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INEQUALITIES FOR WEIGHTED SPACES WITH VARIABLE EXPONENTS
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Abstract. In this article we obtain an “off-diagonal” version of the Fefferman-Stein vector-
valued maximal inequality on weighted Lebesgue spaces with variable exponents. As an ap-
plication of this result and the atomic decomposition developed in [16] we prove, for certain ex-
ponents q(·) in P log(Rn) and certain weights ω , that the Riesz potential Iα , with 0 < α < n ,

can be extended to a bounded operator from Hp(·)
ω (Rn) into Lq(·)

ω (Rn) , for 1
p(·) := 1

q(·) + α
n .

1. Introduction

Classical Hardy spaces Hp(Rn) , 0< p < ∞ , were defined by Stein and Weiss [32].
Afterward, Fefferman and Stein [11] introduced real variable methods into this subject
and characterized the Hardy spaces by means of maximal functions. One of the most
important applications of Hardy spaces is that they are good substitutes of Lebesgue
spaces when p � 1. For instance, when p � 1, it is well known that Hilbert transform
is not bounded on Lp(R) ; however, it is bounded on Hardy spaces Hp(R) .

The spaces Hp(Rn) can also be characterized by atomic decompositions [3, 21]
and molecular decompositions [33]. These decompositions allow to study the behavior
of certain operators on Hp(Rn) by focusing one’s attention on individual atoms. In
principle, the continuity of an operator T on Hp(Rn) can often be proved by estimating
Ta when a(·) is an atom. In [4] was observed that, in general, the atoms are not
mapped into atoms. However, for many convolution operators – like singular integrals
or fractional type operators – m = Ta behaves like an atom. These functions m were
called molecules, their properties as well as the molecular characterization of Hp(Rn)
were established in [33]. Then, in essence, the continuity of an operator from Hardy
spaces into Hardy spaces reduces to showing that it maps atoms into molecules.

With respect to the behavior of Riesz potential Iα (0 < α < n ) on classical Hardy
spaces, Stein and Weiss [32] used the theory of harmonic functions of several variables
to prove that the operator Iα is bounded from H1(Rn) into L

n
n−α (Rn) . Taibleson and

Weiss [33], by means of the molecular decomposition of Hardy spaces, obtained the
boundedness of the Riesz potential Iα from Hp(Rn) into Hq(Rn), for 0 < p � 1 and
1
q = 1

p − α
n ; Krantz independently obtained the same result in [20] by doing use of the

atomic decomposition and of the maximal function characterization of Hp(Rn) .
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The weighted Lebesgue spaces Lp
w(Rn) are a generalization of the classical Lebes-

gue spaces Lp(Rn) , replacing the Lebesgue measure dx by the measure w(x)dx , where
w is a non-negative measurable function. Then one can define the weighted Hardy
spaces Hp

w(Rn) by generalizing the definition of Hp(Rn) (see [34]). The atomic char-
acterization of Hp

w(Rn) has been given in [12] and [34]. The molecular characteri-
zation of Hp

w(Rn) was developed independently by Li and Peng in [23] and by Lee
and Lin in [22]. In both works the authors obtained the boundedness of the classi-
cal singular integrals on Hp

w for certain weights w . Ding, Lee and Lin in [10] stud-
ied homogeneous fractional operators TΩ,α (where TΩ,α = Iα if Ω ≡ 1) and gave the
Hp

wp(Rn)−Lq
wq(Rn) boundedness of TΩ,α by the weighted atomic decomposition ob-

tained in [12,22]. They also obtained, applying the weighted atom-molecule theory de-
veloped in [12, 22], the Hp

wp(Rn)−Hq
wq(Rn) boundedness of TΩ,α . The author in [29],

using a weighted molecular decomposition different from those given in [23, 22], ob-
tained the Hp

wp(Rn)−Hq
wq(Rn) boundedness of the Riesz potential Iα .

The Lebesgue spaces with variable exponent on Rn are a generalization of the
classical Lp(Rn) spaces, via replacing the constant exponent p with an exponent func-
tion p(·) : Rn → (0,∞) , i.e.: Lp(·)(Rn) consists of all measurable functions f such
that ∫

Rn
| f (x)|p(x) dx < +∞.

These spaces were first studied by Orlicz [26] in 1931. Sixty years later, it appears
the foundational paper of Kováčik and Rákosnı́k [19] of this topic, and then systemat-
ically developed in [8, 6]. In this setting, the theory of Hardy type spaces received a
considerable impetus.

The theory of variable exponent Hardy spaces Hp(·)(Rn) was developed inde-
pendently by Nakai and Sawano in [25] and by Cruz-Uribe and Wang in [7]. Both
theories prove equivalent definitions in terms of maximal operators using different ap-
proaches. In [25, 7], one of their main goals is the atomic decomposition of elements
in Hp(·) , as an application of the atomic decomposition they proved that singular inte-
grals are bounded on Hp(·) . Later in [30], the author jointly with Urciuolo proved the
Hp(·)−Lq(·) boundedness of certain generalized Riesz potentials and the Hp(·)−Hq(·)
boundedness of Riesz potential via the infinite atomic and molecular decomposition
developed in [25]. In [28], the author gave another proof of the results obtained in [30],
but by using the finite atomic decomposition developed in [7].

Others Hardy type spaces are the Orlicz-slice Hardy spaces (see [35]). Kwok-Pun
Ho [18] gave, using the extrapolation theory for Hardy type spaces, mapping properties
of fractional integral operators on Orlicz-slice Hardy spaces.

Recently, Kwok-Pun Ho [16] developed the weighted theory for variable Hardy
spaces on Rn . He established the atomic decompositions for the weighted Hardy spaces

with variable exponents Hp(·)
ω (Rn) and also revealed some intrinsic structures of atomic

decomposition for Hardy type spaces. His results generalize the infinite atomic decom-
positions obtained in [12, 1, 34, 25].

The main results of this work are contained in Theorems 3 and 4 below. The
first result concerns to an “off-diagonal” version of the Fefferman-Stein vector-valued
maximal inequality on weighted variable Lebesgue spaces (originally due to Harboure,
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Macı́as and Segovia [14]). Our second result states, for certain exponent functions q(·)
and certain weights ω , the boundedness of Riesz potential Iα from Hp(·)

ω into Lp(·)
ω

where 0 < α < n and 1
p(·) := 1

q(·) + α
n . This result is achieved via the off-diagonal

Fefferman-Stein inequality (Theorem 3), the atomic decomposition established in [16],
and the following additional assumption: for every cube Q ⊂ Rn

‖χQ‖L
q(·)
ω

≈ |Q|−α/n‖χQ‖L
p(·)
ω

. (1)

If ω ≡ 1 and q(·) is log-Hölder continuous (locally and at infinite), then (1) holds.
This case was proved in [30]. In this article we will give non trivial examples of power
weights satisfying (1). So, (1) is an admissible hypothesis.

This paper is organized as follows. Section 2 gives the definition of weighted

variable Lebesgue spaces Lp(·)
ω and weighted variable Hardy spaces Hp(·)

ω and some of
their preliminary results. Section 3 presents some basics properties of the set of weights

Wp(·) used to define Hp(·)
ω . The off-diagonal version of the Fefferman-Stein inequality

on weighted variable Lebesgue spaces is established in Section 4. The Hp(·)
ω − Lq(·)

ω
boundedness of Riesz potential Iα is proved in Section 5. Finally, Section 6 gives non
trivial examples of power weights satisfying (1).

NOTATION. The symbol A � B stands for the inequality A � cB for some positive
constant c . The symbol A ≈ B stands for B � A � B . We denote by Q(z,r) the cube
centered at z ∈ R

n with side lenght r . Given a cube Q = Q(z,r) , we set kQ = Q(z,kr)
and �(Q) = r . For a measurable subset E ⊆Rn we denote by |E| and χE the Lebesgue
measure of E and the characteristic function of E respectively. Given a real number
s � 0, we write 	s
 for the integer part of s . As usual we denote with S (Rn) the space
of smooth and rapidly decreasing functions and with S ′(Rn) the dual space. If β is
the multiindex β = (β1, . . . ,βn) , then |β | = β1 + . . .+ βn.

2. Preliminaries

Let p(·) : R
n → (0,∞) be a measurable function. Given a measurable set E , let

p−(E) = ess inf
x∈E

p(x), and p+(E) = esssup
x∈E

p(x).

When E = Rn , we will simply write p− := p−(Rn) and p+ := p+(Rn) .
Given a measurable function f on Rn , define the modular ρ associated with p(·)

by

ρ( f ) =
∫

Rn
| f (x)|p(x)dx.

We define the variable Lebesgue space Lp(·) = Lp(·)(Rn) to be the set of all measurable
functions f such that, for some λ > 0, ρ ( f/λ ) < ∞ . This becomes a quasi normed
space when equipped with the Luxemburg norm

‖ f‖Lp(·) = inf{λ > 0 : ρ ( f/λ ) � 1} .
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Given a weight ω , i.e.: a locally integrable function on Rn such that 0 < ω(x) < ∞
almost everywhere, we define the weighted variable Lebesgue space Lp(·)

ω as the set of

all measurable functions f : Rn → C such that ‖ fω‖Lp(·) < ∞ . If f ∈ Lp(·)
ω , we define

its quasi-norm by
‖ f‖

Lp(·)
ω

:= ‖ fω‖Lp(·) .

LEMMA 1. Given a measurable function p(·) : Rn → (0,∞) with 0 < p− � p+ <
∞ and a weight ω , then for every s > 0 ,

‖ f‖s

Lp(·)
ω

= ‖| f |s‖
L

p(·)/s
ωs

.

Proof. The condition p+ < ∞ implies that |{x : p(x) = ∞}| = 0. Then, for every
s > 0,

‖| f |s‖
L

p(·)/s
ωs

= inf

{
λ > 0 :

∫ ( | f (x)|ω(x)
λ 1/s

)p(x)

dx � 1

}

= inf

{
μ s > 0 :

∫ ( | f (x)|ω(x)
μ

)p(x)

dx � 1

}
= ‖ f‖s

Lp(·)
ω

. �

For a measurable function p(·) : Rn → [1,∞) , its conjugate function p′(·) is de-
fined by 1

p(x) + 1
p′(x) = 1. We have the following generalization of Hölder’s inequality

and an equivalent expression for the Lp(·)
ω -norm.

LEMMA 2. (Hölder’s inequality) Let p(·) : Rn → [1,∞) be a measurable function
and ω be a locally integrable function such that 0 < ω(x) < ∞ almost everywhere.
Then, there exists a constant C > 0 such that∫

Rn
| f (x)g(x)|dx � C‖ f‖

L
p(·)
ω

‖g‖
Lp′(·)

ω−1
.

Proof. The lemma follows from [8, Lemma 3.2.20]. �

PROPOSITION 1. Let p(·) : Rn → [1,∞) be a measurable function and ω be a
locally integrable function such that 0 < ω(x) < ∞ almost everywhere. Then

‖ f‖
L

p(·)
ω

≈ sup

{∫
Rn

| f (x)g(x)|dx : ‖g‖
Lp′(·)

ω−1

� 1

}
.

Proof. The proposition follows from [8, Corollary 3.2.14]. �
Now, we briefly present the basics of weighted variable Hardy spaces theory and

recall the atomic decomposition developed by K.-P. Ho in [16].
We introduce the weights used in [16] to define weighted Hardy spaces with vari-

able exponents.
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DEFINITION 1. Let p(·) : Rn → (0,∞) be a measurable function with 0 < p− �
p+ < ∞ . We define Wp(·) as the set of all weights ω such that

(i) there exists 0 < p∗ < min{1, p−} such that ‖χQ‖L
p(·)/p∗
ω p∗

< ∞, and

‖χQ‖L(p(·)/p∗)′
ω−p∗

< ∞, for all cube Q;

(ii) there exist κ > 1 and s > 1 such that Hardy-Littlewood maximal

operator M is bounded on L(sp(·))′/κ
ω−κ/s .

REMARK 1. In [16, Definition 2.3], the author considers p∗ = min{1, p−} . We
observe that the whole theory is still valid if we take 0 < p∗ < min{1, p−} instead of
p∗ = min{1, p−} . This slight modification allows us to compare the sets Wq(·) and
Wp(·) related by 1

p(·) − 1
q(·) = α

n with 0 < α < n (see Proposition 3 below).

For a measurable function p(·) : Rn → (0,∞) such that 0 < p− � p+ < ∞ and
ω ∈ Wp(·) , in [16] the author give a variety of distinct approaches, based on differing

definitions, all lead to the same notion of weighted variable Hardy space Hp(·)
ω .

We recall some terminologies and notations from the study of maximal functions.
Given N ∈ N , define

FN =

{
ϕ ∈ S (Rn) : ∑

|β |�N

sup
x∈Rn

(1+ |x|)N
∣∣∣∂ β ϕ(x)

∣∣∣� 1

}
.

For any f ∈ S ′(Rn) , the grand maximal function of f is given by

M f (x) = sup
t>0

sup
ϕ∈FN

|(ϕt ∗ f )(x)| ,

where ϕt(x) = t−nϕ(t−1x) .

DEFINITION 2. Let p(·) : Rn → (0,∞) , 0 < p− � p+ < ∞ , and ω ∈ Wp(·) . The

weighted variable Hardy space Hp(.)
ω (Rn) is the set of all f ∈ S ′(Rn) for which

‖M f‖
Lp(·)

ω
< ∞ . In this case we define ‖ f‖

Hp(·)
ω

:= ‖M f‖
Lp(·)

ω
.

DEFINITION 3. Let p(·) : Rn → (0,∞) , 0 < p− � p+ < ∞ , p0 > 1, and ω ∈
Wp(·) . Fix an integer d � 1. A function a(·) on Rn is called a ω − (p(·), p0,d) atom
if there exists a cube Q such that

a1) supp(a) ⊂ Q ,

a2) ‖a‖Lp0 � |Q|
1
p0

‖χQ‖
L
p(·)
ω

,

a3)
∫

xβ a(x)dx = 0 for all |β | � d .
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Next, we introduce two indices, which are related to the intrinsic structure of the
atomic decomposition of Hp(·)

ω . Given ω ∈ Wp(·) , we write

sω, p(·) := inf
{

s � 1 : M is bounded on L(sp(·))′
ω−1/s

}
and

Sω, p(·) :=
{

s � 1 : M is bounded on L(sp(·))′/κ
ω−κ/s for some κ > 1

}
.

Then, for every fixed s ∈ Sω, p(·) , we define

κ s
ω, p(·) := sup

{
κ > 1 : M is bounded on L(sp(·))′/κ

ω−κ/s

}
.

The index κ s
ω, p(·) is used to measure the left-openness of the boundedness of M on the

family
{

L(sp(·))′/κ
ω−κ/s

}
κ>1

. The index sω, p(·) is related to the vanishing moment condition

and the index κ s
ω, p(·) is related to the size condition of the atoms (see [16, Theorems

5.3 and 6.3]).
The following three results are crucial in obtaining the Hp(·)

ω −Lq(·)
ω boundedness

of the Riesz potential. The first is a supporting result [16, Lemma 5.4], the second is
a combination of [16, Theorem 6.2] and [27, Theorem 3.1], the last one was proved
in [17, Proposition 2.1].

PROPOSITION 2. ( [16, Lemma 5.4]) Let p(·) : Rn → (0,∞) be a measurable
function with 0 < p− � p+ < ∞ and ω ∈ Wp(·) . Let s ∈ Sω, p(·) and {λ j} j∈N be a
sequence of scalars. If r > (κ s

ω, p(·))
′ , {b j} j∈N is a sequence in Lr such that, for every

j , supp(b j) is contained in a cube Qj and

‖b j‖Lr � Aj|Qj|1/r,

where the A j ’s are positive scalars for all j ∈ N , then∥∥∥∥∥∑
j∈N

λ jb j

∥∥∥∥∥
Lsp(·)

ω1/s

� C

∥∥∥∥∥∑
j∈N

Aj|λ j|χQj

∥∥∥∥∥
Lsp(·)

ω1/s

for some C > 0 independent of {λ j} j∈N , {b j} j∈N and {Aj} j∈N .

THEOREM 1. Let 1 < p0 < ∞ , p(·) : Rn → (0,∞) be a measurable function
with 0 < p− � p+ < ∞ and ω ∈ Wp(·) . Then, for every s > 1 fixed, and every

f ∈ Hp(·)
ω (Rn)∩ Ls(Rn) there exist a sequence of scalars {λ j} , a sequence of cubes

{Qj} and ω − (p(·), p0,	nsω, p(·)−n
) atoms a j supported on Qj such that

∥∥∥∥∥∥∑j

(
|λ j|

‖χQj‖Lp(·)
ω

)θ

χQj

∥∥∥∥∥∥
1/θ

L
p(·)/θ
ωθ

� C‖ f‖
Hp(·)

ω
, for all 0 < θ < ∞, (2)

and f = ∑ j λ ja j converges in Ls(Rn) .
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Proof. The existence of a such atomic decomposition as well as the validity of
inequality in (2) are guaranteed by [16, Theorem 6.2]. The construction of a such
atomic decomposition is analogous to that given for classical Hardy spaces (see [31,
Chapter III]). So, following the proof in [27, Theorem 3.1], we obtain the convergence
of the atomic series to f in Ls(Rn) . �

We define the set S0(Rn) by

S0(Rn) =
{

ϕ ∈ S (Rn) :
∫

xβ ϕ(x)dx = 0, for allβ ∈ N
n
0

}
.

We say that an exponent function p(·) : Rn → (0,∞) such that 0 < p− � p+ < ∞
belongs to P log(Rn) , if there exist two positive constants C and C∞ such that p(·)
satisfies the local log-Hölder continuity condition, i.e.:

|p(x)− p(y)|� C
− log(|x− y|) , |x− y|� 1

2
,

and is log-Hölder continuous at infinity, i.e.:

|p(x)− p∞| � C∞

log(e+ |x|) , x ∈ R
n,

for some p− � p∞ � p+ .

THEOREM 2. ([17, Proposition 2.1]) Let p(·) ∈ P log(Rn) with 0 < p− � p+ <

∞ . If ω ∈ Wp(·) , then S0(Rn) ⊂ Hp(·)
ω (Rn) densely.

3. Auxiliary results

Next, we will prove two basics properties of the set Wp(·) , which will allow us to
get the main result of Section 5.

PROPOSITION 3. Let 0 < α < n and let q(·) : Rn → (0,∞) be a measurable func-
tion such that 0 < q− � q+ < ∞ . If ω ∈ Wq(·) and 1

p(·) := 1
q(·) + α

n , then ω ∈ Wp(·) .
Moreover, sω, p(·) � sω,q(·) + α

n .

Proof. By Definition 1, ω ∈ Wq(·) if and only if

(i) there exists 0 < q∗ < min{1,q−} such that ‖χQ‖Lq(·)/q∗
ωq∗

< ∞, and

‖χQ‖L(q(·)/q∗)′
ω−q∗

< ∞, for all cube Q;

(ii) there exist κ > 1 and s > 1 such that Hardy-Littlewood maximal

operator M is bounded on L(sq(·))′/κ
ω−κ/s .
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We define 1
p∗ := 1

q∗ + α
n . Since 1

p(·) − 1
q(·) = 1

p∗ − 1
q∗ , it follows that 0 < p∗ < min{1, p−}

and p∗
q∗

(
p(·)
p∗

)′
=
(

q(·)
q∗

)′
. So, from Lemma 1 and (i) above, we have

‖χQ‖
L

(
p(·)
p∗
)′

ω−p∗

= ‖χQ‖
p∗
q∗

L

p∗
q∗
(

p(·)
p∗
)′

ω−q∗

= ‖χQ‖
p∗
q∗

L

(
q(·)
q∗
)′

ω−q∗

< ∞.

Being p(·) � q(·) , by [6, Corollary 2.48], Lemma 1 and (i), we have

‖χQ‖q∗/p∗
Lp(·)/p∗

ω p∗
= ‖χQ ω p∗‖q∗/p∗

Lp(·)/p∗ � (1+ |Q|)q∗/p∗‖χQ ω p∗‖q∗/p∗
Lq(·)/p∗

= (1+ |Q|)q∗/p∗‖χQ‖L
q(·)/q∗
ωq∗

< ∞.

From (ii) follows that the maximal operator M is bounded on L(sq(·))′
ω−1/s , with s > 1.

We fix r > s+ α
n , and define q0 := r

s and 1
p0

:= 1
q0

+ α
nr . It is clear that r

p0
> 1, q0

p0
> 1

and p0
q0

(
r
p0

p(·)
)′

=
(

r
q0

q(·)
)′

= (sq(·))′ . Thus, for s̃ := r
p0

and κ̃ := q0
p0

, we obtain

‖M f‖
L

(s̃ p(·))′/κ̃
ω−κ̃/s̃

= ‖M f‖
L

(sq(·))′
ω−1/s

� C‖ f‖
L

(sq(·))′
ω−1/s

= C‖ f‖
L

(s̃p(·))′/κ̃
ω−κ̃/s̃

.

So, ω ∈ Wp(·) and sω, p(·) � sω,q(·) + α
n . �

The following necessary condition is due to Cruz-Uribe, Fiorenza and Neugebauer
(see [5, Theorem 1.5]). It should be compared to the Muckenhoupt Ap condition from
the study of weighted norm inequalities (see [13, Chapter 7]).

LEMMA 3. Given a weight ω and an exponent function p(·) : Rn → (1,∞) such

that the Hardy-Littlewood maximal operator is bounded on Lp(·)
w (Rn) , then, there exists

a positive constant C such that for every cube Q ⊂ Rn ,

‖χQ‖Lp(·)
ω

‖χQ‖Lp′(·)
ω−1

� C|Q|. (3)

DEFINITION 4. Given an exponent function p(·) : Rn → (1,∞) and a weight ω ,
we write ω ∈ Ap(·) if ω satisfies (3).

LEMMA 4. Let p(·) : Rn → (0,∞) be a measurable function with 0 < p− � p+ <
∞ . If ω ∈ Wp(·) , then, for every cube Q ⊂ Rn ,

‖χ2Q‖Lp(·)
ω

≈ ‖χQ‖Lp(·)
ω

.

Proof. By the order preserving property of the norm ‖ · ‖
Lp(·)

ω
, we have that

‖χQ‖L
p(·)
ω

� ‖χ2Q‖L
p(·)
ω

. (4)
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On the other hand, since ω ∈ Wp(·) , the maximal operator is bounded on L(sp(·))′
ω−1/s .

Then, by Lemma 3 (exchanging the roles of p(·) and p′(·)), (4) above, and Hölder’s
inequality applied to |Q| = ∫ χQ(x)dx (see Lemma 2), we have that

‖χ2Q‖1/s

Lp(·)
ω

= ‖χ2Q‖Lsp(·)
ω1/s

� C|Q|‖χ2Q‖−1

L(sp(·))′
ω−1/s

� C|Q|‖χQ‖−1

L(sp(·))′
ω−1/s

� C‖χQ‖L
sp(·)
ω1/s

= C‖χQ‖1/s

Lp(·)
ω

.

This completes the proof. �

4. Off-diagonal Fefferman-Stein inequality

We apply extrapolation techniques to obtain an “off-diagonal” version of the Fef-

ferman-Stein vector-valued maximal inequality on Lp(·)
ω . The following result general-

izes Theorem 3.1 obtained in [16].

THEOREM 3. Let 0 � α < n, 1 < u < ∞ and let q(·) : Rn → (0,∞) be a measur-
able function with 0 < q− � q+ < ∞ . If ω ∈ Wq(·) , then for 1

p(·) := 1
q(·) + α

n and any

r > sω,q(·) + α
n ,

∥∥∥∥∥∥
(

∑
j∈N

(Mα
r
f j)u

)1/u
∥∥∥∥∥∥

Lrq(·)
ω1/r

�

∥∥∥∥∥∥
(

∑
j∈N

| f j|u
)1/u

∥∥∥∥∥∥
Lrp(·)

ω1/r

, (5)

holds for all sequences of boundedmeasurable functions with compact support { f j}∞
j=1 .

Proof. Given r > sω,q(·) + α
n , from the definition of sω,q(·) , we have s > sω,q(·)

such that s+ α
n < r and M is bounded on L(sq(·))′

w−1/s (Rn) . Define

F =

⎧⎨
⎩
⎛
⎝
(

K

∑
j=1

(Mα
r
f j)u

)1/u

,

(
K

∑
j=1

| f j|u
)1/u

⎞
⎠ : K ∈ N,{ f j}K

j=1 ⊂ L∞
comp

⎫⎬
⎭ ,

where L∞
comp denotes the set of bounded functions with compact support.

Let q0 = r
s and let p0 be defined by 1

p0
:= 1

q0
+ α

nr . Since r > s + α
n we have

that 1 < p0 < nr
α . From [24, Theorem 3] follows that there exists an universal constant

C > 0 such that for any (F,G) ∈ F and any v ∈A1 (for the definition of the A1 class,
the reader may refer to [13, Chapter 7])

∫
[F(x)]q0v(x)dx � C

(∫
[G(x)]p0 [v(x)]p0/q0 dx

)q0/p0

, (6)
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since v ∈ A1 implies that v1/q0 ∈ Ap0,q0 (for the definition of the Ap,q class, see [24,
inequality (1.1)]). On the other hand, by Proposition 1, we have

‖F‖q0

Lrq(·)
ω1/r

= ‖Fq0‖
L

sq(·)
ω1/s

� C sup

{∫
Rn

|[F(x)]q0g(x)|dx : ‖g‖
L(sq(·))′

ω−1/s

� 1

}
(7)

for some constant C > 0.
Let R be the operator defined on L(sq(·))′

ω−1/s by

Rg(x) =
∞

∑
k=0

Mkg(x)
2k‖M‖k

L
(sq(·))′
ω−1/s

,

where, for k � 1, Mk denotes k iterations of the Hardy-Littlewood maximal operator
M , M0 = M , and ‖M‖

L
(sq(·))′
ω−1/s

is the operator norm of the maximal operator M on

L(sq(·))′
ω−1/s . It follows immediately from this definition that:

(i) if g is non-negative, g(x) � Rg(x) a.e. x ∈ Rn ;
(ii) ‖Rg‖

L
(sq(·))′
ω−1/s

� 2‖g‖
L

(sq(·))′
ω−1/s

;

(iii) Rg ∈ A1 with [Rg]A1 � 2‖M‖
L(sq(·))′

ω−1/s

.

Since F is non-negative, we can take the supremum in (7) over those non-negative g

only. For any fixed non-negative g ∈ L(sq(·))′
ω−1/s , by (i) above we have that

∫
[F(x)]q0g(x)dx �

∫
[F(x)]q0(Rg)(x)dx. (8)

Then (iii) and (6), and Hölder’s inequality yield

∫
[F(x)]q0(Rg)(x)dx � C

(∫
[G(x)]p0 [(Rg)(x)]p0/q0dx

)q0/p0

(9)

� C‖Gp0‖q0/p0

L
rp(·)/p0

ω p0/r

‖(Rg)p0/q0‖q0/p0

L
(rp(·)/p0)′
ω−p0/r

= C‖G‖q0

L
rp(·)
ω1/r

‖Rg‖
L

p0
q0

(
rp(·)
p0

)′
ω−q0/r

being 1
rp(·) − 1

rq(·) = 1
p0
− 1

q0
and q0 = r

s , we have p0
q0

(
r
p0

p(·)
)′

=
(

r
q0

q(·)
)′

= (sq(·))′ ,
so

= C‖G‖q0

L
rp(·)
ω1/r

‖Rg‖
L

(sq(·))′
ω−1/s

now, (ii) gives
� C‖G‖q0

L
rp(·)
ω1/r

‖g‖
L

(sq(·))′
ω−1/s

.
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Thus, (8) and (9) lead to ∫
[F(x)]q0g(x)dx � C‖G‖q0

L
rp(·)
ω1/r

, (10)

for all non-negative g with ‖g‖
L(sq(·))′

ω−1/s

� 1. Then, (7) and (10) give (5) for all finite

sequences { f j}K
j=1 ⊂ L∞

comp . Finally, by passing to the limit, we obtain (5) for all
infinite sequences { f j}∞

j=1 ⊂ L∞
comp . �

COROLLARY 1. Let 0 < α < n, q(·) : Rn → (0,∞) be a measurable function with
0 < q− � q+ < ∞ and ω ∈ Wq(·) . If 1

p(·) := 1
q(·) + α

n and ‖χQ‖L
q(·)
ω

≈ |Q|−α/n‖χQ‖L
p(·)
ω

for every cube Q, then for any sequence of scalars {λ j} j∈N , any family of cubes
{Qj} j∈N , and any θ ∈ (0,∞) fixed we have∥∥∥∥∥∥∑

j∈N

(
|λ j|χQj

‖χQj‖Lq(·)
ω

)θ
∥∥∥∥∥∥

1/θ

L
q(·)/θ
ωθ

�

∥∥∥∥∥∥∑
j∈N

(
|λ j|χQj

‖χQj‖Lp(·)
ω

)θ
∥∥∥∥∥∥

1/θ

L
p(·)/θ
ωθ

.

Proof. Since ‖χQ‖Lq(·)
ω

≈ |Q|−α/n‖χQ‖Lp(·)
ω

for every cube Q we obtain

∥∥∥∥∥∥∑j

(
|λ j|χQj

‖χQj‖Lq(·)
ω

)θ
∥∥∥∥∥∥

1/θ

L
q(·)/θ
ωθ

=

∥∥∥∥∥∥∥
⎧⎨
⎩∑

j

(
|λ j|χQj

‖χQj‖Lq(·)
ω

)θ
⎫⎬
⎭

1/θ
∥∥∥∥∥∥∥

L
q(·)
ω

�

∥∥∥∥∥∥∥
⎧⎨
⎩∑

j

(
|λ j||Qj|α/nχQj

‖χQj‖L
p(·)
ω

)θ
⎫⎬
⎭

1/θ
∥∥∥∥∥∥∥

L
q(·)
ω

,

it is easy to check that |Qj|α/nχQj (x) � Mαθ
N

(χQj )
N
θ (x) for all j and all N ∈ N , so

�

∥∥∥∥∥∥∥∥

⎧⎪⎨
⎪⎩∑

j

⎛
⎝ |λ j|Mαθ

N
(χQj )

N
θ

‖χQj‖Lp(·)
ω

⎞
⎠

θ
⎫⎪⎬
⎪⎭

1/θ
∥∥∥∥∥∥∥∥

Lq(·)
ω

=

∥∥∥∥∥∥∥
⎧⎨
⎩∑

j

⎛
⎝ |λ j|θ Mαθ

N
(χQj )

N

‖χQj‖θ
Lp(·)

ω

⎞
⎠
⎫⎬
⎭

1/θ
∥∥∥∥∥∥∥

L
q(·)
ω

=

∥∥∥∥∥∥∥
⎧⎨
⎩∑

j

⎛
⎝ |λ j|θ Mαθ

N
(χQj )

N

‖χQj‖θ
L

p(·)
ω

⎞
⎠
⎫⎬
⎭

1/N
∥∥∥∥∥∥∥

N/θ

L
Nq(·)/θ
ωθ/N

,

taking N such that N/θ > sω,q(·) + α
n , by Theorem 3, we get

�

∥∥∥∥∥∥∥
⎧⎨
⎩∑

j

⎛
⎝ |λ j|θ χQj

‖χQj‖θ
Lp(·)

ω

⎞
⎠
⎫⎬
⎭

1/N
∥∥∥∥∥∥∥

N/θ

L
Np(·)/θ
ωθ/N

=

∥∥∥∥∥∥∑j

(
|λ j|χQj

‖χQj‖Lp(·)
ω

)θ
∥∥∥∥∥∥

1/θ

L
p(·)/θ
ωθ

.
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This completes the proof. �

5. Weighted variable estimates for Riesz potential

Let 0 < α < n . The Riesz potential of order α is the fractional operator Iα defined
by

Iα f (x) =
∫

Rn
f (y)|x− y|α−ndy, x ∈ R

n, (11)

f ∈S (Rn) . A well known result of Sobolev gives the boundedness of Iα from Lp(Rn)
into Lq(Rn) for 1 < p < n

α and 1
q = 1

p − α
n . In [2] Capone, Cruz Uribe and Fiorenza

extend this result to the case of Lebesgue spaces with variable exponents Lp(·)(Rn) .
The behavior of Riesz potential on variable Hardy spaces Hp(·)(Rn) was studied by
Urciuolo and the author [30, 28].

In this section we will prove that the Riesz potential Iα is bounded from weighted
variable Hardy spaces into weighted variable Lebesgue spaces. The main tools that we
will use are Theorem 3, Corollary 1 and Theorem 1.

THEOREM 4. Let 0 < α < n, q(·) ∈ P log(Rn) with 0 < q− � q+ < ∞ , and ω ∈
Wq(·) . If 1

p(·) := 1
q(·) + α

n and ‖χQ‖L
q(·)
ω

≈ |Q|−α/n‖χQ‖L
p(·)
ω

for every cube Q, then the

Riesz potential Iα given by (11) can be extended to a bounded operator Hp(·)
ω (Rn) →

Lq(·)
ω (Rn) .

Proof. Let ω ∈ Wq(·) , by Definition 1, there exists 0 < θ < 1 such that 1
θ ∈

Sω,q(·) . Now, we take q0 > n
n−α such that q0 > θ

(
κ1/θ

ω,q(·)
)′

, and define 1
p0

:= 1
q0

+ α
n .

By Proposition 3, for 1
p(·) = 1

q(·) + α
n , we have that Wq(·) ⊂Wp(·) and sω, p(·) � sω,q(·) +

α
n . So, given f ∈ S0(Rn) , from Theorem 1 (taking s = p0 ) and since one can always
choose atoms with additional vanishing moment, we have that there exist a sequence
of real numbers {λ j}∞

j=1 , a sequence of cubes Qj = Q(z j,r j) centered at z j with side
length r j and ω − (p(·), p0,	nsω,q(·) + α −n
) atoms a j supported on Qj , satisfying

∥∥∥∥∥∥∑j

(
|λ j|

‖χQj‖Lp(·)
ω

)θ

χQj

∥∥∥∥∥∥
1/θ

L
p(·)/θ
ωθ

� ‖ f‖
Hp(·)

ω
, (12)

and f = ∑ j λ ja j converges in Lp0(Rn) . By Sobolev’s Theorem we have that Iα is
bounded from Lp0 (Rn) into Lq0 (Rn) , so

|Iα f (x)| � ∑
j
|λ j||Iαa j(x)|, a.e. x ∈ R

n.

Then

‖Iα f‖
L

q(·)
ω

�
∥∥∥∥∥∑j

|λ j|χ2Qj · Iαa j

∥∥∥∥∥
L

q(·)
ω

+

∥∥∥∥∥∑j

|λ j|χRn\2Qj
· Iαa j

∥∥∥∥∥
L

q(·)
ω

= J1 + J2, (13)
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where 2Qj = Q(z j,2r j) . To estimate J1 , we again apply Sobolev’s Theorem and obtain∥∥∥(Iαa j)θ
∥∥∥

Lq0/θ (2Qj)
=
∥∥Iαa j

∥∥θ
Lq0 (2Qj)

�
∥∥a j
∥∥θ

Lp0

� |Qj|
θ
p0∥∥χQj

∥∥
L

p(·)/θ
ωθ

�
∣∣2Qj

∣∣ θ
q0∥∥χ2Qj

∥∥
L

q(·)/θ
ωθ

,

where θ , q0 and p0 are given above. The last inequality follows from the condition
‖χQ‖Lq(·)

ω
≈ |Q|−α/n‖χQ‖Lp(·)

ω
assumed for every cube Q and Lemma 4 applied to the

exponent q(·) . Since 1
θ ∈ Sω,q(·) and q0 > θ

(
κ1/θ

ω,q(·)
)′

, we apply the θ -inequality and

Proposition 2 with b j =
(
χ2Qj · Iα(a j)

)θ
and Aj =

∥∥χ2Qj

∥∥−1

L
q(·)/θ
ωθ

to obtain

J1 �
∥∥∥∥∥∑j

(|λ j|χ2Qj · Iαa j
)θ
∥∥∥∥∥

1/θ

L
q(·)/θ
ωθ

�

∥∥∥∥∥∥∥∑j

⎛
⎝ |λ j|∥∥χ2Qj

∥∥
Lq(·)

ω

⎞
⎠

θ

χ2Qj

∥∥∥∥∥∥∥
1/θ

Lq(·)/θ
ωθ

.

Being χ2Qj � M(χQj )
2 , by Lemma 4 and Theorem 3, we have

J1 �

∥∥∥∥∥∥∥∥

⎧⎪⎨
⎪⎩∑

j

⎛
⎜⎝ |λ j|θ/2∥∥χQj

∥∥θ/2

L
q(·)
ω

M(χQj )

⎞
⎟⎠

2⎫⎪⎬
⎪⎭

1/2∥∥∥∥∥∥∥∥

2/θ

L2q(·)/θ
ωθ/2

�

∥∥∥∥∥∥∑j

(
|λ j|

‖χQj‖L
q(·)
ω

)θ

χQj

∥∥∥∥∥∥
1/θ

Lq(·)/θ
ωθ

.

Corollary 1 and (12) give

J1 �

∥∥∥∥∥∥∑j

(
|λ j|

‖χQj‖L
p(·)
ω

)θ

χQj

∥∥∥∥∥∥
1/θ

Lp(·)/θ
ωθ

� ‖ f‖
H

p(·)
ω

. (14)

Now, we estimate J2 . Let d = 	nsω,q(·)+α−n
 , and let a j(·) be a ω−(p(·), p0,d)
atom supported on the cube Qj = Q(z j,r j) . In view of the moment condition of a j(·)
we obtain

Iαa j(x) =
∫

Qj

(|x− y|α−n−qd(x,y)
)
a(y)dy, for all x /∈ 2Qj,

where qd is the degree d Taylor polynomial of the function y → |x− y|α−n expanded
around z j . By the standard estimate of the remainder term of the Taylor expansion,
there exists ξ between y and z j such that

∣∣|x− y|α−n−qd(x,y)
∣∣� C|y− z j|d+1|x− ξ |−n+α−d−1,
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for any y ∈ Qj and any x /∈ 2Qj , since |x− ξ |� |x− z j|
1+

√
n

, we get

∣∣|x− y|α−n−qd(x,y)
∣∣� Crd+1|x− z j|−n+α−d−1,

this inequality and the condition a2) of the atom allow us to conclude that

|Iαa j(x)| � ‖a j‖1 rd+1|x− z j|−n+α−d−1 (15)

� |Qj|1−
1
p0 ‖a j‖p0r

d+1|x− z j|−n+α−d−1

� rn+d+1

‖χQj‖L
p(·)
ω

|x− z j|−n+α−d−1

�

[
M αn

n+d+1
(χQj )(x)

] n+d+1
n

‖χQj‖L
p(·)
ω

, for all x /∈ 2Qj.

We put r = n+d+1
n , thus (15) leads to

J2 �

∥∥∥∥∥∥
{

∑
j

|λ j|
‖χQj‖Lp(·)

ω

[
Mα

r
(χQj )

]r}1/r
∥∥∥∥∥∥

r

L
rq(·)
ω1/r

.

Since

r =
n+ 	nsω,q(·) + α −n
+1

n
> sω,q(·) +

α
n

,

to apply Theorem 3, with u = r , we obtain

J2 �

∥∥∥∥∥∥
{

∑
j

|λ j|
‖χQj‖L

p(·)
ω

χQj

}1/r
∥∥∥∥∥∥

r

L
rp(·)
ω1/r

=

∥∥∥∥∥∑j

|λ j|
‖χQj‖L

p(·)
ω

χQj

∥∥∥∥∥
L

p(·)
ω

.

Being 0 < θ < 1, the θ -inequality and (12) give

J2 �

∥∥∥∥∥∥∑j

(
|λ j|

‖χQj‖L
p(·)
ω

)θ

χQj

∥∥∥∥∥∥
1/θ

L
p(·)/θ
ωθ

� ‖ f‖
H

p(·)
ω

. (16)

Hence, (13), (14) and (16) yield

‖Iα f‖
L

q(·)
ω

� ‖ f‖
H

p(·)
ω

, for all f ∈ S0(Rn).

Finally, by taking into account that p(·) ∈ P log(Rn) , 0 < p− � p+ < ∞ and
ω ∈ Wp(·) , the theorem follows from Theorem 2. �
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6. Example: power weights

In this section we give examples of power weights w satisfying, for certain expo-
nents q(·) , that: for every cube Q ⊂ R

n

‖χQ‖L
q(·)
ω

≈ |Q|−α/n‖χQ‖L
p(·)
ω

,

where 0 < α < n and 1
p(·) = 1

q(·) + α
n . For them, we first introduce the reverse Hölder

condition for a weight w .
A weight ω satisfies the reverse Hölder inequality with exponent s > 1, denoted

by ω ∈ RHs , if there exists a constant C > 0 such that for every cube Q ,

(
1
|Q|
∫

Q
[ω(x)]sdx

) 1
s

� C
1
|Q|
∫

Q
ω(x)dx;

the best possible constant is denoted by [ω ]RHs . We observe that if ω ∈ RHs , then by
Hölder’s inequality, ω ∈ RHt for all 1 < t < s , and [ω ]RHt � [ω ]RHs .

LEMMA 5. Let p(·) ∈ P log(Rn) with 0 < p− � p+ < ∞ , γ ∈ R , and let f ∈
L1

loc(R
n) be a function such that | f (x)| � (1+ |x|)γ . Then ‖ f‖Lp(·)(Rn) ≈ ‖ f‖Lp∞ (Rn) .

Proof. We take s > 1/p− . Then, by applying [9, Lemma 2.7] with ω ≡ 1, we get

‖ f‖1/s

Lp(·) = ‖| f |1/s‖Lsp(·) ≈ ‖| f |1/s‖Lsp∞ = ‖ f‖1/s
Lp∞ . �

The following results talk about the size of the cubes in the Lp(·)
ω -norm. We recall

that �(Q) denotes the side length of the cube Q .

LEMMA 6. Let p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ and p∞ = p− , and let
ω be a weight such that ω(x) � (1+ |x|)γ for some γ ∈R . If ω ∈ RHp+ , then for every
cube Q we have

‖χQ‖Lp(·)
ω

≈

⎧⎪⎨
⎪⎩

[ω p−(Q)]1/p− , if �(Q) > 1

[
ω p−(Q)(Q)

]1/p−(Q)
, if �(Q) � 1

. (17)

Proof. Applying Lemma 5, with f = χQ ω , we obtain

‖χQ‖L
p(·)
ω

= ‖χQ ω‖Lp(·) ≈ [ω p−(Q)]1/p− , (18)

for all cube Q .
From (18) and since 1 < p− � p−(Q) , by Hölder’s inequality, we have

‖χQ‖p−
L

p(·)
ω

≈
∫

Q
[ω(x)]p−dx �

[
ω p−(Q)(Q)

] p−
p−(Q) ‖χQ‖( p−(Q)

p−
)′ �

[
ω p−(Q)(Q)

] p−
p−(Q)

,
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if �(Q) � 1. So,

‖χQ‖Lp(·)
ω

�
[
ω p−(Q)(Q)

] 1
p−(Q)

, (19)

holds for every cube Q with �(Q) � 1.
On the other hand, ω ∈ RHp+ and p−(Q) � p+ , then ω ∈ RHp−(Q) and(

1
|Q|
∫

Q
[ω(x)]p−(Q)dx

)1/p−(Q)

� C|Q|−1
∫

Q
ω(x)dx

� C|Q|−1‖χQ ω‖Lp(·)‖χQ‖Lp′(·) ,

[25, Lemma 2.2] gives ‖χQ‖Lp′(·) ≈ |Q|1/p′+(Q) if �(Q) � 1, being p′+(Q) = (p−(Q))′ ,
we obtain [

ω p−(Q)(Q)
]1/p−(Q)

� ‖χQ‖L
p(·)
ω

, if �(Q) � 1. (20)

Finally, (18), (19) and (20) give (17). �

COROLLARY 2. Let p(·) ∈P log(Rn) with 0 < p− � p+ < ∞ and p∞ = p− , and
let s > 1/p− . If ω(x) � (1+ |x|)γ for some γ ∈ R and ω1/s ∈ RHsp+ , then (17) holds.

Proof. Since (sp(·))+ = sp+ , (sp(·))− = sp− and (sp(·))−(Q)= sp−(Q) , Lemma
6, applied to sp(·) and ω1/s , gives

‖χQ‖1/s

L
p(·)
ω

= ‖χQ‖Lsp(·)
ω1/s

≈

⎧⎪⎨
⎪⎩

[ω p−(Q)]1/sp− , if �(Q) > 1

[
ω p−(Q)(Q)

]1/sp−(Q)
, if �(Q) � 1

.

So, the lemma follows. �

LEMMA 7. Let p(·) ∈ P log(Rn) with 1 < p− � p+ < ∞ and p∞ = p+ . If ω ∈
RHp+ , then for every cube Q we have

‖χQ‖Lp(·)
ω

≈

⎧⎪⎨
⎪⎩

[ω p+(Q)]1/p+ , if �(Q) > 1

[
ω p+(Q)(Q)

]1/p+(Q)
, if �(Q) � 1

. (21)

Proof. By hypothesis p∞ = p+ , thus there exists C∞ > 0 such that

0 � p+ − p(x) � C∞

log(e+ |x|) , for all x ∈ R
n.

Let λ = [ω p+(Q)]1/p+ , by applying [5, Lemma 2.8] with t = 2/p− , we have

∫
Q

(
ω(x)

λ

)p(x)

dx � C2/p−

∫
Q

(
ω(x)

λ

)p+

dx+
∫
Q

dx
(e+ |x|)2n

� C2/p− +
∫

Rn

dx
(e+ |x|)2n =: M < ∞.
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So, from the definition of the “norm” ‖ · ‖
L

p(·)
ω

we have

‖χQ‖Lp(·)
ω

� max{M1/p− ,M1/p+}[ω p+(Q)]1/p+ , for all cube Q. (22)

Now, if �(Q) > 1, the condition ω ∈ RHp+ , Hölder’s inequality and [25, Lemma 2.2]
give (

1
|Q|
∫

Q
[ω(x)]p+dx

)1/p+

� C
|Q|
∫

Q
ω(x)dx

� C
|Q|‖χQ ω‖Lp(·)‖χQ‖Lp′(·)

� C
|Q|‖χQ ω‖Lp(·) |Q|1− 1

p+ .

Consequently,
[ω p+(Q)]1/p+ � C‖χQ‖L

p(·)
ω

, if �(Q) > 1. (23)

Then, (22) and (23) give

‖χQ‖Lp(·)
ω

≈ [ω p+(Q)]1/p+ , if �(Q) > 1. (24)

Now, we study the case �(Q) � 1. It is easy to check that

0 � p+(Q)− p(x) � C
log(e+ |x|) , for all x ∈ Q.

Since 1 < p+(Q) � p+ , we have that ω ∈ RHp+(Q) . Then, by reasoning as above, we
get

‖χQ‖Lp(·)
ω

≈
[
ω p+(Q)(Q)

]1/p+(Q)
, if �(Q) � 1. (25)

Finally, (24) and (25) give (21). �

COROLLARY 3. Let p(·) ∈P log(Rn) with 0 < p− � p+ < ∞ and p∞ = p+ , and
let s > 1/p− . If ω1/s ∈ RHsp+ , then (21) holds.

Proof. The proof follows from Lemmas 1 and 7. �
Now, we are in a position to present our example.

EXAMPLE 1. For γ >−n , let wγ (x) = |x|γ with x∈Rn\{0} . From the estimates
obtained in [13, Example 7.1.6, pp. 505], we observe that

ωγ ∈
⋂
t>1

RHt , if γ � 0 (26)

and
ωγ ∈

⋂
1<t<n/|γ|

RHt , if −n < γ < 0. (27)
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Moreover, for 0 � α < n , 0 < p < n
α , 1

q = 1
p − α

n and each cube Q we have that

[ω p
γ (Q)]−1/p[ωq

γ (Q)]1/q = [ωγ p(Q)]−1/p[ωγq(Q)]1/q ≈ |Q|−α/n, for every γ � 0
(28)

and

[ω p
γ (Q)]−1/p[ωq

γ (Q)]1/q ≈ |Q|−α/n, for every −n < γ < 0 with q <
n
|γ| .

Let q(·) ∈ P log(Rn) with 0 < q∞ = q− � q+ < ∞ , and let p(·) be defined by
1

p(·) := 1
q(·) + α

n . If γ � 0, then, by (28) and Corollary 2 (first applied to q(·) and then

to p(·)), we get

‖χQ‖L
q(·)
ωγ

≈ |Q|−α/n‖χQ‖L
p(·)
ωγ

.

It is clear that q′(·) ∈ P log(Rn) , 0 < q′− � q′+ = q′∞ < ∞ , q′+ = (q−)′ and q′+(Q) =
(q−(Q))′ . Then for every 0 � γ < n

q′+
, by (26) and Corollary 2; and (27) and Corollary

3 (applied to ωγ and q(·) ; and ω−γ and q′(·) respectively), we obtain that

‖χQ‖L
q(·)
ωγ

‖χQ‖
L

(q(·))′
ω−γ

≈

⎧⎪⎪⎨
⎪⎪⎩

[
ωq−

γ (Q)
]1/q− [ωq′+−γ (Q)]1/q′+ , if �(Q) > 1

[
ωq−(Q)

γ (Q)
]1/q−(Q) [

ωq′+(Q)
−γ (Q)

]1/q′+(Q)
, if �(Q) � 1

⎫⎪⎪⎬
⎪⎪⎭

≈ |Q|,

for all cube Q⊂Rn , where the last estimate follows from [13, Example 7.1.6, pp. 505].
In particular, for s > 1/q− and 0 � γ < sn

(sq(·))′+ , we have

‖χQ‖L
sq(·)
ωγ/s

‖χQ‖L(sq(·))′
ω−γ/s

≈ |Q|.

Since ω1/s
±γ = ω±γ/s , by [5, Theorem 1.5] we have that the maximal operator M is

bounded on L(sq(·))′
ω−1/s

γ
. By the left-openness property of the set A(sq(·))′ (see defini-

tion 4 and [15, Theorem 3.3]), it follows that there exists a constant κ > 1 such that

the maximal operator M is bounded on L(sq(·))′/κ
ω−κ/s

γ
. So, ωγ ∈ Wq(·) and ‖χQ‖Lq(·)

ωγ
≈

|Q|−α/n‖χQ‖Lp(·)
ωγ

for every cube Q ⊂ Rn .
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