A NOTE ON THE CONVOLUTION IN ORLICZ SPACES

Ibrahim Akbarbaglu and SaEid Maghsoudi*

(Communicated by I. Perić)

Abstract

Let G be a locally compact group. In this paper, for given concave Orlicz functions Φ and Ψ with $\limsup \mathrm{sp}_{t \rightarrow \infty} \Phi(t) / t=0$, we prove that the convolution $f * g$ exists, for $f \in L^{\Phi}(G)$ and $g \in L^{\Psi}(G)$, if and only if G is discrete. This extends and completes some recent results concerning the determination of when an Orlicz space on a locally compact group is closed under convolution multiplication.

1. Introduction

Throughout this paper, let G be a locally compact group with a fixed left Haar measure λ and let $L^{0}(G)$ be the space of all equivalent classes of λ-measurable complex-valued functions defined on G. For measurable functions f and g on G, the convolution

$$
(f * g)(x)=\int_{G} f(y) g\left(y^{-1} x\right) d \lambda(y)
$$

is defined at each point x belongs to G for which the function $y \mapsto f(y) g\left(y^{-1} x\right)$ is Haar integrable.

We deal with a problem which has its origin in the 1960's. O'Neil generalizes in [17] the celebrated Young Theorem and gives sufficient condition for the inclusion $L^{\Phi_{1}} * L^{\Phi_{2}} \subseteq L^{\Phi_{3}}$ among Orlicz spaces. More specifically, suppose $\Phi_{i}, i=1,2,3$, are Young functions and $L^{\Phi_{i}}(G)$ are corresponding Orlicz spaces (for definition see below). A natural question is that: is there any relation among Φ_{i} 's to be sufficient for the fact that if $f \in L^{\Phi_{1}}(G)$ and $g \in L^{\Phi_{2}}(G)$, then $f * g \in L^{\Phi_{3}}(G)$? O'Neil proves that: let G be a unimodular locally compact group, $\Phi_{i}, i=1,2,3$ be Young functions satisfying

$$
\Phi_{1}^{-1}(x) \Phi_{2}^{-1}(x) \leqslant x \Phi_{3}^{-1}(x)
$$

for $x \geqslant 0$. Then for any $f_{i} \in L^{\Phi_{i}}(G), i=1,2$, the convolution $f_{1} * f_{2}$ belongs to $L^{\Phi_{3}}(G)$.

From the other hand, there are known necessary and sufficient conditions for the space $L^{p}(G)$ to be closed under convolution multiplication (known as L^{p}-conjecture

Mathematics subject classification (2020): 46E30, 43A15, 54E52.
Keywords and phrases: Orlicz space, Orlicz function, porosity, locally compact group, convolution, Young function.

This work is based upon research funded by Iran National Science Foundation (INSF) under project no. 4020699.

* Corresponding author.
or Żelazko conjecture [24] which was finally solved by Saeki [21] in 1990), demanding generalization to Orlicz spaces; see for example [13, 14, 19]. Recently, this problem has attracted some attention; see for instance $[8,18]$.

In 2010, Głąb and Strobin in [10] started the study of quantitative version of the problem for L^{p} spaces. Specifically, they proved that the set of pairs $(f, g) \in L^{p}(G) \times$ $L^{q}(G)$ such that $f * g$ exists is small, namely σ-porous, if $1 / p+1 / q<1$; see also [4], and for a similar study on the pointwise product in L^{p} spaces see [11]. A generalization of their results for Orlicz spaces presented in $[2,3]$ and for more general setting of Calderón-Lozanowskiï spaces in [5]. For details on the diverse notions of porosity see [22].

Our aim in this note is to investigate an overlooked case of Orlicz space $L^{\Phi}(G)$ in which Φ is concave. This case has not been covered in the above mentioned works in spite of its importance in applications; see for example [6, 7]. In fact, we show the meagerness of the set of all pairs $(f, g) \in L^{\Phi}(G) \times L^{\Psi}(G)$ for which $f * g$ is λ-a.e. finite on G for given concave functions Φ and Ψ under a mild condition.

Before going further, let us gather some necessary information about Orlicz spaces. We refer the interested reader to [15] and [20] for more details about Orlicz spaces.

The function $\Delta: G \rightarrow(0, \infty)$ defined by $\lambda(A x)=\Delta(x) \lambda(A)$ is called the modular function of G. It is clear that Δ is a continuous homomorphism on G. Moreover, for every measurable subset A of G,

$$
\lambda\left(A^{-1}\right)=\int_{A} \Delta\left(x^{-1}\right) d \lambda(x)
$$

for more details see [9]. For $1 \leqslant p \leqslant \infty$, classical Lebesgue spaces on G with respect to the Haar measure λ will be denoted by $L^{p}(G)$ with the norm $\|\cdot\|_{p}$ as defined in [9].

An even function $\Phi: \mathbb{R} \rightarrow[0,+\infty]$ is called an Orlicz function if Φ is nondecreasing and $\Phi(t)>0$ for all $t \neq 0$ with

$$
\lim _{t \rightarrow \infty} \Phi(t)=+\infty, \quad \lim _{t \rightarrow 0^{+}} \Phi(t)=\Phi(0)=0
$$

Any Orlicz function Φ determines a functional $\rho_{\Phi}: L^{0}(G) \rightarrow[0,+\infty]$, called a modular, defined by the formula

$$
\rho_{\Phi}(f)=\int_{G} \Phi(|f(t)|) d \lambda(t)
$$

The subset

$$
\begin{equation*}
L^{\Phi}(G)=\left\{f \in L^{0}(G): \rho_{\Phi}(\alpha f)<+\infty \quad \text { for some } \quad \alpha>0\right\} \tag{1}
\end{equation*}
$$

in $L^{0}(G)$ is called Orlicz space.
Defining the functional $\|f\|_{\Phi}$ on $L^{\Phi}(G)$ by

$$
\begin{equation*}
\|f\|_{\Phi}=\inf \left\{k>0: \rho_{\Phi}(f / k) \leqslant k\right\} \tag{2}
\end{equation*}
$$

it satisfies the following conditions:

1) For all $f, 0 \leqslant\|f\|_{\Phi}<\infty$ and $\|f\|_{\Phi}=0$ if and only if $f=0$,
2) For all $f, g \in L^{\Phi}(G)$, if $|f| \leqslant|g|$ then $\|f\|_{\Phi} \leqslant\|g\|_{\Phi}$,
3) $0 \leqslant\|f+g\|_{\Phi} \leqslant\|f\|_{\Phi}+\|g\|_{\Phi}$ for all f and g,
4) $\left\|\lambda_{n} f\right\|_{\Phi} \rightarrow 0$ for every f and every sequence $\left(\lambda_{n}\right)$ of scalars with $\lim _{n \rightarrow \infty} \lambda_{n}=0$. Then $\|\cdot\|_{\Phi}$ is called (the Mazur-Orlicz) F-norm and the space $L^{\Phi}(G)$ is a complete metric linear space with respect to this F-norm [16].

A convex function $\Phi: \mathbb{R} \rightarrow[0, \infty]$ is called a Young function if Φ is even and left continuous with $\Phi(0)=0$; it is assumed that Φ is neither identically zero nor identically infinite on \mathbb{R}. For a Young function Φ and $y \in[0, \infty)$ let

$$
\Phi^{-1}(y)=\sup \{x \geqslant 0: \Phi(x) \leqslant y\} .
$$

In this case, the Orlicz space $L^{\Phi}(G)$ is a Banach space under the norm $N_{\Phi}(\cdot)$ (called the Luxemburg-Nakano norm) defined for $f \in L^{\Phi}(G)$ by

$$
N_{\Phi}(f)=\inf \left\{k>0: \rho_{\Phi}(f / k) \leqslant 1\right\} .
$$

2. Main results

We begin by recalling a fact on Borel measures due to R. E. Jamison proved in [12, 11.44].

Lemma 1. Let X be a locally compact Hausdorff space and μ be a Borel measure on X such that $\mu(\{x\})=0$ for all $x \in X$ and μ is inner regular. Suppose that A is a measurable set and $0<\alpha<\mu(A)$ is a real number. Then there is a compact subset K of A such that $\mu(K)=\alpha$.

Let Φ and Ψ be Orlicz functions. In the sequel, the space $L^{\Phi}(G) \times L^{\Psi}(G)$ will be equipped with the F-norm

$$
\|(f, g)\|_{\Phi, \Psi}=\max \left\{\|f\|_{\Phi},\|g\|_{\Psi}\right\} \quad\left(f \in L^{\Phi}(G), g \in L^{\Psi}(G)\right)
$$

Also the function χ_{A} denotes the characteristic function of a subset A.
Let us note a simple fact that will be used in the following theorem: if Φ is a concave function on $[0, \infty)$ then $\Phi(\lambda t) \geqslant \lambda \Phi(t)$ for all $0 \leqslant \lambda \leqslant 1$ and $t \geqslant 0$. Also, we have

$$
\int_{G} \Phi(|f|) d \lambda \leqslant\|f\|_{\Phi} \quad\left(f \in L^{\Phi}(G),\|f\|_{\Phi} \leqslant 1\right)
$$

Let us remark that our method for the proof of the following theorem is based on that used essentially in [10]. However, several technical problems in the case of concave Orlicz functions arise had to be figured out to get our result.

THEOREM 1. Let G be a non-discrete locally compact group with a fixed left Haar measure λ. Also let Φ and Ψ be concave Orlicz functions with

$$
\limsup _{t \rightarrow \infty} \frac{\Phi(t)}{t}=0
$$

Then for any compact symmetric neighborhood V of the identity element of G, the set

$$
E=\left\{(f, g) \in L^{\Phi}(G) \times L^{\Psi}(G): \exists x \in V,|f| *|g|(x)<\infty\right\}
$$

is of first category in $L^{\Phi}(G) \times L^{\Psi}(G)$.

Proof. Take a compact symmetric neighborhood V of the identity element of G. For any natural number n, put

$$
E_{n}=\left\{(f, g) \in L^{\Phi}(G) \times L^{\Psi}(G): \exists x \in V,|f| *|g|(x) \leqslant n\right\}
$$

So, $E=\bigcup_{n \in \mathbb{N}} E_{n}$. We will show that for each $n \in \mathbb{N}, E_{n}$ is a nowhere dense set in $L^{\Phi}(G) \times L^{\Psi}(G)$. This will complete the proof.

Let

$$
\eta=\sup \{\Delta(x): x \in V\}
$$

and $c=1 / 9$. Then $8 c=1-c$. Fix $0<\alpha<c$, then $8 \alpha<1-\alpha$. By continuity of the map $x \mapsto 8 \alpha / x$ on $(0,1)$, we conclude that there exist $0<\beta<1-\alpha$ and $d<1$ such that $8 \alpha<\beta(1-d)$.

Fix $n \in \mathbb{N}, 0<r<\alpha$ and $(f, g) \in E_{n}$. Since G is not discrete, $\inf \{\lambda(U)$: $\lambda(U)>0\}=0$. Hence, we can choose a compact symmetric neighborhood F in V with $\lambda(F V) \leqslant 2 \lambda(V)$ such that

$$
\begin{equation*}
\beta^{2} r^{4} d^{2} \lambda(F) \Phi^{-1}\left(\frac{1}{\lambda(F)}\right) \Psi^{-1}\left(\frac{r^{2}}{8 \lambda(V)}\right)>16 n \tag{3}
\end{equation*}
$$

Also, by Lemma 1, there exists a compact subset U_{0} of F such that $\lambda\left(U_{0}^{-1}\right)=\frac{r^{2}}{4 \eta} \lambda(F)$.
Now, define functions \widetilde{f} and \widetilde{g} on G by setting

$$
\begin{aligned}
& \widetilde{f}(y):= \begin{cases}f(y) & y \notin U_{0} \\
f(y)+\beta r \Phi^{-1}\left(\frac{\eta}{\lambda(F) \Delta(y)}\right) & \operatorname{Re}(f(y)) \geqslant 0, y \in U_{0} \\
f(y)-\beta r \Phi^{-1}\left(\frac{\eta}{\lambda(F) \Delta(y)}\right) & \operatorname{Re}(f(y))<0, y \in U_{0} .\end{cases} \\
& \widetilde{g}(y):= \begin{cases}g(y) & y \notin U_{0}^{-1} V \\
g(y)+\beta r \Psi^{-1}\left(\frac{r^{2}}{4 \lambda(F V)}\right) & \operatorname{Re}(g(y)) \geqslant 0, y \in U_{0}^{-1} V \\
g(y)-\beta r \Psi^{-1}\left(\frac{r^{2}}{4 \lambda(F V)}\right) & \operatorname{Re}(g(y))<0, y \in U_{0}^{-1} V .\end{cases}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{G} \Phi\left(\frac{2}{r} \Phi^{-1}\left(\frac{\eta}{\lambda(F) \Delta(x)} \chi_{U_{0}}(x)\right)\right) d \lambda(x) & <\int_{U_{0}} \frac{2 \eta}{r \lambda(F) \Delta(x)} d \lambda(x) \\
& =\frac{2 \eta}{r \lambda(F)} \lambda\left(U_{0}^{-1}\right) \\
& =\frac{2 \eta}{r \lambda(F)} \frac{r^{2}}{4 \eta} \lambda(F) \\
& =\frac{r}{2}
\end{aligned}
$$

and analogously

$$
\int_{G} \Psi\left(\frac{2}{r} \Psi^{-1}\left(\frac{r^{2}}{4 \lambda(F V)} \chi_{U_{0}^{-1} V}(x)\right)\right) d \lambda(x)<\frac{r}{2}
$$

The above inequalities imply that

$$
\left\|\Phi^{-1}\left(\frac{\eta}{\lambda(F) \Delta}\right) \chi_{U_{0}}\right\|_{\Phi}<\frac{r}{2}
$$

and

$$
\left\|\Psi^{-1}\left(\frac{r^{2}}{4 \lambda(F V)}\right) \chi_{U_{0}^{-1} V}\right\|_{\Psi}<\frac{r}{2}
$$

Consequently,

$$
\|\widetilde{f}-f\|_{\Phi}<\frac{r}{2} \quad \text { and } \quad\|\widetilde{g}-g\|_{\Phi}<\frac{r}{2}
$$

Thus it remains only to show that for any positive real number δ with

$$
\delta<\frac{r^{3} \lambda\left(U_{0}^{-1}\right)}{4 \eta \lambda(F V)}
$$

we get $B((\widetilde{f}, \widetilde{g}), \delta r) \subseteq B((\widetilde{f}, \widetilde{g}), \alpha r) \backslash E_{n}$. To prove this, take $(h, k) \in B((\widetilde{f}, \widetilde{g}), \delta r)$. Put

$$
\begin{aligned}
& A_{1}:=\left\{x \in U_{0}:|h(x)|<\beta r d \Phi^{-1}\left(\frac{\eta}{\lambda(F) \Delta(x)}\right)\right\}, \\
& B_{1}:=\left\{x \in U_{0}^{-1} V:|k(x)|<\beta r d \Psi^{-1}\left(\frac{r^{2}}{4 \lambda(F V)}\right)\right\} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\delta r>\|\tilde{f}-h\|_{\Phi} & \geqslant\left\|(\tilde{f}-h) \chi_{A_{1}}\right\|_{\Phi} \\
& \geqslant\left\|(|\widetilde{f}|-|h|) \chi_{A_{1}}\right\|_{\Phi} \\
& \geqslant\left\|\beta r \Phi^{-1}\left(\frac{\eta \chi_{A_{1}}}{\lambda(F) \Delta}\right)-\beta r d \Phi^{-1}\left(\frac{\eta \chi_{A_{1}}}{\lambda(F) \Delta}\right)\right\|_{\Phi} \\
& =\left\|\beta r(1-d) \Phi^{-1}\left(\frac{\eta \chi_{A_{1}}}{\lambda(F) \Delta}\right)\right\|_{\Phi} \\
& \geqslant\left\|\Phi^{-1}\left(\frac{\eta \beta r(1-d) \chi_{A_{1}}}{\lambda(F) \Delta}\right)\right\|_{\Phi} \\
& \geqslant \int_{A_{1}} \frac{\eta \beta r(1-d)}{\lambda(F) \Delta(x)} d \lambda(x)
\end{aligned}
$$

Accordingly,

$$
\lambda\left(A_{1}^{-1}\right)<\frac{\delta r \lambda(F)}{\eta \beta r(1-d)}<\frac{\delta \lambda(F)}{8 \alpha \eta}<\frac{\delta \lambda\left(U_{0}^{-1}\right)}{2 r^{3}}<\frac{\lambda\left(U_{0}^{-1}\right)}{8}
$$

Furthermore,

$$
\begin{aligned}
\delta r>\|\widetilde{g}-k\|_{\Psi} & \geqslant\left\|(\widetilde{g}-k) \chi_{B_{1}}\right\|_{\Psi} \\
& \geqslant\left\|\Psi^{-1}\left(\frac{\beta r^{3}(1-d) \chi_{B_{1}}}{4 \lambda(F V)}\right)\right\|_{\Psi} \\
& \geqslant \int_{B_{1}} \frac{\beta r^{3}(1-d)}{4 \lambda(F V)} d \lambda(x) .
\end{aligned}
$$

that implies

$$
\lambda\left(B_{1}\right)<\frac{4 \delta r \lambda(F V)}{\beta r^{3}(1-d)}<\frac{r \lambda\left(U_{0}^{-1}\right)}{8 \alpha \eta}<\frac{\lambda\left(U_{0}^{-1}\right)}{8 \eta}
$$

The above inequalities also show that the sets

$$
A_{2}:=U_{0} \backslash A_{1} \quad \text { and } \quad B_{2}:=U_{0}^{-1} V \backslash B_{1}
$$

are of positive measure and so non-empty.
Now, let $z \in V$ be an arbitrary element, and define the sets

$$
H=\left(A_{2}^{-1} z\right) \cap B_{2} \quad \text { and } \quad S=z H^{-1}
$$

Since $A_{2}^{-1} z \subseteq U_{0}^{-1} V$, we obtain

$$
\begin{aligned}
\lambda\left(S^{-1}\right)=\lambda\left(H z^{-1}\right) & =\lambda\left(A_{2}^{-1}\right)-\lambda\left(A_{2}^{-1} \backslash\left(B_{2} z^{-1}\right)\right) \\
& \geqslant \lambda\left(A_{2}^{-1}\right)-\lambda\left(\left(U_{0}^{-1} V \backslash B_{2}\right) z^{-1}\right) \\
& =\lambda\left(A_{2}^{-1}\right)-\lambda\left(B_{1} z^{-1}\right) \\
& =\lambda\left(U_{0}^{-1}\right)-\lambda\left(A_{1}^{-1}\right)-\Delta\left(z^{-1}\right) \lambda\left(B_{1}\right) \\
& >\frac{\lambda\left(U_{0}^{-1}\right)}{4}
\end{aligned}
$$

Also, $S \subseteq A_{2}$ and $S^{-1} z \subseteq B_{2}$.
Finally, we conclude that

$$
\begin{aligned}
\int_{S}|h(y)|\left|k\left(y^{-1} z\right)\right| d \lambda(y) & \geqslant \int_{S} \beta^{2} r^{2} d^{2} \Phi^{-1}\left(\frac{\eta}{\lambda(F) \Delta(y)}\right) \Psi^{-1}\left(\frac{r^{2}}{4 \lambda(F V)}\right) d \lambda(y) \\
& \geqslant \int_{S} \beta^{2} r^{2} d^{2} \frac{\eta}{\Delta(y)} \Phi^{-1}\left(\frac{1}{\lambda(F)}\right) \Psi^{-1}\left(\frac{r^{2}}{4 \lambda(F V)}\right) d \lambda(y) \\
& \geqslant \beta^{2} r^{2} d^{2} \eta \lambda\left(S^{-1}\right) \Phi^{-1}\left(\frac{1}{\lambda(F)}\right) \Psi^{-1}\left(\frac{r^{2}}{8 \lambda(V)}\right) \\
& =\frac{\beta^{2} r^{4} d^{2}}{16} \lambda(F) \Phi^{-1}\left(\frac{1}{\lambda(F)}\right) \Psi^{-1}\left(\frac{r^{2}}{8 \lambda(V)}\right) \\
& >n
\end{aligned}
$$

This means that $(h, k) \notin E_{n}$.
REMARK 1. By using a similar argument as used in [1,2, 10], it can be seen that the assertion of Theorem 1 holds if we assume that Ψ is a Young function.

The following is a consequence of our main result.
Corollary 1. Let G be a locally compact group and let Φ be a concave Orlicz function with

$$
\limsup _{t \rightarrow \infty} \frac{\Phi(t)}{t}=0
$$

Then the following hold:

1) The convolution of any two functions in $L^{\Phi}(G)$ exists if and only if G is discrete.
2) If Φ is sub-multiplicative (i.e., $\Phi(s t) \leqslant C \Phi(s) \Phi(t)$ for some $C \geqslant 1$ and each positive reals $s, t)$ then $L^{\Phi}(G)$ is a topological algebra under convolution if and only if G is discrete.

Proof.

1) Assume that the convolution of any two functions in $L^{\Phi}(G)$ exists and, by way of contradiction, G is non-discrete. Since $L^{\Phi}(G) \times L^{\Phi}(G)$ is complete with respect to its metric, by the Baire category theorem, it can not be meager and, in particular, can not coincide with the set E in Theorem 1. This contradicts our assumption and it follows that G is discrete.
For the converse, assume that G is discrete, then $L^{\Phi}(G) \subseteq L^{1}(G)$. Because, given a function $f \in L^{\Phi}(G)$, we can find $\alpha>0$ and an at most countable set $H \subseteq G$ such that for every $x \in H, f(x) \neq 0$. Also we have

$$
\sum_{x \in H} \Phi(\alpha|f(x)|)<\infty
$$

Now since Φ is concave, for any $0<s<t$,

$$
\frac{\Phi(t)}{t} \leqslant \frac{\Phi(s)}{s}
$$

Hence for all except finitely many elements of H, we have $0<\Phi(\alpha|f|)<\Phi(1)$. It follows that $0<\alpha|f|<1$, and consequently $\alpha \Phi(1)|f| \leqslant \Phi(\alpha|f|)$.
2) In view of Part 1), we only need to consider when G is discrete. By the fact that for any non-negative reals a and $b, \Phi(a+b) \leqslant \Phi(a)+\Phi(b)$ we obtain, for every f and g in $L^{\Phi}(G)$,

$$
\begin{aligned}
\sum_{x \in G} \Phi\left(\frac{|f * g|(x)}{C\|f\|_{\Phi}\|g\|_{\Phi}}\right) & \leqslant \sum_{x \in G} \Phi\left(\sum_{y \in G} \frac{\left|f(y) \| g\left(y^{-1} x\right)\right|}{\|f\|_{\Phi}\|g\|_{\Phi}}\right) \\
& \leqslant \sum_{x \in G} \sum_{y \in G} C \Phi\left(\frac{|f(y)|}{\|f\|_{\Phi}}\right) \Phi\left(\frac{\left|g\left(y^{-1} x\right)\right|}{\|g\|_{\Phi}}\right) \\
& \leqslant C\|f\|_{\Phi}\|g\|_{\Phi}
\end{aligned}
$$

Therefore $\|f * g\|_{\Phi} \leqslant C\|f\|_{\Phi}\|g\|_{\Phi}$.

Let us give an example.

EXAMPLE 1. Define $\Phi(x)=\ln \left(1+x+\sqrt{(1+x)^{2}-1}\right)$ and note that

$$
\lim _{t \rightarrow 0} \Phi(t) / \sqrt{t}=\sqrt{2}
$$

and

$$
\lim _{t \rightarrow \infty} \Phi(t) / t=0
$$

By Corollary 1, the Orlicz space $L^{\Phi}(G)$ is an algebra under convolution if and only if G is discrete.

Finally, as an another corollary of our main theorem, we recover a result due to W. Żelazko [23]; see also [4]. Note that in the special case $\Phi(t)=t^{p}$ for some $0<p<1$ we have $L^{\Phi}(G)=L^{p}(G)$ and

$$
\|f\|_{\Phi}=\left(\int_{G}|f(t)|^{p} d \lambda(t)\right)^{\frac{1}{1+p}}
$$

COROLLARY 2. For a locally compact group G and for $0<p<1$, the space $L^{p}(G)$ is an algebra under convolution multiplication if and only if G is discrete.

REFERENCES

[1] I. Akbarbaglu and S. Maghsoudi, An answer to a question on the convolution of functions, Arch. Math. (Basel), 98 (2012), 545-553.
[2] I. Akbarbaglu and S. Maghsoudi On certain porous sets in the Orlicz space of a locally compact group, Colloq. Math., 139 (2012), 99-111.
[3] I. Akbarbaglu and S. Maghsoudi, Banach-Orlicz algebras on a locally compact group, Mediterr. J. Math., 10 (2013), 1937-1947.
[4] I. Akbarbaglu and S. Maghsoudi, Porosity of certain subsets of Lebesgue spaces on locally compact groups, Bull. Aust. Math. Soc., 88 (2013), 113-122.
[5] I. Akbarbaglu, S. GŁa̧b, S. Maghsoudi, and F. Strobin, Topological size of some subsets in certain Calderón-Lozanowskiĭ spaces, Adv. Math., 312 (2017), 737-763.
[6] Y. Cui, H. Hudzik, R. KacZmarek, and P. Kolwicz, Geometric properties of F-normed Orlicz. spaces, Aequationes Math., 93 (2019), 311-343.
[7] Y. Cui, H. Hudzik, R. Kaczmarek, and P. Kolwicz, Uniform monotonicity of Orlicz spaces equipped with the Mazur-Orlicz F-norm and dominated best approximation in F-normed Köthe spaces, Math. Nachr., 295 (2022), 487-511.
[8] A. Ebadian and A. Jabbari, Generalization of Orlicz spaces, Monatsh. Math., 196 (2021), 699736.
[9] G. B. Folland, A first course in abstract harmonic analysis, CRC Press, Boca Raton, 1995.
[10] S. GŁA̧B And F. Strobin, Porosity and the L^{p}-conjecture, Arch. Math. (Basel), 95 (2010), 583-592.
[11] S. GŁA̧B And F. Strobin, Dichotomies for L^{p} spaces, J. Math. Anal. Appl., 368 (2010), 382-390.
[12] E. Hewitt and K. A. Ross, Abstract harmonic analysis, I, II, Springer-Verlag, New York, 19631970.
[13] H. Hudzik, A. Kamińska and J. Musielak, On some Banach algebras given by a modular, Colloq. Math. Soc. J. Bolyai, Alfred Haar Memorial Conference, Budapest, 49 (1985), 445-463.
[14] A. Kamińska and J. Musielak, On Convolution operator in Orlicz spaces, Rev. Mat. Complut., 2 (1989), 157-178.
[15] M. A. Krasnosel'skii and Ya. B. Rutickil, Convex functions and Orlicz spaces, Noordhoff, Netherlands, 1961.
[16] S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math., 17 (1958), 97-119.
[17] R. O’NeIL, Fractional integration in Orlicz spaces, I, Trans. Amer. Math. Soc., 115 (1965), 300-328.
[18] S. Öztop, E. Samei, and V. Shepelska, Twisted Orlicz algebras and complete isomorphism to operator algebras, J. Math. Anal. Appl., 477 (2019), 1114-1132.
[19] M. M. RaO, Convolutions of vector fields, III, Amenability and spectral properties, in Real and stochastic analysis, 375-401, Trends Math., Birkhäuser, Boston, 2004.
[20] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, 1991.
[21] S. SaEki, The L^{p}-conjecture and Young's inequality, Illinois J. Math., 34 (1990), 614-627.
[22] L. ZAJÍC̆EK, On σ-porous sets in abstract spaces, Abstr. Appl. Anal., 5 (2005), 509-534,
[23] W. ŻELAZKO, A theorem on the discrete groups and algebras L_{p}, Colloq. Math., 8 (1961), 205-207.
[24] W. ŻELAZKO, On the algebras L_{p} of locally compact groups, Colloq. Math., 8 (1961), 115-120.
(Received July 17, 2022)
Ibrahim Akbarbaglu Department of Mathematics education Farhangian University
P.O. Box 14665-889, Tehran, Iran
e-mail: i.akbarbaglu@cfu.ac.ir ibrahim.akbarbaglu@gmail.com

Saeid Maghsoudi
Department of Mathematics
University of Zanjan
Zanjan 45195-313, Iran
e-mail: s_maghsodi@znu.ac.ir

[^0]
[^0]: Mathematical Inequalities \& Applications
 www.ele-math.com
 mia@ele-math.com

