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CONVEXITY PROPERTIES OF AREA

INTEGRAL MEANS OVER THE ANNULI

YUCONG DUAN AND CHUNJIE WANG ∗

(Communicated by I. Perić)

Abstract. For positive numbers t, p,q,c and an analytic function f (z) in an annulus R1 < |z| <
R2 , let Mt,ϕ,q,c( f ,r) be the area integral means of f with respect to the weighted area measure

ϕ ′(|z|q)|z|q−2 dA(z) , where R1 � c < R2 . We show that Mt,ϕ,q,c( f ,r)
1
p is a convex function of

r if f and ϕ satisfy certain conditions. The convexities of logMt,ϕ,q,c( f ,r) in r and log r can
be obtained as special cases.

1. Introduction

Let 0 � R1 < R2 � ∞ , and let H denote the space of all functions f (z) analytic
in R1 < |z|< R2 and continuous on R1 � |z|< R2 . For any f ∈ H and 0 < t < ∞ , the
classical integral means of f are defined by

Mt( f ,r) =
1
2π

∫ 2π

0
| f (reiθ )|t dθ , R1 � r < R2.

These integral means play an important role in classical analysis, especially in the the-
ory of Hardy spaces. The well-known Hardy convexity theorem asserts that Mt( f ,r) , as
a function of r , is logarithmically convex. See [4] for example. Logarithmic convexity
here means that the function r �→ logMt( f ,r) is convex in logr .

Let q be a positive number, and let ϕ be a real-valued function defined on (Rq
1,R

q
2)

with positive derivative ϕ ′ . We consider the measure

dAϕ(z) = ϕ ′(|z|q)|z|q−2 dA(z), (1)

where dA is the Euclidean area measure on R1 � |z| < R2 . Note that when q = 2,
R1 = 0, R2 = 1 and ϕ ′(x) = (1− x)α ,

dAϕ(z) = (1−|z|2)α dA(z),

which is frequently used in the theory of Bergman spaces [2, 3]; When q = 2, R1 = 0,
R2 = ∞ and ϕ ′(x) = e−αx ,

dAϕ(z) = e−α |z|2 dA(z),
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which is frequently used in the theory of Fock spaces [17]. Let A(a,b) be the annulus
{z∈C : a � |z|� b} if a < b or the annulus {z∈C : b � |z|� a} if a > b . For f ∈H ,
0 < t < ∞ , R1 � c < R2 , we consider the area integral means

Mt,ϕ,q,c( f ,r) =

∫
A(c,r)

| f (z)|tϕ ′(|z|q)|z|q−2 dA(z)∫
A(c,r)

ϕ ′(|z|q)|z|q−2 dA(z)
, R1 � r < R2,

where the functions f and ϕ ′ are such that the integrals exist.
Note that if c = R1 = 0 and f is analytic in the unit disk D of the complex plane

C , the area integral means were firstly studied by Xiao and Zhu [16]. It was shown
in [12, 14] that, if f is analytic in D and dAϕ(z) = (1− |z|2)α dA(z) , just like the
classical integral means, Mt,ϕ,2,0( f ,r) is also logarithmically convex on (0,1) when
−2 � α � 0. Furthermore, if t = 2, then M2,ϕ,2,0( f ,r) is logarithmically convex on
(0,1) when −3 � α � 0, and this range for α is best possible. Cui, Wang and Zhu [1],
Wang and Yang [13] discussed the logarithmic convexity of area integral means over
the annuli. If f is an entire function and dAϕ(z) = e−α |z|2 dA(z), we get the Gaussian
integral means Gt,ϕ,q,0( f ,r) , which were studied by Wang, Xiao [10, 11], Li, Liu [6]
and Li, Wang [7]. See [15] for other work in the area.

In [9] Shniad proved that, if f is analytic in |z| < R , r �→ (M4( f ,r))
1
4 is convex.

Professor Zhu asked whether the result remains true for area integral means of analytic
functions. Recently Hu and Wang [5] study the problem for functions analytic in the

disk |z| < R and show that (Mp,ϕ,2,0( f ,r))
1
p is a convex function of r if f and ϕ

satisfy certain conditions.
In this paper we generalize the results of [5] to functions analytic on an annulus.

Following Hu and Wang [5], we consider Zhu’s problem in a more general setting.
Let q > 0, and let Φ denote the set of real-valued functions ϕ defined on [Rq

1,R
q
2)

which satisfies the following conditions:

(i) ϕ(x0) = 0, where x0 ∈ [Rq
1,R

q
2) ;

(ii) ϕ ′ is positive on (Rq
1,R

q
2) ;

(iii) ϕ ′,ϕ ′′,ϕ ′′′ are all continuous on (Rq
1,R

q
2) .

Note that x0 is the unique zero of ϕ on [Rq
1,R

q
2) due to the condition (ii) above. We

also let M denote the set of positive functions M defined on [Rq
1,R

q
2) with continuous

second derivative M′′ .
For ϕ ∈ Φ and M ∈ M , define

H(x) =

∫ x

x0

M(t)ϕ ′(t)dt∫ x

x0

ϕ ′(t)dt
, Rq

1 � x < Rq
2. (2)

For p > 0, we want to find conditions under which the function H(xq)
1
p is convex.
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Throughout the paper we always assume 0 � R1 < R2 � ∞ whenever R1 and R2

appear. We use the symbol =: whenever a new notation is being introduced. We will
use the notation A ∼ B to mean that A and B have the same sign.

2. Preliminaries

In this section we collect several preliminary results that will be needed for the
proof of our main results.

For any twice differentiable function f on (a,b) ⊂ (0,∞) , we define

d f (x) = x
f ′(x)
f (x)

and

Df (x) =
f ′(x)
f (x)

+ x
f ′′(x)
f (x)

− x

(
f ′(x)
f (x)

)2

. (3)

It is easy to check that

d fg(x) = d f (x)+dg(x), d f/g(x) = d f (x)−dg(x), (4)

(d f (x))′ = Df (x), (5)

and
xDf (x) = d f (x)(1+d f ′(x)−d f (x)). (6)

Lemma 1 can be found in [1] or [13].

LEMMA 1. Suppose that f is positive and twice differentiable on (a,b) ⊂ (0,∞) .
Then log f (x) is convex in logx if and only if Df (x) � 0 for all x ∈ (a,b) .

The special case q = 2 of Lemma 2 can be found in [8] or [5]. It is clear that the
conclusions hold for any q > 0. So we omit the details here.

LEMMA 2. Suppose that q > 0 , f (x) is twice differentiable on (Rq
1,R

q
2) . Then

f (xq) is convex on (R1,R2) if and only if
(
1− 1

q

)
f ′(x) + x f ′′(x) is nonnegative on

(Rq
1,R

q
2) .

LEMMA 3. Suppose that p > 0 , q > 0 , f is positive and twice differentiable on

(Rq
1,R

q
2) . Then f (xq)

1
p is convex on (R1,R2) if and only if

d f (x)
[
1− 1

q
+d f ′(x)+

(
1
p
−1

)
d f (x)

]
� 0

holds on (Rq
1,R

q
2) .
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Proof. It follows from direct calculations that

(
f (x)

1
p

)′
=

1
p

f ′(x) f (x)
1
p−1,

(
f (x)

1
p

)′′
=

1
p

f ′′(x) f (x)
1
p−1 +

1
p

(
1
p
−1

)
f ′(x)2 f (x)

1
p−2.

Since p > 0, f is positive, we have(
1− 1

q

)(
f (x)

1
p

)′
+ x
(

f (x)
1
p

)′′
∼d f (x)

[
1− 1

q
+d f ′(x)+

(
1
p
−1

)
d f (x)

]
.

The desired result follows from Lemma 2. �
Suppose that 0 < p � ∞ , 0 < q � ∞ , f is positive and twice differentiable on

(a,b) ⊂ (0,∞) . We define

Dp,q
f (x) =

(
1− 1

q

)
f ′(x)
f (x)

+ x
f ′′(x)
f (x)

+
(

1
p
−1

)
x

(
f ′(x)
f (x)

)2

.

Then

xDp,q
f (x) = d f (x)

[
1− 1

q
+d f ′(x)+

(
1
p
−1

)
d f (x)

]
.

Lemma 3 tells us that f (xq)
1
p is convex if and only if Dp,q

f (x) � 0. It is easy to verify

that f is convex if and only if D1,1
f (x) � 0; log f (x) is convex in logx if and only if

D∞,∞
f (x) = Df (x) � 0; log f (x) is convex in x if and only if D∞,1

f (x) � 0; f (x)
1
p is

convex in logx if and only if Dp,∞
f (x) � 0. This implies that Lemma 3 is valid if p or

q is ∞ .

LEMMA 4. Suppose that q 	= 0 , f is positive and twice differentiable on (a,b) ⊂
(0,∞) . Then

(i) log f (xq) is convex in logx if and only if log f (x) is convex in logx ,

(ii) log f (xq) is convex if q ∈ (−∞,0)∪ [1,∞) and log f (x) is convex.

Proof. Consider the function g(x) = f (xq) and write y = xq . It is easy to check
that

dg(x) = q
xq f ′(xq)

f (xq)
= qd f (y),

dg′(x) = q−1+q
xq f ′′(xq)
f ′(xq)

= q−1+qd f ′(y).
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Hence we have

xDg(x) = q2d f (y)[1+d f ′(y)−d f (y)] = q2yDf (y),

xD∞,1
g (x) = q2d f (y)

[
1− 1

q
+d f ′(y)−d f (y)

]
= q2yD∞,q

f (y).

This completes the proof of the lemma. �

LEMMA 5. Suppose that p > 0 , q > 0 , f , g are positive and twice differentiable

functions on (Rq
1,R

q
2) . Then ( f (xq)/g(xq))

1
p is convex on (R1,R2) if and only if(

1
p
−1

)
d2

f +d f

(
d f ′ −

2
p
dg +1− 1

q

)
−dg

(
dg′ −

p+1
p

dg +1− 1
q

)
� 0

holds on (Rq
1,R

q
2) .

Proof. It follows from direct calculations that(
f
g

)′
=

f
g

(
f ′

f
− g′

g

)
,

(
f
g

)′′
=

f ′′

g
− 2 f ′g′

g2 +
2 f (g′)2

g3 − f g′′

g2

=
f
g

(
f ′′

f
− 2 f ′g′

f g
+

2(g′)2

g2 − g′′

g

)
.

Therefore

d( f/g)′ =
d f d f ′ −2d f dg +2d2

g −dgdg′

d f −dg
.

We use (4) to obtain

d f/g

[
1− 1

q
+d( f/g)′ +

(
1
p
−1

)
d f/g

]

= (d f −dg)

[
1− 1

q
+

d f d f ′ −2d f dg +2d2
g −dgdg′

d f −dg
+
(

1
p
−1

)
(d f −dg)

]

=
(

1
p
−1

)
d2

f +d f

(
d f ′ −

2
p
dg +1− 1

q

)
−dg

(
dg′ −

p+1
p

dg +1− 1
q

)
.

The desired result follows from Lemma 3. �
We remark that, when p = ∞ , the conclusion of Lemma 5 can be stated as follows:

log( f (xq)/g(xq)) is convex if and only if

−d2
f +d f

(
d f ′ +1− 1

q

)
−dg

(
dg′ −dg +1− 1

q

)
� 0.
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In particular, when p = q = ∞ , the conclusion of Lemma 5 can be stated as follows:
log( f (x)/g(x)) is convex in logx if and only if

−d2
f +d f

(
1+d f ′

)−dg
(
1+dg′ −dg

)
� 0.

For ϕ ∈ Φ , using (3) one can see that xDϕ and xDϕ ′ are continuous on (Rq
1,x0)∪

(x0,R
q
2) . Since ϕ(x0) = 0, we have

ϕ(x) =
∫ x

x0

ϕ ′(t)dt, Rq
1 < x < Rq

2.

Note that dϕ(x) > 0 on (x0,R
q
2) and dϕ(x) < 0 on (Rq

1,x0) . Moreover, we have the
following property.

LEMMA 6. Let a < 0 , b ∈ R , q > 0 and ϕ ∈ Φ . Suppose that

1
dϕ

[
xDϕ ′ − (dϕ ′ +b

)(
1+dϕ ′ −dϕ

)]
� 0

holds on (Rq
1,R

q
2) . Then dϕ ′ + adϕ + b has at most one zero on (Rq

1,R
q
2) , say x∗ , so

that dϕ ′ +adϕ +b < 0 on (x0,x∗) and dϕ ′ +adϕ +b > 0 on (Rq
1,x0)∪ (x∗,Rq

2) .

Proof. Consider the function κ(x) = (dϕ ′ + adϕ + b)/dϕ . Observe that κ(x) is
continuous on (Rq

1,R
q
2) and

κ ′(x) =
dϕDϕ ′ − (dϕ ′ +b

)
Dϕ

d2
ϕ

=
dϕ
[
xDϕ ′ − (dϕ ′ +b

)(
1+dϕ ′ −dϕ

)]
xd2

ϕ

� 0

by the assumption. Hence κ(x) has at most one zero on (Rq
1,R

q
2) , say x∗ .

If x < x∗ , then κ(x) � κ(x∗) = 0. Therefore dϕ ′ + adϕ + b � 0 on (Rq
1,x0) and

dϕ ′ +adϕ +b � 0 on (x0,x∗) . If x > x∗ , then κ(x) � κ(x∗) = 0. Therefore dϕ ′ +adϕ +
b � 0 since dϕ � 0. The desired result follows. �

LEMMA 7. Let p � 1 , q > 0 . Suppose {hk(x)} is a sequence of positive and twice
differentiable functions on (a,b) ⊂ (0,∞) such that the function H(x) = ∑∞

k=0 hk(x) is

also twice differentiable on (a,b) . If for each k the function hk(xq)
1
p is convex, then

H(xq)
1
p is also convex.

Proof. By Hölder’s inequality,

(
H ′(x)

)2 =

(
∞

∑
k=0

h′k(x)

)2

�
∞

∑
k=0

hk(x)
∞

∑
k=0

h′k(x)
2

hk(x)
= H(x)

∞

∑
k=0

h′k(x)
2

hk(x)
.
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Therefore

Dp,q
H (x) =

dH(x)
x

[
1− 1

q
+dH′(x)+

(
1
p
−1

)
dH(x)

]

=
(

1− 1
q

)
H ′(x)
H(x)

+ x
H ′′(x)
H(x)

+
(

1
p
−1

)
x

(
H ′(x)
H(x)

)2

�
(

1− 1
q

)
H ′(x)
H(x)

+ x
H ′′(x)
H(x)

+
(

1
p
−1

)
x

∑∞
k=0 h′k(x)

2/hk(x)
H(x)

=
1

H(x)

∞

∑
k=0

[(
1− 1

q

)
h′k(x)+ xh′′k (x)+

(
1
p
−1

)
x
h′k(x)

2

hk(x)

]

=
1

H(x)

∞

∑
k=0

hk(x)D
p,q
hk

(x).

By the assumption and Lemma 3, one gets Dp,q
H (x) � 0. The desired result follows. �

3. Convexity of the function H(xq)
1
p

In this section we consider the convexity of the function H(xq)
1
p , where H(x) is

defined by (2).
We establish the following theorems, which give an answer to the problem pro-

posed in Section 1.

THEOREM 1. Suppose that p > 1 , q > 0 , ϕ ∈ Φ and M ∈ M . Then H(xq)
1
p is

convex for x ∈ (R1,R2) if M and ϕ satisfy the following conditions:

(i) M′ > 0 and M(xq)
1
p is convex,

(ii) The inequality

1
dϕ

[
xDϕ ′ −

(
1− 1

q
+dϕ ′

)(
1+dϕ ′ −dϕ

)]
� 0 (7)

holds for x ∈ (Rq
1,R

q
2) .

Proof. For ϕ ∈ Φ and M ∈ M , let

ϕ(x) =
∫ x

x0

ϕ ′(t)dt, (8)

and

h(x) =
∫ x

x0

M(t)ϕ ′(t)dt, (9)

where x0,x ∈ [Rq
1,R

q
2) . Then h′(x) = M(x)ϕ ′(x) . It follows from (4) and (5) that

dh′ = dM +dϕ ′, (10)
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and
Dh′ = DM +Dϕ ′ . (11)

Note that M(x) is an increasing function of x . If x > x0 , since

h(x) =
∫ x

x0

M(t)ϕ ′(t)dt � M(x)
∫ x

x0

ϕ ′(t)dt = M(x)ϕ(x),

we have dh � dϕ . If x < x0 , since

h(x) = −
∫ x0

x
M(t)ϕ ′(t)dt � −M(x)

∫ x0

x
ϕ ′(t)dt = M(x)ϕ(x),

we also have dh � dϕ .
If x > x0 , noticing that dϕ � 0,dM � 0, we obatin

(
dh′ − 2

p
dϕ +1− 1

q

)2

−4

(
1− 1

p

)
dϕ

(
dϕ ′ − p+1

p
dϕ +1− 1

q

)

=
(

dh′ −2dϕ +1− 1
q

)2

+4

(
1− 1

p

)
dϕdM � 0. (12)

If x < x0 , then dϕ � 0, by Lemma 6

1− 1
q

+dϕ ′ −2dϕ � 0 (13)

and

1− 1
q

+dϕ ′ − p+1
p

dϕ � 0. (14)

We also obtain(
dh′ −

2
p
dϕ +1− 1

q

)2

−4

(
1− 1

p

)
dϕ

(
dϕ ′ − p+1

p
dϕ +1− 1

q

)
� 0. (15)

For convenience, we write

S =

√(
dh′ −

2
p
dϕ +1− 1

q

)2

−4

(
1− 1

p

)
dϕ

(
dϕ ′ − p+1

p
dϕ +1− 1

q

)
.

By Lemma 5, we just need to prove that Δ(x) � 0 for x ∈ (Rq
1,R

q
2) , where

Δ(x) =
(

1
p
−1

)
d2

h +dh

(
dh′ −

2
p
dϕ +1− 1

q

)
−dϕ

(
dϕ ′ − p+1

p
dϕ +1− 1

q

)

∼−
(

z1 −2

(
1− 1

p

)
(dh−dϕ)

)(
z2−2

(
1− 1

p

)
(dh−dϕ)

)
,
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and

z1 = dh′ −2dϕ +1− 1
q
−S,

z2 = dh′ −2dϕ +1− 1
q

+S. (16)

We proceed to show that Δ(x) � 0 on (x0,R
q
2) and (Rq

1,x0) , respectively.

Case 1. Suppose that x ∈ (x0,R
q
2) . Note that dϕ � 0, z1 � 0,

z2 � 0, (17)

and

2

(
1− 1

p

)
dϕ + z2 � 0. (18)

Since dh � dϕ , we have

z1−2

(
1− 1

p

)
(dh−dϕ) � z1 � 0.

Therefore

Δ(x) ∼z2 −2

(
1− 1

p

)
(dh−dϕ)

∼h−
2
(
1− 1

p

)
xh′

2
(
1− 1

p

)
dϕ + z2

=: δ (x).

It follows from direct computations that

δ ′(x) =h′ −
2
(
1− 1

p

)
h′(1+dh′)

2
(
1− 1

p

)
dϕ + z2

+
2
(
1− 1

p

)
xh′
(
2
(
1− 1

p

)
Dϕ + z′2

)
(
2
(
1− 1

p

)
dϕ + z2

)2 .

By Lemma 3, the assumption (i) implies that

xDM = dM(1+dM′ −dM) � dM

(
1
q
− dM

p

)
. (19)
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Combining (17), (18), (19) with the assumption (ii) we deduce that

xS

(
2

(
1− 1

p

)
Dϕ + z′2

)

=xDM

(
2

(
1− 1

p

)
dϕ + z2

)
+ x

(
Dϕ ′ − 2

p
Dϕ

)
z2

−2x

(
1− 1

p

)
Dϕ

(
dϕ ′ −2dϕ +1− 1

q

)

�dM

(
1
q
− dM

p

)(
2

(
1− 1

p

)
dϕ + z2

)

+
(
1+dϕ ′ −dϕ

)(
dϕ ′ − 2

p
dϕ +1− 1

q

)
z2

−2

(
1− 1

p

)
dϕ

(
dϕ ′ −2dϕ +1− 1

q

)(
1+dϕ ′ −dϕ

)
=dM

(
1
q
− dM

p

)(
2

(
1− 1

p

)
dϕ + z2

)

+
(
1+dϕ ′ −dϕ

)(
2

(
1− 1

p

)
dϕ + z2

)
(S−dM).

Since h′ > 0, z2 � 0, we have

δ ′(x) �h′
⎡
⎣1−

2
(
1− 1

p

)
(1+dh′)

2
(
1− 1

p

)
dϕ + z2

−
2
(
1− 1

p

)
dM

(
1− 1

q +dϕ ′ −dϕ + dM
p

)
S
(
2
(
1− 1

p

)
dϕ + z2

)

+
2
(
1− 1

p

)(
1+dϕ ′ −dϕ

)
2
(
1− 1

p

)
dϕ + z2

⎤
⎦

=h′
⎡
⎣1−

2
(
1− 1

p

)
(dM +dϕ)

2
(
1− 1

p

)
dϕ + z2

−
2
(
1− 1

p

)
dM

(
1− 1

q +dϕ ′ −dϕ + dM
p

)
S
(
2
(
1− 1

p

)
dϕ + z2

)
⎤
⎦

∼
(

z2 −2

(
1− 1

p

)
dM

)
S−2

(
1− 1

p

)
dM

(
1− 1

q
+dϕ ′ −dϕ +

dM

p

)

=
1
2

(
S+1− 1

q
+dϕ ′ −2dϕ +

(
2
p
−1

)
dM

)2

�0.

Hence δ (x) � δ (x0) = 0 and Δ(x) � 0 on (x0,R
q
2) .
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Case 2. Suppose that x ∈ (Rq
1,x0) . Then dϕ � 0, dh � 0. Using (13) and (14)

one can get

z1 � 0, (20)

2

(
1− 1

p

)
dϕ + z1 � 0, (21)

and

z2−2

(
1− 1

p

)
(dh−dϕ) � z2 +2

(
1− 1

p

)
dϕ � 0.

Therefore

Δ(x) ∼2

(
1− 1

p

)
(dh−dϕ)− z1

∼−h+
2
(
1− 1

p

)
xh′

2
(
1− 1

p

)
dϕ + z1

=: δ (x).

It follows from direct computations that

δ ′(x) =−h′+
2
(
1− 1

p

)
h′(1+dh′)

2
(
1− 1

p

)
dϕ + z1

−
2
(
1− 1

p

)
xh′
(
2
(
1− 1

p

)
Dϕ + z′1

)
(
2
(
1− 1

p

)
dϕ + z1

)2 .

Combining (20), (21), (19) with the assumption (ii) we deduce that

xS

(
2

(
1− 1

p

)
Dϕ + z′1

)

= − xDM

(
2

(
1− 1

p

)
dϕ + z1

)
− x

(
Dϕ ′ − 2

p
Dϕ

)
z1

+2x

(
1− 1

p

)
Dϕ

(
dϕ ′ −2dϕ +1− 1

q

)

� −dM

(
1
q
− dM

p

)(
2

(
1− 1

p

)
dϕ + z1

)

−
(

dϕ ′ − 2
p
dϕ +1− 1

q

)(
1+dϕ ′ −dϕ

)
z1

+2

(
1− 1

p

)
dϕ

(
dϕ ′ −2dϕ +1− 1

q

)(
1+dϕ ′ −dϕ

)
= −dM

(
1
q
− dM

p

)(
2

(
1− 1

p

)
dϕ + z1

)

+
(
1+dϕ ′ −dϕ

)(
2

(
1− 1

p

)
dϕ + z1

)
(S+dM).
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Since h′ > 0, dϕ � 0, we have

δ ′(x) �h′
⎡
⎣−1+

2
(
1− 1

p

)
(1+dh′)

2
(
1− 1

p

)
dϕ + z1

−
2
(
1− 1

p

)
dM

(
1− 1

q +dϕ ′ −dϕ + dM
p

)
S
(
2
(
1− 1

p

)
dϕ + z1

)

−
2
(
1− 1

p

)(
1+dϕ ′ −dϕ

)
2
(
1− 1

p

)
dϕ + z1

⎤
⎦

= −h′
⎡
⎣1−

2
(
1− 1

p

)
(dM +dϕ)

2
(
1− 1

p

)
dϕ + z1

+
2
(
1− 1

p

)
dM

(
1− 1

q +dϕ ′ −dϕ + dM
p

)
S
(
2
(
1− 1

p

)
dϕ + z1

)
⎤
⎦

∼
(

z1 −2

(
1− 1

p

)
dM

)
S+2

(
1− 1

p

)
dM

(
1− 1

q
+dϕ ′ −dϕ +

dM

p

)

= − 1
2

(
1− 1

q
+dϕ ′ −2dϕ +

(
2
p
−1

)
dM −S

)2

�0.

Hence δ (x) � δ (x0) = 0 and Δ(x) � 0 on (Rq
1,x0) .

This completes the proof of the theorem. �

THEOREM 2. Suppose that p > 1 , q > 0 , ϕ ∈ Φ and M ∈ M . Then H(xq)
1
p is

convex for x ∈ (R1,R2) if M and ϕ satisfy the following conditions:

(i) M′ < 0 and M(xq)
1
p is convex,

(ii) The inequality

1
dϕ

[
xDϕ ′ −

(
1− 1

q
+dϕ ′

)(
1+dϕ ′ −dϕ

)]
� 0 (22)

holds for x ∈ (Rq
1,R

q
2) .

Proof. To finish the proof of the theorem, we indicate how to adapt the proof of
Theorem 1 to show that Δ(x) � 0 on (x0,R

q
2) and (Rq

1,x0) , respectively. So for the rest
of this proof, we are going to use the notation from the proof of Theorem 1.

First, ϕ and h are defined by (8) and (9), respectively. It is easy to show that
dh � dϕ for x ∈ (Rq

1,x0)∪ (x0,R
q
2) since now M is decreasing on (Rq

1,R
q
2) . Note that

dM � 0.
Second, S is well defined on (Rq

1,R
q
2) . In fact, if x < x0 ,

(
dh′ −2dϕ +1− 1

q

)2

+4

(
1− 1

p

)
dϕdM � 0;
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If x > x0 , the assumption (ii) implies that
(
1− 1

q +dϕ ′
)/

dϕ is a decreasing function

of x , which leads to

1− 1
q

+dϕ ′ −2dϕ � 0,

1− 1
q

+dϕ ′ − p+1
p

dϕ � 0,

and (
dh′ −

2
p
dϕ +1− 1

q

)2

−4

(
1− 1

p

)
dϕ

(
dϕ ′ − p+1

p
dϕ +1− 1

q

)
� 0.

Thus z1,z2 are also well defined.

In the case x ∈ (x0,R
q
2) , we have z1 � 0, z2 � 0, 2

(
1− 1

p

)
dϕ + z2 � 0 and

z1−2

(
1− 1

p

)
(dh−dϕ) � 2

(
1− 1

p

)
dϕ + z1 � 0.

Therefore

Δ(x) ∼h−
2
(
1− 1

p

)
xh′

2
(
1− 1

p

)
dϕ + z2

=: δ (x).

In the case x ∈ (Rq
1,x0) , we have z1 � 0, z2 � 0, 2

(
1− 1

p

)
dϕ + z1 � 0 and

z2−2

(
1− 1

p

)
(dh−dϕ) � z2 � 0.

Therefore

Δ(x) ∼−h+
2
(
1− 1

p

)
xh′

2
(
1− 1

p

)
dϕ + z1

=: δ (x).

The rest of the proof of Theorem 1 remains valid here. This completes the proof
of Theorem 2. �

We remark that, when p or q is ∞ , the proofs of Theorem 1 and 2 are also valid.
When p = 1, we have the following two results.

THEOREM 3. Suppose that q > 0 , ϕ ∈ Φ and M ∈ M . Then H(xq) is convex
for x ∈ (R1,R2) if M and ϕ satisfy the following conditions:

(i) M′ > 0 and M(xq) is convex,

(ii) The inequality (7) holds for x ∈ (Rq
1,R

q
2) .
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Proof. According to the Lemma 5, we just need to prove that Δ(x) � 0 for x ∈
(Rq

1,R
q
2) , where

Δ(x) = dh

(
dh′ −2dϕ +1− 1

q

)
−dϕ

(
dϕ ′ −2dϕ +1− 1

q

)
.

By Lemma 6, dϕ ′ − 2dϕ + 1− 1
q has at most one zero on (x0,R

q
2) , say x∗ , so that

dϕ ′ −2dϕ +1− 1
q < 0 on (x0,x∗) and dϕ ′ −2dϕ +1− 1

q > 0 on (Rq
1,x0)∪ (x∗,Rq

2) .
(a) Suppose that x ∈ (x∗,Rq

2) . Then dϕ ′ − 2dϕ + 1− 1
q > 0. Noticing that dh′ =

dM +dϕ ′ , we have

Δ(x) = dhdM +(dh−dϕ)
(

dϕ ′ −2dϕ +1− 1
q

)
.

Since dM � 0, dh � 0 and dh � dϕ , we have Δ(x) � 0 on (x∗,Rq
2) .

(b) Suppose that x ∈ (x0,x∗) . Then dϕ ′ −2dϕ +1− 1
q < 0. Since h > 0, dϕ > 0,

we have

Δ(x) ∼ h− xh′
⎡
⎣ dM

dϕ

(
dϕ ′ −2dϕ +1− 1

q

) +
1
dϕ

⎤
⎦=: δ (x).

Noticing that h′ = Mϕ ′ � 0, it follows from direct computations that

δ ′(x) =h′ −h′(1+dh′)

⎡
⎣ dM

dϕ

(
dϕ ′ −2dϕ +1− 1

q

) +
1
dϕ

⎤
⎦

− xh′
⎡
⎣ DM

dϕ

(
dϕ ′ −2dϕ +1− 1

q

) − dMDϕ

d2
ϕ

(
dϕ ′ −2dϕ +1− 1

q

)

− dM(Dϕ ′ −2Dϕ)

dϕ

(
dϕ ′ −2dϕ +1− 1

q

)2 − Dϕ

d2
ϕ

⎤
⎥⎦

=h′

⎡
⎢⎣−dM

dϕ
− dM(1+dM′ +dϕ)

dϕ

(
dϕ ′ −2dϕ +1− 1

q

) +
x(Dϕ ′ −2Dϕ)dϕdM

d2
ϕ

(
dϕ ′ −2dϕ +1− 1

q

)2

⎤
⎥⎦ .

By Lemma 2,

1− 1
q

+dM′ � 0.

Combining this with the assumption (ii) we have

δ ′(x) � h′dM

dϕ

[
−1−

1
q +dϕ

dϕ ′ −2dϕ +1− 1
q

+
1+dϕ ′ −dϕ

dϕ ′ −2dϕ +1− 1
q

]
= 0
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on (x0,x∗) . Hence δ (x) � δ (x0) = 0 and Δ(x) � 0 on (x0,x∗) .
(c) Suppose that x ∈ (Rq

1,x0) . Then dϕ ′ −2dϕ +1− 1
q > 0. Since h < 0, dϕ < 0,

we have

Δ(x) ∼−h+ xh′
⎡
⎣ dM

dϕ

(
dϕ ′ −2dϕ +1− 1

q

) +
1
dϕ

⎤
⎦= −δ (x),

where δ (x) is defined in (b) above. Now from the proof in (b) we can get δ ′(x) � 0.
Hence δ (x) � δ (x0) = 0 and Δ(x) � 0 on (Rq

1,x0) .
The proof of the theorem is completed. �

THEOREM 4. Suppose that q > 0 , ϕ ∈ Φ and M ∈ M . Then H(xq) is convex
for x ∈ (R1,R2) if M and ϕ satisfy the following conditions:

(i) M′ < 0 and M(xq) is convex,

(ii) The inequality (22) holds for x ∈ (Rq
1,R

q
2) .

The proof is similar to that of Theorem 3. We omit the details here.

4. Convexities of area integral means

In this section we study convexities of area integral means of analytic functions on
an annulus.

Recall that, for f ∈H , 0 < t < ∞ , R1 � c < R2 , the area integral means of f are
defined by

Mt,ϕ,q,c( f ,r) =

∫
A(c,r)

| f (z)|tϕ ′(|z|q)|z|q−2 dA(z)∫
A(c,r)

ϕ ′(|z|q)|z|q−2 dA(z)
, R1 � r < R2,

where the functions f and ϕ ′ are such that the integrals exist.
Let x0 = cq , x = rq and M(x) = Mt( f ,x1/q) . By polar coordinates, we have

Mt,ϕ,q,c( f ,r) =
h(rq)
ϕ(rq)

, R1 � r < R2,

where ϕ , h are defined by (8) and (9), respectively.
Now we turn to consider the convexity for area integral means of analytic functions

f in D . For the weighted area measure

dAϕ(z) = (1−|z|q)α |z|q−2 dA(z),

where dA is the Euclidean area measure on D , the area integral means of f are denoted
by Mt,α ,q,c( f ,r) . Since now

ϕ ′(x) = (1− x)α , 0 � x < 1,
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we have

ϕ(x) =
∫ x

x0

(1− t)α dt, 0 � x < 1, (23)

where x0 ∈ [0,1) . One can easily verify that

dϕ ′ = dϕ ′(x) =
−αx
1− x

, (24)

and

Dϕ ′ = Dϕ ′(x) =
−α

(1− x)2 . (25)

We have the following estimate for ϕ .

LEMMA 8. Suppose that q > 0,α ∈ R , ϕ is defined by (23). Then

(i) (7) holds for x ∈ (0,1) if q � 1 and −2 � α � 0 ,

(ii) (7) holds for x ∈ (0,x0) if q � 1 and α < −2 ,

(iii) (22) holds for x ∈ (x0,1) if 0 < q � 1 and α � 0 .

Proof. Set

Δ1(x) =

(
xDϕ ′

(1− 1
q +dϕ ′)2

− 1+dϕ ′

1− 1
q +dϕ ′

)
ϕ +

xϕ ′

1− 1
q +dϕ ′

, x ∈ [0,1).

It follows from direct computations that

Δ′
1(x) =

(
Dϕ ′ + xD′

ϕ ′

(1− 1
q +dϕ ′)2

−
2xD2

ϕ ′

(1− 1
q +dϕ ′)3

+
1
qDϕ ′

(1− 1
q +dϕ ′)2

)
ϕ

=

[(
1− 1

q
+dϕ ′

)(
1+

1
q

+ x
D′

ϕ ′

Dϕ ′

)
−2xDϕ ′

]
ϕDϕ ′

(1− 1
q +dϕ ′)3

=
(

1− 1
q

)(
1+

1
q

+
(α +2)x

1− x

)
ϕDϕ ′

(1− 1
q +dϕ ′)3

.

If q � 1 and −2 � α � 0, we have Dϕ ′ > 0 and 1− 1
q +dϕ ′ > 0. So

Δ′
1(x) ∼ ϕ(x) =

∫ x

x0

(1− t)α dt,

which implies that Δ′
1(x) < 0 on (0,x0) and Δ′

1(x) > 0 on (x0,1) . Hence

Δ1(x) � Δ1(x0) =
x0ϕ ′(x0)

1− 1
q +dϕ ′(x0)

� 0.
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If q � 1 and α < −2, we have Dϕ ′ > 0 and 1− 1
q +dϕ ′ > 0. So

xDϕ ′

(1− 1
q +dϕ ′)2

− 1+dϕ ′

1− 1
q +dϕ ′

�
xDϕ ′

dϕ ′(1− 1
q +dϕ ′)

− 1+dϕ ′

1− 1
q +dϕ ′

=
(α +1)x

(1− x)(1− 1
q +dϕ ′)

�0.

Hence for any x ∈ (0,x0) , we have

Δ1(x) � Δ1(x0) =
x0ϕ ′(x0)

1− 1
q +dϕ ′(x0)

� 0.

If 0 < q � 1 and α � 0, we have Dϕ ′ < 0 and 1− 1
q +dϕ ′ < 0. So

Δ′
1(x) ∼−ϕ(x) � 0

on (x0,1) and hence Δ1(x) � Δ1(x0) � 0 on (x0,1) .
The desired result follows. �

Note that, Lemma 8 gives examples of a function ϕ satisfying (7) or (22).
As mentioned in the first section, if f ∈H , logMt( f ,r) is convex in logr . Taking

p = q = ∞ in Theorem 1, 2 and using Lemma 4, 8, we obtain the following result.

THEOREM 5. Suppose that q > 0 , 0 � c < 1 , and f (z) is analytic in D . Then

(i) logMt,α ,q,c( f ,r) is convex in logr for r ∈ (0,1) if q � 1 , −2 � α � 0 , and
Mt( f ,r) is increasing,

(ii) logMt,α ,q,c( f ,r) is convex in logr for r ∈ (0,c) if q � 1 , α < −2 , and Mt( f ,r)
is increasing,

(iii) logMt,α ,q,c( f ,r) is convex in logr for r ∈ (c,1) if 0 < q � 1 and α � 0 , and
Mt( f ,r) is decreasing,

In [9] Shniad proved that, if f is analytic in |z| < R , (M4( f ,r))
1
4 is convex for

r ∈ [0,R) . Taking p = 4, q � 1 and c = 0, we immediately obtain the following
consequence of Theorem 1.

THEOREM 6. Suppose −2 � α � 0 , q � 1 , f (z) is analytic in D . Then the

function
(
M4,α ,q,0( f ,r)

) 1
4 is convex for r ∈ (0,1) .
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Every function f ∈ H has a Laurent expansion of the form

f (z) =
∞

∑
k=−∞

akz
k, R1 < |z| < R2.

It is easy to check that

M2( f ,r) =
∞

∑
k=−∞

|ak|2r2k, R1 � r < R2.

Since for any integer k , (r2k)
1
2 = rk is convex, by Lemma 7, M2( f ,r)

1
2 is convex.

Taking p = 2 in Theorem 1, we obtain the following result.

THEOREM 7. Suppose that −2 � α � 0 , q � 1 , 0 � c < 1 , and f (z) is analytic

in D . Then (M2,α ,q,c( f ,r))
1
2 is convex for r ∈ (0,1) if M2( f ,r) is increasing for r ∈

(0,1) .

Suppose that f ∈ H does not vanish. Then for any t > 0, f
t
2 ∈ H . It is easy

to see that Mt( f ,r) = M2( f
t
2 ,r) is convex. Replacing f with f

t
2 in Theorem 7, we

obtain the following result.

COROLLARY 1. Suppose that t > 0 , −2 � α � 0 , q � 1 , 0 � c < 1 , and f (z) is

a nonvanishing analytic function in D . Then (Mt,α ,q,c)( f ,r)
1
2 is convex for r ∈ (0,1)

if Mt( f ,r) is increasing for r ∈ (0,1) .

For the weighted area measure

dAϕ(z) = e−α |z|q |z|q−2 dA(z),

where dA is the Euclidean area measure on C , the area integral means of f are denoted
by Gt,α ,q,c( f ,r) . Since now

ϕ ′(x) = e−αx, x � 0,

we have

ϕ(x) =
∫ x

x0

e−αt dt, x � 0, (26)

where x0 ∈ [0,∞) . One can easily verify that

dϕ ′ = dϕ ′(x) = −αx, (27)

and
Dϕ ′ = Dϕ ′(x) = −α. (28)

Then we have the following estimate.
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LEMMA 9. Suppose that q > 0 , α ∈ R , ϕ is defined by (26). Then

(i) (7) holds for x ∈ (0,x0) if q � 1 and α � 0 ,

(ii) (22) holds for x ∈ (x0,∞) if 0 < q � 1 and α � 0 .

Proof. Set

Δ1(x) =
1
dϕ

[
xDϕ ′ −

(
1− 1

q
+dϕ ′

)(
1+dϕ ′ −dϕ

)]
.

Noticing that

ϕ(x) =
∫ x

x0

e−αtdt =
e−αx − e−αx0

−α
=

ϕ ′(x)−ϕ ′(x0)
−α

, x ∈ [0,∞),

we have

Δ1(x) ∼ ϕ
[
xDϕ ′ −

(
1− 1

q
+dϕ ′

)(
1+dϕ ′ −dϕ

)]

= ϕ
[
xDϕ ′ −

(
1− 1

q
+dϕ ′

)(
1+dϕ ′

)]

+
(
xϕ ′(x0)−αxϕ

)(
1− 1

q
+dϕ ′

)

= −
(

1− 1
q

)
ϕ + xϕ ′(x0)

(
1− 1

q
+dϕ ′

)
=: δ1(x).

If q � 1 and α � 0, 1− 1
q +dϕ ′ > 0. Therefore

δ1(x) � −
(

1− 1
q

)
ϕ � 0

for any x ∈ (0,x0) . Hence Δ1(x) � 0 on (0,x0) .
If 0 < q � 1 and α � 0, ϕ ′(x) � ϕ ′(x0) for any x ∈ (x0,∞) . Therefore

δ ′
1(x) = −

(
1− 1

q

)
ϕ ′ + ϕ ′(x0)

(
1− 1

q
−2αx

)

� −
(

1− 1
q

)
ϕ ′(x0)+ ϕ ′(x0)

(
1− 1

q
−2αx

)
= −2αxϕ ′(x0)
� 0

on (x0,∞) . Hence δ1(x) � δ1(x0) � 0 and Δ1(x) � 0 on (x0,∞) . �
Taking p = q = ∞ in Theorem 1, 2 and using Lemma 4, 9, we obtain the following

result.
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THEOREM 8. Suppose that q > 0 , c � 0 , and f (z) is an entire function. Then

(i) logGt,α ,q,c( f ,r) is convex in logr for r ∈ (0,c) if q � 1 , α � 0 , and Mt( f ,r) is
increasing,

(ii) logGt,α ,q,c( f ,r) is convex in logr for r ∈ (c,∞) if 0 < q � 1 , α � 0 , and
Mt( f ,r) is decreasing,

Taking p = 4 and c � 0 we obtain the following consequence of Theorem 1 and
Lemma 9.

THEOREM 9. Suppose that q � 1 , c � 0 , α � 0 , f (z) is an entire function. Then

the function
(
G4,α ,q,c( f ,r)

) 1
4 is convex for r ∈ (0,c) .

Suppose that f is analytic on |z| > c and ∞ is a removable singularity of f . Then
f has the Laurent expansion

f (z) =
∞

∑
k=0

a−kz
−k, |z| > c,

and

M2( f ,r) =
∞

∑
k=0

|a−k|2r−2k, r � c.

By Lemma 7, logM2( f ,r) is convex in r . Taking p = ∞ and q = 1 in Theorem 2 and
using Lemma 9(ii), we have the following result.

THEOREM 10. Suppose α � 0 , f is analytic on |z| > c and continuous on |z| �
c, ∞ is a removable singularity of f . Then logG2,α ,1,c( f ,r) is convex for r ∈ (c,∞) .
Moreover, if f does not vanish, and t > 0 , then logGt,α ,1,c( f ,r) is convex for r ∈
(c,∞) .
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