^{2}=c \int_{k-1}^{k} \frac{d x}{\sqrt{x}}-\frac{1}{\ln ^{2}(n+1)} \int_{k}^{k+1} \frac{\ln ^{2} x}{\sqrt{x}} d x
$$

where $c \geqslant 1$. It is obvious that μ_{k} is well defined. Then

$$
\begin{align*}
\mu_{i}^{2} & =c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{1}{\ln ^{2}(n+1)} \int_{i}^{i+1} \frac{\ln ^{2} x}{\sqrt{x}} d x \\
& >c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{\ln ^{2}(i+1)}{\sqrt{i} \ln ^{2}(n+1)} \tag{6}
\end{align*}
$$

For M_{i}^{*} we have

$$
\begin{aligned}
\sum_{j=1}^{k} \mu_{j}^{2} & =c \int_{0}^{k} \frac{d x}{\sqrt{x}}-\frac{1}{\ln ^{2}(n+1)} \int_{1}^{k+1} \frac{\ln ^{2} x}{\sqrt{x}} d x \\
& \leqslant c \int_{0}^{k} \frac{d x}{\sqrt{x}}-\frac{1}{\ln ^{2}(n+1)} \int_{1}^{k} \frac{\ln ^{2} x}{\sqrt{x}} d x \\
& =2 c \sqrt{k}-\frac{2 \sqrt{k}}{\ln ^{2}(n+1)}\left[\ln ^{2} k-4 \ln k+8-\frac{8}{\sqrt{k}}\right]
\end{aligned}
$$

and

$$
M_{i}^{*} \leqslant 2 c \sum_{k=i}^{n} \frac{1}{k^{3 / 2}}-\frac{2}{\ln ^{2}(n+1)} \sum_{k=i}^{n}\left[\frac{\ln ^{2} k-4 \ln k+8}{k^{3 / 2}}-\frac{8}{k^{2}}\right] .
$$

For the first term in RHS we have (for $i \geqslant 1$)

$$
\sum_{k=i}^{n} \frac{1}{k^{3 / 2}} \leqslant 2 \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{2}{\sqrt{n+\frac{1}{2}}}
$$

Indeed it follows from easily verifiable inequalities

$$
\frac{1}{k^{3 / 2}} \leqslant \frac{2}{\sqrt{k-\frac{1}{2}}}-\frac{2}{\sqrt{k+\frac{1}{2}}} \quad \text { and } \quad \frac{1}{\sqrt{i-\frac{1}{2}}} \leqslant \int_{i-1}^{i} \frac{d x}{\sqrt{x}}
$$

Then

$$
\begin{aligned}
M_{i}^{*} & \leqslant 4 c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{4 c}{\sqrt{n+\frac{1}{2}}}-\frac{2}{\ln ^{2}(n+1)} \sum_{k=i}^{n}\left[\frac{\ln ^{2} k-4 \ln k+8}{k^{3 / 2}}-\frac{8}{k^{2}}\right] \\
& =4 c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{4 c}{\sqrt{n+\frac{1}{2}}}-\frac{2}{\ln ^{2}(n+1)} \sum_{k=i}^{n}\left[f(k)-\frac{8}{k^{2}}\right]
\end{aligned}
$$

where for brevity we denoted by

$$
f(x)=x^{-3 / 2}\left[\ln ^{2} x-4 \ln x+8\right]
$$

We have $f(x)>0$ and $f(x)$ is decreasing since

$$
f^{\prime}(x)=\frac{-3 \ln ^{2} x+16 \ln x-32}{2 x^{5 / 2}}<0
$$

Then

$$
\sum_{k=i}^{n} f(k)>\int_{i}^{n} f(x) d x=\frac{2 \ln ^{2} i+16}{\sqrt{i}}-\frac{2 \ln ^{2} n+16}{\sqrt{n}}
$$

Consequently

$$
\begin{aligned}
M_{i}^{*} \leqslant & 4 c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{4 c}{\sqrt{n+\frac{1}{2}}}+\frac{16}{\ln ^{2}(n+1)} \sum_{k=i}^{n} \frac{1}{k^{2}} \\
& -\frac{2}{\ln ^{2}(n+1)}\left[\frac{2 \ln ^{2} i+16}{\sqrt{i}}-\frac{2 \ln ^{2} n+16}{\sqrt{n}}\right] \\
= & 4\left[c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{\ln ^{2}(i+1)}{\sqrt{i} \ln ^{2}(n+1)}\right]+\frac{4\left(\ln ^{2}(i+1)-\ln ^{2} i\right)}{\sqrt{i} \ln ^{2}(n+1)} \\
& -\frac{4 c}{\sqrt{n+\frac{1}{2}}}-\frac{32}{\sqrt{i} \ln ^{2}(n+1)}+\frac{4 \ln ^{2} n+32}{\sqrt{n} \ln ^{2}(n+1)}+\frac{16}{\ln ^{2}(n+1)} \sum_{k=i}^{n} \frac{1}{k^{2}} .
\end{aligned}
$$

Now

$$
\begin{equation*}
\ln ^{2}(i+1)-\ln ^{2} i=\ln \frac{i+1}{i} \ln i(i+1)<\frac{\ln i(i+1)}{i}<1 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{32}{\sqrt{i} \ln ^{2}(n+1)}-\frac{16}{\ln ^{2}(n+1)} \sum_{k=i}^{n} \frac{1}{k^{2}}>\frac{5}{\sqrt{i} \ln ^{2}(n+1)} \tag{8}
\end{equation*}
$$

By taking $c=2$ for $n \geqslant 16, c=3$ for $n \geqslant 7, c=4$ for $n \geqslant 5$ and $c=8$ for $n \geqslant 2$ we have also the estimation

$$
\begin{equation*}
\frac{4 c}{\sqrt{n+\frac{1}{2}}}-\frac{4 \ln ^{2} n+32}{\sqrt{n} \ln ^{2}(n+1)}>0 \tag{9}
\end{equation*}
$$

Then from all of the above estimations (7), (8) and (9) it follows that

$$
\begin{equation*}
M_{i}^{*} \leqslant 4\left[c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{\ln ^{2}(i+1)}{\sqrt{i} \ln ^{2}(n+1)}\right]-\frac{1}{\sqrt{i} \ln ^{2}(n+1)} \tag{10}
\end{equation*}
$$

Since

$$
c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}=\frac{2 c}{\sqrt{i-1}+\sqrt{i}}<\frac{2 c}{\sqrt{i}}
$$

we have from (6) and (10)

$$
M_{i} \leqslant 4-\frac{\frac{1}{\sqrt{i} \ln ^{2}(n+1)}}{c \int_{i-1}^{i} \frac{d x}{\sqrt{x}}-\frac{\ln ^{2}(i+1)}{\sqrt{i} \ln ^{2}(n+1)}}<4-\frac{1}{2 c \ln ^{2}(n+1)}=4-\frac{d}{\ln ^{2}(n+1)}
$$

and consequently

$$
d_{n} \leqslant 4-\frac{d}{\ln ^{2}(n+1)} .
$$

REFERENCES

[1] N. G. de Bruijn and H. S. Wilf, On Hilbert's Inequality in n dimensions, Bull. Amer. Math. Soc.
[2] A. ČIŽMEŠIJA, J. PEČARIĆ, Mixed means and Hardy's inequality, Math. Inequal. Appl. 1 (1998), no. 4, 491-506.
[3] Dimitar K. Dimitrov, Ivan Gadjev, Geno Nikolov, Rumen Uluchev, Hardy's inequalities in finite dimensional Hilbert spaces, Proc. Amer. Math. Soc. 149 (2021), 2515-2529, https://doi.org/10.1090/proc/15467.
[4] G. H. Hardy, Notes on a theorem of Hilbert, Math. Z. 6 (1920), 314-317.
[5] G. H. Hardy, Notes on some points in the integral calculus, LI. On Hilbert's double-series theorem, and some connected theorems concerning the convergence of infinite series and integrals, Messenger Math. 48 (1919), 107-112.
[6] G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integral, Messenger Math. 54 (1925), 150-156.
[7] A. Kufner, L. Maligranda, and L.-E. Person, The Hardy Inequality: About its History and Some Related Results, Vydavatelský servis, 2007.
[8] A. Kufner, L.-E. Person, and N. Samko, Weighted Inequalities of Hardy Type, 2nd ed., World Scientific, Singapore, 2017.
[9] E. LANDAU, A note on a theorem concerning series of positive terms: Extract from a letter of Prof. E. Landau to Prof. I. Schur, J. London Math. Soc. 1 (1926), 38-39.
[10] H. Widom, Extreme eigenvalues of translation kernels, Trans. Amer. Math. Soc., 100 (2), 252-262 (1961).
[11] H. Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc., 88 (1), 491-522 (1958).
[12] H. S. Wilf, On finite sections of the classical inequalities, Nederl. Akad. Wet. Amsterdam Proc. Ser. A, 1962 - core.ac.uk.
(Received November 13, 2022)
Ivan Gadjev
Department of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd., 1164 Sofia, Bulgaria
e-mail: gadjev@fmi.uni-sofia.bg
Vasil Gochev
Department of Mathematics and Informatics
University of Sofia
5 James Bourchier Blvd., 1164 Sofia, Bulgaria
e-mail: vgotchev@fmi.uni-sofia.bg

[^1]
[^0]: Mathematics subject classification (2020): Primary 26D10, 26D15; Secondary 33C45, 15A42.
 Keywords and phrases: Hardy inequality.
 The first author was supported by grant KP-06-N62/4 of the Fund for Scientific Research of the Bulgarian Ministry of Education and Science.

 * Corresponding author.

[^1]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

