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WEIGHTED ESTIMATES FOR A CLASS OF MATRIX OPERATORS

NAZERKE ZHANGABERGENOVA

(Communicated by J. Jakšetić)

Abstract. In this paper, we have obtained criteria for the fulfillment of weighted inequalities for
the class of quasilinear discrete operators involving matrix kernels.

1. Introduction

Let 0 < p,q,r < ∞ , 1
p + 1

p′ = 1 and f = { fi}∞
i=1 be an arbitrary sequence of

real numbers. Suppose that u = {ui}∞
i=1 , v = {vi}∞

i=1 and w = {wi}∞
i=1 are positive

sequences of real numbers, which will be called weight sequences. We denote by lp,v

the space of sequences f of real numbers such that

‖ f‖p,v =

(
∞

∑
i=1

|vi fi|p
) 1

p

< ∞.

In this work, we consider the following operators

(K1 f ) :=

(
n

∑
k=1

∣∣∣∣∣wk

∞

∑
i=k

ai,k fi

∣∣∣∣∣
r) 1

r

(1)

(K2 f ) :=

(
∞

∑
k=n

∣∣∣∣∣wk

k

∑
i=1

ak,i fi

∣∣∣∣∣
r) 1

r

(2)

where (ai,k) , i � k is a matrix, whose non-negative entries satisfy the discrete Oinarov
condition: there exists a constant d � 1 such that the inequalities

1
d

(ai, j +a j,k) � ai,k � d(ai, j +a j,k) (3)

or, equivalently, the relation ai,k ≈ ai, j +a j,k hold for all i � j � k � 1. In view of (3),
one can say that (ai,k) is almost non-decreasing in i and almost non-increasing in k .
We will study the following iterated discrete Hardy-type inequalities(

∞

∑
n=1

uq
n(K1 f )q

) 1
q

� C

(
∞

∑
i=1

|vi fi|p
) 1

p

, (4)
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(
∞

∑
n=1

uq
n(K2 f )q

) 1
q

� C′
(

∞

∑
i=1

|vi fi|p
) 1

p

, (5)

where C and C′ are positive finite constants independent of f ∈ lp,v .
The purpose of the work is to obtain weighted estimates for the operators (1) and

(2) from lp,v to lq,u in the cases: 1 < p � q < ∞ and 1 < r < ∞ ; p � q < ∞ , 0 < p < 1
and 1 < r < ∞ . Nowadays, these operators and

(K3 f ) :=

(
n

∑
k=1

∣∣∣∣∣wk

k

∑
i=1

ak,i fi

∣∣∣∣∣
r) 1

r

, (K4 f ) :=

(
∞

∑
k=n

∣∣∣∣∣wk

∞

∑
i=k

ai,k fi

∣∣∣∣∣
r) 1

r

are being intensively studied. Recently, characterizations of analogous inequalities with
quasilinear operators K3 and K4 have been found in the work [12]. When ai,k = 1 for
all i � k � 1, weighted estimates of the quasilinear Hardy operator

(Hw f )k := wk

k

∑
i=1

fi, k ∈ N

were obtained in the papers [16] and [18] for the different relations of parameters. Also,
the work [6] includes weighted estimates for the following discrete iterated Hardy-type
inequality (

∑
n∈Z

un

(
sup
i�n

wi ∑
k�i

fk

)q) 1
q

� C

(
∑
n∈Z

f p
n vn

) 1
p

.

Moreover, the discrete inequalities involving operators that combine both the kernel
and the supremum were discussed in [7].

Characterizations of the continuous analogues of inequalities (4) and (5) have been
better studied than discrete versions. For instance, the following weighted integral
Hardy-type inequality initially was considered in the works [4] and [13]:⎛⎝ ∞∫

0

uq(x)((K f )(t))q dx

⎞⎠
1
q

� C

⎛⎝ ∞∫
0

|v(x) f (x)|pdx

⎞⎠
1
p

, f ∈ Lp,v(0,∞), (6)

for 0 < p,q,r < ∞ , where u(·) , v(·) and w(·) are positive functions locally integrable
on the interval (0;∞) , Lp,v(0,∞) is a weighted Lebesgue space of functions for which
the right side of the inequality (6) is finite and K is a quasilinear operator defined as
follows

(K f )(t) :=

⎛⎝ x∫
0

∣∣∣∣∣∣w(t)
t∫

0

f (s)ds

∣∣∣∣∣∣
r

dt

⎞⎠
1
r

. (7)

V. Burenkov and R. Oinarov showed the equivalence of the inequality (6) to the in-
equality, which determines the boundedness of the multidimensional Hardy operator
from the Lebesgue space to the local Morrey-type space (see [3]). After this work,
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weighted estimates of quasilinear Hardy-type operators came into use, and there was a
great interest in the study of related inequalities, which began to be studied intensively
(see [5], [19], [21]). Necessity and sufficient conditions for the fulfillment of the in-
equality (6) with kernel were obtained in papers [10], [11] and [14]. The next step was
to investigate bilinear Hardy inequalities. Characteristics of bilinear Hardy inequalities
follow from the characteristics of iterated inequalities (see [8], [9]).

For the case 0 < p � 1 continuous Hardy-type inequalities hold in trivial case only
(see [19]), but in this case discrete Hardy-type inequalities can be explored. Therefore,
it is important to note that in this paper we consider the case 0 < p � 1.

2. Auxiliary statements

To establish inequality (4), we use known theorems and classical inequalities. Let
us present them.

THEOREM A. Let 0 < p � 1, p � q < ∞ . The inequality(
∞

∑
k=1

uq
k

∣∣∣ ∞

∑
i=k

fi
∣∣∣q) 1

q

� C

(
∞

∑
i=1

|vi fi|p
) 1

p

, f ∈ lp,v, (8)

holds if and only if A < ∞ , where

A = sup
j�1

(
j

∑
i=1

uq
i

) 1
q

v−1
j .

Moreover, C ≈ A, where C is the best constant in (8).

THEOREM B. Let 1 < p � q < ∞ . Then the inequality (8) holds if and only if

D = sup
j�1

(
j

∑
k=1

uq
k

) 1
q
(

∞

∑
i= j

v−p′
i

) 1
p′

< ∞.

Moreover, C ≈ D, where C is the best constant in (8).

Theorem A is proved in [1] (Theorem 1(iv)). Theorem B is considered in [2]
(Theorem 2)).

Weighted discrete Hardy-type inequality for one class of matrix operators has the
following form (

β

∑
k=α

uq
k

∣∣∣ β

∑
i=k

ai,k fi
∣∣∣q)

1
q

� C

(
β

∑
i=α

|vi fi|p
) 1

p

, f ∈ lp,v, (9)

where [α,β ] ⊂ N and the entries of the matrix (ai,k) , i � k , satisfy discrete Oinarov
condition. The related to the inequality (9) boundedness of these matrix operators was
studied in [15], [17], [20] and [22].
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THEOREM C. Let p � q < ∞ and 0 < p � 1 . Let entries ai,k of a matrix (ai,k)
be non-decreasing in the first index. Then inequality (9) holds if and only if

E = sup
α� j�β

(
j

∑
k=1

aq
j,ku

q
k

) 1
q

v−1
j < ∞

holds. Moreover, C ≈ E , where C is the best constant in (9).

Theorem C follows from Corollary 3.2 of [20].

THEOREM D. (see [17]) Let 1 < p � q < ∞ and the entries of the matrix (ai,k)
satisfy condition (3). Then the inequality (9) holds if and only if F = max{F1,F2}< ∞ ,
where

F1 = sup
α� j�β

(
β

∑
i= j

v−p′
i

) 1
p′
(

j

∑
k=α

aq
j,ku

q
k

) 1
q

,

F2 = sup
α� j�β

(
β

∑
i= j

ap′
i, jv

−p′
i

) 1
p′
(

j

∑
k=α

uq
k

) 1
q

.

Moreover, C ≈ F , where C is the best constant in (9).

THEOREM E. (see [15]) Let 1 < q < p < ∞ and the entries of the matrix (ai,k)
satisfy condition (3). Then the inequality (9) holds if and only if M = max{M1,M2} <
∞ , where

M1 =

⎛⎜⎝ β

∑
k=α

(
β

∑
i=k

ap′
i,kv

−p′
i

) q(p−1)
p−q

(
k

∑
j=α

uq
j

) q
p−q

uq
k

⎞⎟⎠
p−q
pq

,

M2 =

⎛⎜⎝ β

∑
k=α

(
k

∑
j=α

aq
k, ju

q
j

) p
p−q
(

β

∑
i=k

v−p′
i

) p(q−1)
p−q

v−p′
k

⎞⎟⎠
p−q
pq

.

Moreover, C ≈ M, where C is the best constant in (9).

We provide proofs only for the inequality (4), since the proofs for the inequality (5)
are similar. Therefore, we have decided not to give analogues of Theorems A,B, C, D
and E for inequalities (8) and (9) with corresponding conjugate operators. Theorems A
and C are applied for the case p � q < ∞ , p ∈ (0,1] , other three theorems are applied
for the case 1 < p � q < ∞ . For our proofs we also need the following Lemma.

LEMMA 1. Let r > 0 , 1 � n < N � ∞ . Then

N

∑
k=n

ak

(
N

∑
j=k

a j

)r−1

≈
(

N

∑
i=n

ai

)r

≈
N

∑
k=n

ak

(
k

∑
j=n

a j

)r−1

. (10)
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We also use the following elementary inequalities in our estimates: if ai > 0,
i = 1,2, ...,k, then (

k

∑
i=1

ai

)α

�
k

∑
i=1

aα
i , 0 < α < 1, (11)

and (
k

∑
i=1

ai

)α

�
k

∑
i=1

aα
i , α � 1. (12)

We also need the following quantities:

J−r,p(α,β ) = sup
f �=0

(
β
∑

k=α

∣∣∣wk

β
∑
i=k

ai,k fi
∣∣∣r) 1

r

(
β
∑

i=α
|vi fi|p

) 1
p

, f ∈ lp,v,

J+
r,p(α,β ) = sup

f �=0

(
β
∑

k=α

∣∣∣wk

k
∑

i=α
ak,i fi

∣∣∣r) 1
r

(
β
∑

i=α
|vi fi|p

) 1
p

, f ∈ lp,v.

Convention: The symbol E � F means E � CF with some constant C , depending on
the parameters p , q and r . Moreover, the notation E ≈ F means E � F � E .

3. Main results for 0 < p � 1 , p � q < ∞ .

THEOREM 1. Let 0 < p � 1 , p � q < ∞ and 1 < r < ∞ . Let the entries of
the matrix (ai,k) satisfy condition (3). Then inequality (4) holds if and only if B+ =
max{B+

1 ,B+
2 } < ∞ , where

B+
1 = sup

j�1

(
∞

∑
n= j

uq
n

) 1
q

J−r,p(1, j),

B+
2 = sup

j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
k=1

ar
j,kw

r
k

) q
r
⎞⎠

1
q

v−1
j .

Moreover, C ≈ B+ , where C is the best constant in (4).

Proof. Necessity. Suppose that inequality (4) holds with the best constant C > 0.
Let us show that B+

2 < ∞ . We choose j � 1 arbitrary and we take a test sequence
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f̃ j = { f̃ j,i}∞
i=1 defined by f̃ j,i = v−1

i for i = j and f̃ j,i = 0 for i �= j . Then

‖ f̃ j‖v,p =

(
∞

∑
i=1

| f̃ j,i · vi|p
) 1

p

= 1. (13)

Substituting f̃ j in the left-hand side of inequality (4), we deduce that

I( f̃ ) :=

⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

∣∣∣ws

∞

∑
i=s

ai,s f̃ j,i

∣∣∣r)
q
r
⎞⎠

1
q

�

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
∞

∑
i= j

ai,s f̃ j,i

)r) q
r
⎞⎠

1
q

.

By taking into account that ai,s � a j,s for i � j , we have

I( f̃ ) �

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

ar
j,sw

r
s

) q
r
⎞⎠

1
q ∞

∑
i= j

f̃ j,i

�

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

ar
j,sw

r
s

) q
r
⎞⎠

1
q

v−1
j . (14)

From (13), (14) and (4) it follows that⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

ar
j,sw

r
s

) q
r
⎞⎠

1
q

v−1
j � C, ∀ j � 1.

Since j � 1 is arbitrary, we have

B+
2 = sup

j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

wr
sa

r
j,s

) q
r
⎞⎠

1
q

v−1
j � C < ∞. (15)

Suppose that

f j,i =

{
fi, 1 � i � j,

0, j < i < ∞.

I( f ) �

⎛⎝ ∞

∑
n= j

uq
n

(
n

∑
s=1

∣∣∣∣∣ws

∞

∑
i=s

ai,s f j,i

∣∣∣∣∣
r) q

r
⎞⎠

1
q

�
(

∞

∑
n= j

uq
n

) 1
q
(

j

∑
s=1

∣∣∣∣∣ws

j

∑
i=s

ai,s fi

∣∣∣∣∣
r) 1

r

.
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From the validity of (4) we have

C

(
j

∑
i=1

|vi fi|p
) 1

p

�
(

∞

∑
n= j

uq
n

) 1
q
(

j

∑
s=1

∣∣∣∣∣ws

j

∑
i=s

ai,s fi

∣∣∣∣∣
r) 1

r

.

Hence,

C �
(

∞

∑
n= j

uq
n

) 1
q

sup
f�0

(
j

∑
s=1

∣∣∣∣ws

j
∑
i=s

ai,s fi

∣∣∣∣r)
1
r

(
j

∑
i=1

|vi fi|p
) 1

p

=

(
∞

∑
n= j

uq
n

) 1
q

J−r,p(1, j),

B+
1 � C. (16)

The inequalities (15) and (16) give that

B+ � C < ∞. (17)

Sufficiency. Suppose that B+ < ∞ . Now we prove that inequality (4) holds for a
finite constant C . Without loss of generality we assume that 0 � f ∈ lp,v .

If 0 < q � 1, we have

I( f ) =

⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
∞

∑
i=s

ai,s fi

)r) q
r
⎞⎠

1
q

�

⎛⎝ ∞

∑
n=1

uq
n

⎛⎝( n

∑
s=1

wr
s

(
n

∑
i=s

ai,s fi

)r) 1
r

+

(
n

∑
s=1

wr
s

(
∞

∑
i=n

ai,s fi

)r) 1
r
⎞⎠q⎞⎠

1
q

� 2
1
q−1

⎡⎢⎣
⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
n

∑
i=s

ai,s fi

)r) q
r
⎞⎠

1
q

+

⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
∞

∑
i=n

ai,s fi

)r) q
r
⎞⎠

1
q
⎤⎥⎦ .

By condition (3), we obtain

I( f ) � 2
1
q−1

⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
n

∑
i=s

ai,s fi

)r) q
r
⎞⎠

1
q

+2
1
q−1

⎛⎝ ∞

∑
n=1

uq
n

⎛⎝( n

∑
s=1

wr
s

(
∞

∑
i=n

ai,n fi

)r) 1
r

+

(
n

∑
s=1

wr
s

(
∞

∑
i=n

an,s fi

)r) 1
r
⎞⎠q⎞⎠

1
q



634 N. ZHANGABERGENOVA

� 4
1
q−1

⎡⎢⎣
⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

wr
s

) q
r
(

∞

∑
i=n

ai,n fi

)q
⎞⎠

1
q

+

⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

ar
n,sw

r
s

) q
r
(

∞

∑
i=n

fi

)q
⎞⎠

1
q
⎤⎥⎦

+2
1
q−1

⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
n

∑
i=s

ai,s fi

)r) q
r
⎞⎠

1
q

= 4
1
q−1 [I1 + I2]+2

1
q−1I3. (18)

If q > 1, by using discrete Minkowski inequality, we obtain

I( f ) � I1 + I2 + I3. (19)

This means that we need separately estimate I1 ,I2 and I3 . Let us start with I1 . By
Theorem C, we have

I1 �

⎧⎪⎨⎪⎩sup
j�1

⎛⎝ j

∑
n=1

aq
j,nu

q
n

(
n

∑
k=1

wr
k

) q
r
⎞⎠

1
q

v−1
j

⎫⎪⎬⎪⎭‖ f‖p,v. (20)

Taking into account that a j,n � a j,k for n � k , we get

I1 �

⎧⎪⎨⎪⎩sup
j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
k=1

ar
j,kw

r
k

) q
r
⎞⎠

1
q

v−1
j

⎫⎪⎬⎪⎭‖ f‖p,v � B+
2 ‖ f‖p,v. (21)

Let us estimate I2 . By Theorem A, we have

I2 �

⎧⎪⎨⎪⎩sup
j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
k=1

ar
n,kw

r
k

) q
r
⎞⎠

1
q

v−1
j

⎫⎪⎬⎪⎭‖ f‖p,v. (22)

Since an,k � a j,k for j � n and from (22) we get

I2 � B+
2 ‖ f‖p,v. (23)

For all n � 1 we consider the following set:

Ln = max

{
l ∈ Z :

n

∑
s=1

(
ws

n

∑
i=s

ai,s fi

)r

� 2rl

}
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Then for any n � 1:

2rLn �
n

∑
s=1

(
ws

n

∑
i=s

ai,s fi

)r

< 2r(Ln+1) (24)

Let n1 = 1 and M1 = {n ∈ N : Ln = Ln1 = L1} . We will define the value n2 as n2 =
supM1 + 1. Obviously n2 > n1 .If the set M1 is bounded from above, then n2 < ∞
and n2 = maxM1 + 1. Let 1 = n1 < n2 < ... < nk < ∞ be inductively determined
for k � 1. Then assume that nk+1 = supMk + 1 to determine the value nk+1 , where
Mk = {n ∈ N : Ln = Lnk} . Let N0 = {k ∈ N : nk < ∞} . For convenience, we introduce
the notation Lnk = mk . Then from the definition of nk and by (24) for k ∈ N0 , we have

2rmk �
n

∑
s=1

(
ws

n

∑
i=s

ai,s fi

)r

< 2r(mk+1), nk � n � nk+1−1, (25)

and
N =

⋃
k∈N0

[nk,nk+1), [nk,nk+1)
⋂
k �=l

[nl,nl+1) = 
.

Therefore, we can write I3 as follows:

I3 =

⎛⎝ ∑
k∈N0

nk+1−1

∑
n=nk

uq
n

(
n

∑
s=1

(
ws

n

∑
i=s

ai,s fi

)r) q
r
⎞⎠

1
q

� 4

(
k∞

∑
k=1

2q(mk−1)
nk+1−1

∑
n=nk

uq
n

) 1
q

. (26)

Using that mk−2 +1 � mk−1, which is derived from mk−2 < mk−1 < mk and from (25)
and (3), we have

2mk−1 = 2mk −2mk−1 � 2mk −2mk−2+1

�
(

nk

∑
s=1

wr
s

(
nk

∑
i=s

ai,s fi

)r) 1
r

−
(

nk−1−1

∑
s=1

wr
s

(
nk−1−1

∑
i=s

ai,s fi

)r) 1
r

�
(

nk−1−1

∑
s=1

wr
s

(
nk−1−1

∑
i=s

ai,s fi +
nk

∑
i=nk−1

ai,s fi

)r) 1
r

+

(
nk

∑
s=nk−1

wr
s

(
nk

∑
i=s

ai,s fi

)r) 1
r

−
(

nk−1−1

∑
s=1

wr
s

(
nk−1−1

∑
i=s

ai,s fi

)r) 1
r

�
(

nk−1−1

∑
s=1

wr
s

(
nk

∑
i=nk−1

ai,s fi

)r) 1
r

+

(
nk

∑
s=nk−1

wr
s

(
nk

∑
i=s

ai,s fi

)r) 1
r

�
(

nk−1

∑
s=1

wr
s

) 1
r nk

∑
i=nk−1

ai,nk−1 fi

+

(
nk−1

∑
s=1

ar
nk−1,s

wr
s

) 1
r nk

∑
i=nk−1

fi +

(
nk

∑
s=nk−1

wr
s

(
nk

∑
i=s

ai,s fi

)r) 1
r

. (27)
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Combining (26) with (27), for q > 1 we have

I3 �
⎛⎝ ∑

k∈N0

nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

wr
s

) q
r
(

nk

∑
i=nk−1

ai,nk−1 fi

)q
⎞⎠

1
q

+

⎛⎝ ∑
k∈N0

nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

ar
nk−1,sw

r
s

) q
r
(

nk

∑
i=nk−1

fi

)q
⎞⎠

1
q

+

⎛⎝ ∑
k∈N0

nk+1−1

∑
n=nk

uq
n

(
nk

∑
s=nk−1

wr
s

(
nk

∑
i=s

ai,s fi

)r) q
r
⎞⎠

1
q

= I31 + I32 + I33. (28)

If 0 < q � 1, we get

I3 � 4 ·3 1
q−1[I31 + I32 + I33].

Let’s start estimate I31 . Since 0 < p � 1, using (11) and (3) we have

I31 =

⎛⎝ ∑
k∈N0

nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

wr
s

) q
r
(

nk

∑
i=nk−1

ai,nk−1 fiviv
−1
i

)p q
p
⎞⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p

sup
nk−1�z�nk

aq
z,nk−1

v−q
z

nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

wr
s

) q
r
⎞⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p nk+1−1

∑
n=nk

uq
n sup

nk−1�z�nk

v−q
z

(
nk−1

∑
s=1

ar
z,sw

r
s

) q
r
⎞⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p nk+1−1

∑
n=nk

uq
n sup

nk−1�z�nk

v−q
z

(
z

∑
s=1

ar
z,sw

r
s

) q
r
⎞⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p
⎞⎠

1
q

sup
nk�1

(
∞

∑
n=nk

uq
n

) 1
q

sup
1�z�nk

v−1
z

(
z

∑
s=1

ar
z,sw

r
s

) 1
r

� 2
1
p

(
∞

∑
i=1

|vi fi|p
) 1

p

sup
j�1

(
∞

∑
n= j

uq
n

) 1
q

sup
1�z� j

v−1
z

(
z

∑
s=1

ar
z,sw

r
s

) 1
r

.

In this case the ratio of the parameters p and r is p < r < ∞ , p ∈ (0,1] . Therefore, by
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Theorem C we have

J−r,p(1, j) = sup
f �=0

(
j

∑
k=1

∣∣∣wk

j
∑
i=k

ai,k fi
∣∣∣r) 1

r

(
j

∑
i=1

|vi fi|p
) 1

p

≈ sup
1�i� j

(
i

∑
s=1

ar
i,sw

r
s

) 1
r

v−1
i . (29)

Thus,

I31 � B+
1 ‖ f‖p,v. (30)

In the same way, we evaluate I32 .

I32 �

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p

sup
nk−1�z�nk

v−q
z

nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

ar
nk−1,s

wr
s

) q
r
⎞⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p nk+1−1

∑
n=nk

uq
n sup

nk−1�z�nk

v−q
z

(
nk−1

∑
s=1

ar
z,sw

r
s

) q
r
⎞⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p
⎞⎠

1
q

sup
nk�1

(
∞

∑
n=nk

uq
n

) 1
q

sup
1�z�nk

v−1
z

(
z

∑
s=1

ar
z,sw

r
s

) 1
r

� 2
1
p sup

j�1

(
∞

∑
n= j

uq
n

) 1
q

sup
1�z� j

v−1
z

(
z

∑
s=1

ar
z,sw

r
s

) 1
r

‖ f‖p,v

� sup
j�1

(
∞

∑
n= j

uq
n

) 1
q

J−r,p(1, j)‖ f‖p,v.

Therefore, also

I32 � B+
1 ‖ f‖p,v. (31)

Estimate the last remaining I33

I33 =

⎛⎜⎜⎜⎜⎜⎝ ∑
k∈N0

nk+1−1

∑
n=nk

uq
n

(
nk

∑
s=nk−1

wr
s

(
nk

∑
i=s

ai,s fi

)r
) q

r

(
nk

∑
i=nk−1

|vi fi|p
) q

p

(
nk

∑
i=nk−1

|vi fi|p
) q

p

⎞⎟⎟⎟⎟⎟⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p nk+1−1

∑
n=nk

uq
n[J

−
r,p(nk−1,nk)]q

⎞⎠
1
q
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�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p
⎞⎠

1
q

sup
nk�1

(
∞

∑
n=nk

uq
n

) 1
q

J−r,p(1,nk)

� 2
1
p sup

j�1

(
∞

∑
n= j

uq
n

) 1
q

J−r,p(1, j)‖ f‖p,v � B+
1 ‖ f‖p,v. (32)

From the inequalities (21), (23), (30), (31) and (32) we have that⎛⎝ ∞

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
∞

∑
i=s

ai,s fi

)r) q
r
⎞⎠

1
q

� B+‖ f‖p,v. (33)

and C � B+ , where C is the best constant in (4). The latter together with (17), gives
C ≈ B+ . The proof is complete. �

THEOREM 2. Let 0 < p � 1 , p � q < ∞ and 1 < r < ∞ . Let the entries of
the matrix (ak,i) satisfy condition (3). Then inequality (5) holds if and only if B− =
max{B−

1 ,B−
2 } < ∞ , where

B−
1 = sup

j�1

(
j

∑
n=1

uq
n

) 1
q

J+
r,p( j,∞),

B−
2 = sup

j�1

⎛⎝ ∞

∑
n= j

uq
n

(
∞

∑
k=n

ar
k, jw

r
k

) q
r
⎞⎠

1
q

v−1
j .

Moreover, C′ ≈ B− , where C′ is the best constant in (5).

The proof of Theorem 2 is similar to the proof of Theorem 1.

4. Main results for 1 < p � q < ∞ .

THEOREM 3. Let 1 < p � q < ∞ and 1 < r < ∞ . Let the entries of the matrix
(ai,k) satisfy condition (3). Then inequality (4) holds if and only if

M+ = max{M+
1 ,M+

2 ,M+
3 } < ∞,

where

M+
1 = sup

j�1

(
∞

∑
n= j

uq
n

) 1
q

J−r,p(1, j),

M+
2 = sup

j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
k=1

ar
j,kw

r
k

) q
r
⎞⎠

1
q ( ∞

∑
i= j

v−p′
i

) 1
p′

,
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M+
3 = sup

j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
k=1

wr
k

) q
r
⎞⎠

1
q ( ∞

∑
i= j

ap′
i, jv

−p′
i

) 1
p′

.

Moreover, C ≈ M+ , where C is the best constant in (4).

Proof. Necessity. Suppose that the inequality (4) holds with the best constant
C > 0. Let us show that M+ < ∞ . In the same way as we obtain the estimate C � B+

1
in the proof of Theorem 1, we get that

M+
1 � C. (34)

Let 1 � j < N < ∞ and we take a test sequence f̃ j = { f̃ j,i}∞
i=1 such that f̃ j,i =

ap′−1
i, j v−p′

i for j � i � N and f̃ j,i = 0 for 1 � i < j and N < i . Then

‖ f̃ j‖p,v =

(
∞

∑
i=1

| f̃ j,ivi|p
) 1

p

=

(
N

∑
i= j

|ap′−1
i, j v−p′

i vi|p
) 1

p

=

(
N

∑
i= j

ap′
i, jv

−p′
i

) 1
p

< ∞, (35)

i.e. f̃ j ∈ lp,v . By substituting f̃ j in the left-hand side of inequality (4) and taking into
account that ai,s � ai, j for j � s , we have

I( f̃ ) �

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

wr
s

(
N

∑
i= j

ai,s f̃ j,i

)r) q
r
⎞⎠

1
q

�

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

wr
s

) q
r
⎞⎠

1
q

N

∑
i= j

ai, j f̃ j,i

=

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

wr
s

) q
r
⎞⎠

1
q

N

∑
i= j

ap′
i, jv

−p′
i . (36)

From (35), (36) and (4) we obtain

C �

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

wr
s

) q
r
⎞⎠

1
q (

N

∑
i= j

ap′
i, jv

−p′
i

) 1
p′

, for all 1 � j < N < ∞. (37)

Since j � 1 is arbitrary, taking the supremum over j and passing to the limit as N →∞ ,
we get that

M+
3 = sup

j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

wr
s

) q
r
⎞⎠

1
q ( ∞

∑
i= j

ap′
i, jv

−p′
i

) 1
p′

� C. (38)
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Let us show that M+
2 < ∞ . Now for 1 � j < N < ∞ we suppose that f̃ j,i = v−p′

i for
j � i � N and f̃ j,i = 0 for 1 � i < j and N < i . Then

‖ f̃ j‖p,v =

(
N

∑
i= j

v−p′
i

) 1
p

, f̃ j ∈ lp,v. (39)

Similarly as above, substituting f̃ j in the left-hand side of inequality (4) and taking into
account that ai,s � a j,s for i � j , we can deduce that

I( f̃ ) �

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

ar
j,sw

r
s

) q
r
⎞⎠

1
q

N

∑
i= j

f̃ j,i

=

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

ar
j,sw

r
s

) q
r
⎞⎠

1
q

N

∑
i= j

v−p′
i . (40)

From (39), (40) and (4) it follows that

C �

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

ar
j,sw

r
s

) q
r
⎞⎠

1
q (

N

∑
i= j

v−p′
i

) 1
p′

, for all 1 � j < N < ∞.

Similarly as above, by taking the supremum on j and by passing to the limit on N , we
find that

M+
2 = sup

j�1

⎛⎝ j

∑
n=1

uq
n

(
n

∑
s=1

ar
j,sw

r
s

) q
r
⎞⎠

1
q ( ∞

∑
i= j

v−p′
i

) 1
p′

� C. (41)

From (34), (38) and (41) we have that

M+ � C. (42)

Sufficiency. Let M+ < ∞ . Now we prove that inequality (4) holds. Let 0 � f ∈
lp,v . The sufficient part of Theorem 3 can be proved in the same way as the sufficient
part in Theorem 1. In this case since q � 1, in the same way we get I( f ) � I1 + I2 + I3 ,
where I1 , I2 and I3 are values from (19). We use Theorem D to estimate I1 , then taking
into account the condition (3) we obtain the following inequality

I1 � max{M+
2 ,M+

3 }‖ f‖p,v. (43)

For estimating I2 we use Theorem B and condition (3).

I2 � M+
2 ‖ f‖p,v. (44)

To estimate I3 , we obtain the same values I31 , I32 and I33 as in the proof of Theorem
1. Next, to evaluate them we must consider the cases p � r and r < p separately.
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The case 1 < p � r . By using Hölder’s inequality with powers p and p′ , we
obtain that

I31 �

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p
(

nk

∑
z=nk−1

ap′
z,nk−1

v−p′
z

) q
p′ nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

wr
s

) q
r
⎞⎠

1
q

. (45)

Hence, we have that

I31 �

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p nk+1−1

∑
n=nk

uq
n sup

1� j�nk

(
j

∑
s=1

wr
s

) q
r
(

nk

∑
z= j

ap′
z, jv

−p′
z

) q
p′
⎞⎠

1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p
⎞⎠

1
q

sup
nk�1

(
∞

∑
n=nk

uq
n

) 1
q

sup
1� j�nk

(
j

∑
s=1

wr
s

) 1
r
(

nk

∑
z= j

ap′
z, jv

−p′
z

) 1
p′

.

By applying (12) with q
p � 1, we obtain that

I31 � 2
1
p ‖ f‖p,v sup

m�1

( ∞

∑
n=m

uq
n

) 1
q

sup
1� j�m

(
j

∑
s=1

wr
s

) 1
r
(

m

∑
z= j

ap′
z, jv

−p′
z

) 1
p′

.

As J−r,p(1,m) ≈C when α = 1, β = m and q = r , where C is the best constant in (9),
by Theorem D we have that

J−r,p(1,m) ≈ sup
1� j�m

(
j

∑
s=1

wr
s

) 1
r
(

m

∑
z= j

ap′
z, jv

−p′
z

) 1
p′

.

This gives

I31 � sup
m�1

( ∞

∑
n=m

uq
n

) 1
q

J−r,p(1,m)‖ f‖p,v � M+
1 ‖ f‖p,v. (46)

Let’s estimate I32 .

I32 �

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p
(

nk

∑
z=nk−1

v−p′
z

) q
p′ nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

ar
nk−1,sw

r
s

) q
r
⎞⎠

1
q

. (47)

In the same way we get

I32 � 2
1
p ‖ f‖p,v sup

m�1

( ∞

∑
n=m

uq
n

) 1
q

sup
j�m

(
j

∑
s=1

ar
j,sw

r
s

) 1
r
(

m

∑
z= j

v−p′
z

) 1
p′

� sup
m�1

( ∞

∑
n=m

uq
n

) 1
q

J−r,p(1,m)‖ f‖p,v,
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that yields

I32 � M+
1 ‖ f‖p,v. (48)

The case 1 < r < p. To estimate I31 we need the relation

(
nk−1

∑
s=1

wr
s

) 1
r

≈
⎛⎝nk−1

∑
s=1

wr
s

(
s

∑
m=1

wr
m

) r
p−r
⎞⎠

p−r
pr

. (49)

Now, we put (49) into (45) and find that

I31 �
(

∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p nk+1−1

∑
n=nk

uq
n

(
nk−1

∑
s=1

wr
s

(
s

∑
m=1

wr
m

) r
p−r

×
(

nk

∑
z=nk−1

ap′
z,sv

−p′
z

) pr
p′(p−r)

) q(p−r)
pr
) 1

q

�
(

∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p ∞

∑
n=nk

uq
n×

×

⎛⎜⎝nk−1

∑
s=1

wr
s

(
s

∑
m=1

wr
m

) r
p−r
(

nk

∑
z=s

ap′
z,sv

−p′
z

) r(p−1)
(p−r)

⎞⎟⎠
q(p−r)

pr ) 1
q

�

⎛⎝ ∑
k∈N0

(
nk

∑
i=nk−1

|vi fi|p
) q

p
⎞⎠

1
q

sup
nk�1

(
∞

∑
n=nk

uq
n

) 1
q
(

nk

∑
s=1

wr
s

(
s

∑
m=1

wr
m

) r
p−r

×
(

nk

∑
z=s

ap′
z,sv

−p′
z

) r(p−1)
(p−r)

) p−r
pr

.

From (12) and Theorem E it follows that

I31 � 2
1
p ‖ f‖p,v sup

j�1

(
∞

∑
n= j

uq
n

) 1
q

J−r,p(1, j) � M+
1 ‖ f‖p,v. (50)

Consider the following value

(
nk

∑
z=nk−1

v−p′
z

) 1
p′
≈

⎛⎜⎝ nk

∑
z=nk−1

v−p′
z

(
nk

∑
m=z

v−p′
m

) p(r−1)
(p−r)

⎞⎟⎠
p−r
pr

. (51)
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By inserting (51) into (47) then in the same way we as above find that

I32 � ‖ f‖p,v sup
j�1

(
∞

∑
n= j

uq
n

) 1
q

⎛⎜⎝ j

∑
z=1

v−p′
z

(
j

∑
m=z

v−p′
m

) p(r−1)
(p−r)

(
z

∑
s=1

ar
z,sw

r
s

) p
p−r

⎞⎟⎠
p−r
pr

� ‖ f‖p,v sup
j�1

(
∞

∑
n= j

uq
n

) 1
q

J−r,p(1, j) � M+
1 ‖ f‖p,v. (52)

The estimate
I33 � M+

1 ‖ f‖p,v (53)

for both cases 1 < r < p and 1 < p � r can be derived as in (32). From (46), (48), (50),
(52) and (53), we have that for both cases inequality (4) is correct. Moreover

I3 � M+
1 ‖ f‖p,v (54)

The inequalities (43), (44) and (54) give that C � M+ . Therefore, from this estimate
and (42) we find C ≈ M+ . The proof of Theorem 3 is complete. �

THEOREM 4. Let 1 < p � q < ∞ and 1 < r < ∞ . Let the entries of the matrix
(ak,i) satisfy condition (3). Then inequality (5) holds if and only if

M− = max{M−
1 ,M−

2 ,M−
3 } < ∞,

where

M−
1 = sup

j�1

(
j

∑
n=1

uq
n

) 1
q

J+
r,p( j,∞),

M−
2 = sup

j�1

⎛⎝ ∞

∑
n= j

uq
n

(
∞

∑
k=n

ar
k, jw

r
k

) q
r
⎞⎠

1
q (

j

∑
i=1

v−p′
i

) 1
p′

,

M−
3 = sup

j�1

⎛⎝ ∞

∑
n= j

uq
n

(
∞

∑
k=n

wr
k

) q
r
⎞⎠

1
q ( j

∑
i=1

ap′
j,iv

−p′
i

) 1
p′

.

Moreover, C′ ≈ M− , where C′ is the best constant in (5).

The proof of Theorem 4 is similar to the proof of Theorem 3.
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