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Abstract. This article introduces a new type of weighted square delta integral inequalities in-
volving the delta derivative of a convex function. As an extension, we also establish weighted
square delta integral inequalities for subharmonic functions on time scales. Here, we rely on a
new definition of the time scales Laplace operator. The significance of this work in the existing
literature is provided at the end of the article.

1. Introduction

The evolution of new mathematical inequalities both continuous and discrete of-
ten places a rigid support for the interrogative procedures and algorithms practiced in
applied sciences. It is useful to ask whether it is plausible to have a scheme which
incorporates both discrete and continuous structures simultaneously. One of several at-
tempts to combine discrete and continuous mathematics is the time scale setting, which
was founded by Stefan Hilger in 1988 [16]. Since then, thousands of research articles
appeared in the theory and its applications to several fields, see e.g., [23,12,3,6,2,5,24].
The treatises of Bohner and Peterson [8,9] and other texts like [1,7] might be consulted
by the reader for more detailed explanations of time scale calculus.

In modern calculus, it is notable that the inherent generalization of convex func-
tions to multi-variable functions are subharmonic functions, associated with the well-
known Laplace operator. So it is of equal interest to derive analogous inequalities for
subharmonic functions. These functions perform a vital role in modern analysis along
with classical potential theory and usually serve as a dynamic tool for the inspection
of solutions of Dirichlet and classical Poisson problems in the theory of PDEs, some
recent examples can be seen in [11, 14, 15, 21].

This manuscript is structured as follows. Section 2 contains some basic concepts
needed to prove the main results, while Sections 3 and 4 are devoted to our main results.
The weighted square delta integral estimates for the first delta derivative of a twice delta
differentiable function are presented in Section 3, and in Section 4, we generalize these
estimates for subharmonic as well as for superharmonic functions. Section 5 is devoted
to present some examples, and in Section 6, we provide the conclusion.
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2. Preliminaries

We assemble some fundamental preliminaries in this section, which we use in the
remaining part of the article. We use Δ for time scale Δ-calculus and � for the Laplace
operator. A time scale T is defined to be an arbitrary closed subset of the real numbers
R , with the standard inherited topology. We refer the reader to [9, Chapter 1] for basic
notions and notations of one-dimensional time scales.

Now let n ∈ N , and for each i ∈ {1,2, . . . ,n} , set

Λn = T1 ×T2×·· ·×Tn

= {t = (t1,t2, . . . ,tn) : ti ∈ Ti, i = 1,2, . . . ,n} .

We call Λn an n -dimensional time scale. Let σi , i ∈ {1,2, . . . ,n} , be the forward jump
operators in Ti . The operator σ : Λn → R

n defined by

σ(t) = (σ1(t1),σ2(t2), . . . ,σn(tn))

is said to be the forward jump operator in Λn . For the function θ : Λn → R , we put

θ σ (t) = θ (σ1(t1),σ2(t2), . . . ,σn(tn))

and
θ σi

i (t) = θ (t1, . . . ,ti−1,σi(ti),ti+1, . . . ,tn).

Let us recall the definition of partial derivarives on time scales. For this, we need to
introduce the following notations from [7, 9], and we put

Λκn = T
κ
1 ×T

κ
2 × . . .×T

κ
n

and
Λκin

i = T1 × . . .×Ti−1×T
κ
i ×Ti+1× . . .×Tn.

Let θ : Λn → R be a function. The partial delta derivative of θ with respect to ti ∈ T
κ
i

at t ∈ Λκin
i is defined as the limit of si → ti , si �= σi(ti) , of

θ (t1, . . . ,ti−1,σi(ti),ti+1, . . . ,tn)−θ (t1, . . . ,ti−1,si,ti+1, . . . ,tn)
σi(ti)− si

provided that this limit exists, and it is denoted by

∂θ (t)
Δiti

or θ Δi(t).

Second-order partial delta derivatives of θ are denoted by

∂ 2θ (t)
Δit2i

or
∂ 2θ (t)
ΔitiΔ jt j

.

Higher-order partial delta derivatives are similarly denoted.
One more important relation of the Δ derivative is given in the next result, see [8,

page 13].
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REMARK 1. θ Δσ and θ σΔ are not equal in general even if both exist. This is
clear from the relation

θ σΔ =
(
1+ μΔ

)
θ Δσ .

Note that for time scales with constant graininess such as T = R , T = Z , we actually
have

θ Δσ = θ σΔ. (2.1)

A function θ on a convex set C ⊆ R is called convex provided

θ (λc0 +(1−λ )c1) � λ θ (c0)+ (1−λ )θ (c1)
for all c0,c1 ∈C and λ ∈ [0,1]. (2.2)

θ is called concave if −θ is convex. Let us recall some properties of convex functions.
The reader may refer to [18, 22] for proofs. A convex function θ defined on C is
continuous in the interior of C provided θ is differentiable almost everywhere and the
second derivative of θ is always nonnegative, that is, θ ′′(c) � 0 for all c ∈C . For two
convex functions θ1,θ2 and k ∈ R , the functions θ = θ1 +θ2 and kθ1 are also convex,
but the difference of two convex functions may not preserve convexity.

DEFINITION 1. (See [13]) If θ1,θ2 : C → R are convex, then θ := θ1 − θ2 is
called delta-convex. Similarly, if θ1,θ2 : C → R are concave, then θ is called delta-
concave.

3. Energy estimates for convex functions

In order to prove our energy estimates, we use the following lemma.

LEMMA 1. For ϕ ,ω ∈ C2
rd([a,b]T,R) , we have

(
ϕΔω −ϕωΔ

)Δ
= ϕΔΔωσ −ϕσ ωΔΔ. (3.1)

Proof. By using the product rule for delta derivatives, see [8, page 8, Theorem
1.20], since ϕΔωΔ cancels, we obtain (3.1). �

C. Dinu [10] defined convex functions and their properties on time scales. Assume
that θ is an rd-continuous and twice delta differentiable function which is convex on
[a,b]κ

2

T
. Then we have θ ΔΔ(t) � 0 for all t ∈ [a,b]κ

2

T
. Define

W :=
{

ω ∈ C2
rd([a,b]T, [0,∞)) : ω(t) = ωΔ(t) = 0, t ∈ {a,b}

}
.

THEOREM 1. If θ is convex, θ σ is differentiable, and ω ∈ W , then

∫ b

a

(
(θ Δ)2 + θ σΔθ Δσ

)
(t)ω(σ(t))Δt �

∫ b

a
(θ 2 +Kθ )(σ(t))ωΔΔ(t)Δt, (3.2)
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where
K = 2 sup

σ(a)�t�σ(b)
|θ (t)| = 2‖θ‖∞.

Proof. Define ϕ := θ 2 +Kθ . Then

ϕΔ = θ Δθ + θ σθ Δ +Kθ Δ

and

ϕΔΔ = θ ΔΔθ σ + θ Δθ Δ + θ σΔθ Δσ + θ σ θ ΔΔ +Kθ ΔΔ

= θ ΔΔ (2θ σ +K)+ (θ Δ)2 + θ σΔθ Δσ (3.3)

� θ ΔΔ (−2 |θ σ |+K)+ (θ Δ)2 + θ σΔθ Δσ

� (θ Δ)2 + θ σΔθ Δσ . (3.4)

Now, by integrating (3.1) from a to b , we get

0
(ω∈W )

=
∫ b

a

(
ϕΔω −ϕωΔ

)Δ
(t)Δt

(3.1)=
∫ b

a

(
ϕΔΔωσ −ϕσωΔΔ

)
(t)Δt

(3.4)
�
∫ b

a

(
(θ Δ)2 + θ σΔθ Δσ

)
(t)ωσ (t)Δt−

∫ b

a

(
(θ σ )2 +Kθ σ)(t)ωΔΔΔt,

which shows (3.2) and completes the proof. �
Our next result shows the variation of estimate (3.2) for a concave function.

THEOREM 2. If θ is concave, θ σ is differentiable, and ω ∈ W , then

∫ b

a

(
(θ Δ)2 + θ σΔθ Δσ

)
(t)ω(σ(t))Δt �

∫ b

a
(θ 2 −Kθ )(σ(t))ωΔΔ(t)Δt, (3.5)

where K is defined as in Theorem 1.

Proof. Define ϕ := θ 2−θK . Then

ϕΔ = θ Δθ + θ σθ Δ −Kθ Δ

and

ϕΔΔ = θ ΔΔ (2θ σ −K)+ (θ Δ)2 + θ σΔθ Δσ

� θ ΔΔ (2 |θ σ |−K)+ (θ Δ)2 + θ σΔθ Δσ

� (θ Δ)2 + θ σΔθ Δσ . (3.6)

Hence, a similar argument as in Theorem 1 completes the proof. �
The next results are associated with delta-convex and delta-concave functions.

First we define them on time scales.
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DEFINITION 2. A function θ ∈ C2
rd([a,b]T) is called delta-convex on [a,b]T if

there exists a pair of convex functions θ1,θ2 ∈C2
rd([a,b]T) such that θ is the difference

θ = θ1−θ2.

Similarly, θ is called delta-concave if θ1,θ2 are concave.

THEOREM 3. If θ = θ1−θ2 is δ -convex, θ σ is differentiable, and ω ∈W , then
∫ b

a

(
(θ Δ)2 + θ σΔθ Δσ

)
(t)ω(σ(t))Δt �

∫ b

a
(θ 2 +K(θ1 + θ2))(σ(t))ωΔΔ(t)Δt, (3.7)

where K is defined as in Theorem 1.

Proof. Define ϕ := θ 2 +K(θ1 + θ2) . Then

ϕΔΔ = 2θ ΔΔθ σ +K
(

θ ΔΔ
1 + θ ΔΔ

2

)
+(θ Δ)2 + θ σΔθ Δσ

� −2
∣∣∣θ ΔΔ

∣∣∣ |θ σ |+K
(

θ ΔΔ
1 + θ ΔΔ

2

)
+(θ Δ)2 + θ σΔθ Δσ

� −2
∣∣∣θ ΔΔ

1 + θ ΔΔ
2

∣∣∣ |θ σ |+K
(

θ ΔΔ
1 + θ ΔΔ

2

)
+(θ Δ)2 + θ σΔθ Δσ

=
(

θ ΔΔ
1 + θ ΔΔ

2

)
(K−2 |θ σ |)+ (θ Δ)2 + θ σΔθ Δσ

� (θ Δ)2 + θ σΔθ Δσ .

Thus, by applying Lemma 1, we get the desired result. �
Now we can also give an estimate for δ -concave functions.

THEOREM 4. If θ = θ1 − θ2 is δ -concave, θ σ is differentiable, and ω ∈ W ,
then∫ b

a

(
(θ Δ)2 + θ σΔθ Δσ

)
(t)ω(σ(t))Δt �

∫ b

a
(θ 2−K(θ1 + θ2))(σ(t))ωΔΔ(t)Δt,

where K is defined as in Theorem 1.

Proof. Define ϕ := θ 2−K(θ1 + θ2) . Then

ϕΔΔ = 2θ ΔΔθ σ −K
(

θ ΔΔ
1 + θ ΔΔ

2

)
+(θ Δ)2 + θ σΔθ Δσ

� 2
∣∣∣θ ΔΔ

∣∣∣ |θ σ |−K
(

θ ΔΔ
1 + θ ΔΔ

2

)
+(θ Δ)2 + θ σΔθ Δσ

=
(

θ ΔΔ
1 + θ ΔΔ

2

)
(2 |θ σ |−K)+ (θ Δ)2 + θ σΔθ Δσ

� (θ Δ)2 + θ σΔθ Δσ .

We may now achieve the desired outcome by using Lemma 1. �
Applying Hölder’s inequality to estimate (3.7), we get the following result.
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COROLLARY 1. If θ = θ1 − θ2 is δ -convex, θ σ is differentiable, and ω ∈ W ,
then

∫ b

a

(
(θ Δ)2 + θ σΔθ Δσ

)
(t)ω(σ(t))Δt �

∥∥(θ σ )2 +K(θ σ
1 + θ σ

2 )
∥∥

p

∥∥∥ωΔΔ
∥∥∥

q
,

where K is defined as in Theorem 1, p and q are conjugate exponents, 1 � p < ∞ , and

‖ϕ‖p =
(∫ b

a
|ϕ(t)|pΔt

) 1
p

.

Furthermore, we can also apply Hölder’s inequality to the right-hand side of other
estimates such as (3.2) and (3.5) to get similar results.

4. Energy estimates for subharmonic functions

As mentioned earlier, subharmonic functions are a natural generalization of uni-
variable convex functions to the case of several variables. In a similar fashion, super-
harmonic functions are a generalization of univariable concave functions. It is of great
interest to establish the preceding estimates for subharmonic and superharmonic func-
tions. In order to achieve this, we first define subharmonic functions and superharmonic
functions in the multivariable time scales case.

Let ai,bi ∈ Ti and R := [a1,b1]× [a2,b2]×·· ·× [an,bn] . Define

Rσ := [σ(a1),σ(b1)]× [σ(a2),σ(b2)]×·· ·× [σ(an),σ(bn)].

We introduce the class of nonnegative bounded n variable weight functions

W =
{

ω ∈ C2
rd(R, [0,∞)) : ω(t) = ωΔi(t) = 0, t ∈ ∂B, i ∈ {1, . . . ,n}

}
. (4.1)

Let us introduce the limited forward jump operator

θ σ i(t) = θ (σ1(t1), . . . ,σi−1(ti−1),ti,σi+1(ti+1), . . . ,σn(tn)). (4.2)

If we apply σi to θ σ i , then we get θ σ back, i.e.,

θ σ iσi(t) = θ (σ1(t1), . . . ,σi−1(ti−1),σi(ti),σi+1(ti+1), . . . ,σn(tn)) = θ σ (t).

The following definition of the Laplace operator on time scales is new, and it will
serve the purpose we are looking for in this study.

DEFINITION 3. We define the Laplace operator � on time scales as

�θ =
n

∑
i=1

∂ 2θ σ i

Δit2i
=

n

∑
i=1

θ σ iΔiΔi .
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DEFINITION 4. The n -dimensional Laplace equation on time scales is defined as

�θ = 0, i.e.,
n

∑
i=1

θ σ iΔiΔi = 0. (4.3)

DEFINITION 5. Any solution of (4.3) is called harmonic. A function θ is called a
subsolution of (4.3) or subharmonic if �θ � 0. A function θ is called a supersolution
of (4.3) or superharmonic if �θ � 0.

The following theorem generalizes Theorem 1 to the multivariable case, and it is
the main result of this paper.

THEOREM 5. (Reverse Poincaré-type inequality) If θ is subharmonic, θ σ is dif-
ferentiable on Rσ , and ω ∈ W , then∫

R
Lθ (t)ω(σ(t))Δt �

∫
R
(θ 2 +Kθ )(σ(t))�ω(t)Δt, (4.4)

where
K = 2 sup

t∈Rσ
|θ (t)| = 2‖θ‖∞

and

Lθ =
n

∑
i=1

(θ σ iΔi)2 +
n

∑
i=1

θ σΔiθ σ iΔiσi .

Proof. Define ϕi := (θ σ i)2 +Kθ σ i for i ∈ {1,2, . . . ,n} . Then, by (3.3), we get

ϕΔiΔi
i = θ σ iΔiΔi

(
2θ σ iσi +K

)
+(θ σ iΔi)2 + θ σ iσiΔiθ σ iΔiσi

= θ σ iΔiΔi (2θ σ +K)+ (θ σ iΔi)2 + θ σΔiθ σ iΔiσi ,

and by applying summation, we get

n

∑
i=1

ϕΔiΔi
i = (2θ σ +K)�θ +Lθ � Lθ . (4.5)

Now fix again i ∈ {1,2, . . . ,n} . We apply Lemma 1 with ϕ replaced by ϕi and ω
replaced by ωσ i to obtain for t = (t1, . . . ,tn) with t j ∈ [a j,b j] for j ∈ {1,2, . . . ,n}\{i}

0
(ω∈W )

=
∫ bi

ai

(
ϕΔi

i ωσ i −ϕiωσ iΔi

)Δi
(t)Δti

=
∫ bi

ai

(
ϕΔiΔi

i ωσ iσi −ϕσi
i ωσ iΔiΔi

)
(t)Δti,

so
0 =

∫
R

(
ϕΔiΔi

i ωσ − ((θ σ )2 +Kθ σ)ωσ iΔiΔi

)
(t)Δt.
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Adding all those up, we get

0 =
∫

R

(
n

∑
i=1

ϕΔiΔi
i ωσ − ((θ σ )2 +Kθ σ) n

∑
i=1

ωσ iΔiΔi

)
(t)Δt

(4.5)
�
∫

R

(
Lθ ωσ − ((θ σ )2 +Kθ σ)�ω

)
(t)Δt,

showing (4.4). �

THEOREM 6. (Reverse Poincaré-type inequality) If θ is superharmonic, θ σ is
differentiable on Rσ , and ω ∈ W , then

∫
R
Lθ (t)ω(σ(t))Δt �

∫
R
(θ 2−Kθ )(σ(t))�ω(t)Δt, (4.6)

where K and Lθ are defined as in Theorem 5.

5. Examples

In this section, we state our results for the special examples T = R , T = Z , and
T = qN0 , i.e., we give corresponding inequalities in the continuous, the discrete, and the
quantum cases. While the results in the continuous case are well known (but indeed our
proofs presented here also are often simpler than the ones available in the literature),
the inequalities in the discrete case and in the quantum case are new.

5.1. Continuous case

EXAMPLE 1. If T = R in (3.2), then

2
∫ b

a
(θ ′)2(t)ω(t)dt �

∫ b

a

(
θ 2 +Kθ

)
(t)w′′(t)dt,

where
K = 2 sup

a�t�b
|θ (t)|.

This inequality represents the weighted square integral inequality for the first derivative
of a real-valued function, given in [17, Theorem 2.1].

EXAMPLE 2. If T = R in (3.7), then

2
∫ b

a
(θ ′)2(t)ω(t)dt �

∫ b

a

(
θ 2 +K(θ1 + θ2)

)
(t)w′′(t)dt,

where K is defined as in Example 1.
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EXAMPLE 3. If T = R in (4.4), then∫
R
Lθ (t)ω(t)dt �

∫
R

(
θ 2 +Kθ

)
(t)�ω(t)dt,

where

K = 2sup
t∈R

|θ (t)| = 2‖θ‖∞ and Lθ = 2
n

∑
i=1

(
∂θ
∂ ti

)2

.

5.2. Discrete case

EXAMPLE 4. If T = Z in (3.2), then

b−1

∑
t=a

(
(Δθ (t))2 +(Δθ (t +1))2)ω(t +1) �

b−1

∑
t=a

(
θ 2 +Kθ

)
(t +1)Δ2ω(t),

where
K = 2 max

a+1�t�b+1
|θ (t)|.

EXAMPLE 5. If T = Z in (3.7), then

b−1

∑
t=a

(
(Δθ (t))2 +(Δθ (t +1))2

)
ω(t +1) �

b−1

∑
t=a

(
θ 2 +K(θ1 + θ2)

)
(t +1)Δ2ω(t),

where K is defined as in Example 4.

EXAMPLE 6. If T = Z in (4.4), then

b1−1

∑
t1=a1

· · ·
bn−1

∑
tn=an

Lθ (t1, . . . ,tn)ω(t1 +1, . . . ,tn +1)

�
b1−1

∑
t1=a1

· · ·
bn−1

∑
tn=an

(
θ 2 +Kθ

)
(t1 +1, . . . ,tn +1)�ω(t1, . . . ,tn),

where
K = 2 max

ai+1�ti�bi+1
1�i�n

|θ (t1, . . . ,tn)| = 2‖θ‖∞,

Lθ (t1, . . . ,tn) =
n

∑
i=1

(θ (t1 +1, . . . ,tn +1)−θ (t1 +1, . . . ,ti, . . . ,tn +1))2

+
n

∑
i=1

(θ (t1 +1, . . . ,ti +2, . . . ,tn +1)−θ (t1 +1, . . . ,tn +1))2 ,

and

�ω(t1, . . . ,tn) = ω(t1 +1, . . . ,ti +2, . . . ,tn +1)
−2ω(t1 +1, . . . ,tn +1)+ ω(t1 +1, . . . ,ti, . . . ,tn +1).
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5.3. Quantum calculus case

EXAMPLE 7. If T = qN0 with q > 1 and a = qα , b = qβ in (3.2), then

β−1

∑
k=α

q
(
θ (qk+1)−θ (qk)

)2 +
(
θ (qk+2)−θ (qk+1)

)2
qk+1 ω(qk+1)

�
β−1

∑
k=α

(
θ 2 +Kθ

)
(qk+1)

ω(qk+2)− (q+1)ω(qk+1)+qω(qk)
qk+1 ,

where
K = max

α+1�k�β+1

∣∣∣θ (qk)
∣∣∣ .

EXAMPLE 8. If T = qN0 with q > 1 and a = qα , b = qβ in (3.7), then

β−1

∑
k=α

q
(
θ (qk+1)−θ (qk)

)2 +
(
θ (qk+2)−θ (qk+1)

)2
qk+1 ω(qk+1)

�
β−1

∑
k=α

(
θ 2 +K(θ1 + θ2)

)
(qk+1)

ω(qk+2)− (q+1)ω(qk+1)+qω(qk)
qk+1 ,

where K is defined as in Example 7.

EXAMPLE 9. If T = qN0 with q > 1 and ai = qαi , bi = qβi , 1 � i � n , in (4.4),
then

β1−1

∑
k1=α1

· · ·
βn−1

∑
kn=αn

q

n
∑
i=1

ki
Lθ (qk1 , . . . ,qkn)ω(qk1+1, . . . ,qkn+1)

�
β1−1

∑
k1=α1

· · ·
βn−1

∑
kn=αn

q

n
∑
i=1

ki (
θ 2 +Kθ

)
(qk1+1, . . . ,qkn+1)�ω(qk1 , . . . ,qkn),

where
K = 2 max

αi+1�ki�βi+1
1�i�n

∣∣∣θ (qk1 , . . . ,qkn)
∣∣∣= 2‖θ‖∞,

Lθ (qk1 , . . . ,qkn) =
n

∑
i=1

{(
θ (qk1+1, . . . ,qkn+1)−θ (qk1+1, . . .qki , . . . ,qkn+1)

)2
q2ki(q−1)2

+

(
θ (qk1+1, . . . ,qki+2, . . . ,qkn+1)−θ (qk1+1, . . . ,qkn+1)

)2
q2ki+1(q−1)2

}
,

and

�ω(qk1 , . . . ,qkn) =
1

q2ki+1(q−1)2

{
ω(qk1+1, . . . ,qki+2, . . . ,qkn+1)

−(1+q)ω(qk1+1, . . .qkn+1)+qω(qk1+1, . . . ,qki , . . . ,qkn+1)
}

.
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6. Conclusion

The time scales Laplacian was introduced in this paper. Subharmonic and super-
harmonic functions on time scales were defined. Weighted energy estimates have been
developed for subharmonic and superharmonic functions on time scales. To accomplish
this task, first we established estimates (3.2) and (3.5) for convex and concave functions,
respectively, on an arbitrary time scale. Similar energy estimates have been devel-
oped in [4] for 4-convex functions on time scales having constant graininess functions.
Moreover, we have discussed particular cases of the inequalities presented in Sections
3 and 4 by considering different time scales. When we take T = R , then estimate (3.2)
in Theorem 1 reduces to [17, estimate (2.3)]. The continuous case of superharmonic
function resembles the reverse Poincaré-type inequality presented in [19,20] for the dif-
ference of superharmonic functions. The other estimates for the continuous, discrete,
quantum, and general time scales cases are new in the literature.
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