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A NOTE ON THE CONVOLUTION IN ORLICZ SPACES

IBRAHIM AKBARBAGLU AND SAEID MAGHSOUDI*

(Communicated by I. Peri¢)

Abstract. Let G be alocally compact group. In this paper, for given concave Orlicz functions @
and W with limsup,_,., ®(t)/t = 0, we prove that the convolution f g exists, for f € L*(G)
and g € LY(G), if and only if G is discrete. This extends and completes some recent results
concerning the determination of when an Orlicz space on a locally compact group is closed under
convolution multiplication.

1. Introduction

Throughout this paper, let G be a locally compact group with a fixed left Haar
measure A and let L°(G) be the space of all equivalent classes of A -measurable
complex-valued functions defined on G. For measurable functions f and g on G,
the convolution

(9 = [ 70)s070d20)

is defined at each point x belongs to G for which the function y — f(y)g(y~'x) is Haar
integrable.

We deal with a problem which has its origin in the 1960’s. O’Neil generalizes
in [17] the celebrated Young Theorem and gives sufficient condition for the inclusion
L® % L®2 C L3 among Orlicz spaces. More specifically, suppose ®;, i = 1,23, are
Young functions and L% (G) are corresponding Orlicz spaces (for definition see below).
A natural question is that: is there any relation among ®;’s to be sufficient for the fact
that if £ € L?1(G) and g € L®2(G), then f*g € L®3(G)? O’Neil proves that: let G
be a unimodular locally compact group, ®@;, i = 1,2,3 be Young functions satisfying

@) (1) Dy (x) < x5! (x)

for x > 0. Then for any f; € L®(G), i = 1,2, the convolution f] * f> belongs to
L% (G).

From the other hand, there are known necessary and sufficient conditions for the
space L?(G) to be closed under convolution multiplication (known as L? -conjecture
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or Zelazko conjecture [24] which was finally solved by Saeki [21] in 1990), demanding
generalization to Orlicz spaces; see for example [13, 14, 19]. Recently, this problem
has attracted some attention; see for instance [8, 18].

In 2010, Gtab and Strobin in [10] started the study of quantitative version of the
problem for L” spaces. Specifically, they proved that the set of pairs (f,g) € LP(G) X
L(G) such that f g exists is small, namely & -porous, if 1/p+1/q < 1; see also [4],
and for a similar study on the pointwise productin L” spaces see [11]. A generalization
of their results for Orlicz spaces presented in [2, 3] and for more general setting of
Calderén-Lozanowskii spaces in [5]. For details on the diverse notions of porosity see
[22].

Our aim in this note is to investigate an overlooked case of Orlicz space L®(G)
in which @ is concave. This case has not been covered in the above mentioned works
in spite of its importance in applications; see for example [6, 7]. In fact, we show the
meagerness of the set of all pairs (f,g) € L®(G) x L¥(G) for which fxg is A-a.e.
finite on G for given concave functions @ and ¥ under a mild condition.

Before going further, let us gather some necessary information about Orlicz spaces.
We refer the interested reader to [15] and [20] for more details about Orlicz spaces.

The function A : G — (0,0) defined by A(Ax) = A(x)A(A) is called the modular
function of G. It is clear that A is a continuous homomorphism on G. Moreover, for
every measurable subset A of G,

@AY :/AA(x_l)dJL(x);

for more details see [9]. For 1 < p < oo, classical Lebesgue spaces on G with respect
to the Haar measure A will be denoted by L”(G) with the norm || - ||, as defined in [9].

An even function @ : R — [0, 4] is called an Orlicz function if & is non-
decreasing and ®(zr) > 0 for all ¢ # 0 with

lim @(z) = oo, lim ®(r) = ®(0) = 0.

t—o0 t—0+

Any Orlicz function @ determines a functional pg : L°(G) — [0, +<0], called a modular,
defined by the formula

polf) = [ @(1r@)))aa ().
The subset

L®(G)={feL’(G): po(af) < +e forsome o >0}, (1)

in L°(G) is called Orlicz space.
Defining the functional || f||e on L?(G) by

| flle =inf{k>0: pa(f/k) <k}, 2)
it satisfies the following conditions:

1) Forall f, 0 <|f|le <e and ||f|le =0 if and only if f =0,
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2) Forall f,g € L%(G), if |f| < lg] then || fllo < [ig]lo,
3) 0< [l +glle <[fllo+lglle forall f and g,
4) || Auf]le — 0 forevery f and every sequence (A,) of scalars with lim,,_.. A, =0.

Then || || is called (the Mazur-Orlicz) F-norm and the space L®(G) is a complete
metric linear space with respect to this F'-norm [16].

A convex function @ : R — [0,c0] is called a Young function if @ is even and
left continuous with ®(0) = 0; it is assumed that ® is neither identically zero nor
identically infinite on R. For a Young function @ and y € [0, ) let

@' (y) = sup{x > 0: D(x) <y}

In this case, the Orlicz space L*(G) is a Banach space under the norm Ng(-) (called
the Luxemburg-Nakano norm) defined for f € L®(G) by

No(f) = inf{k > 0: po(f/k) < 1}.

2. Main results

We begin by recalling a fact on Borel measures due to R. E. Jamison proved in
[12, 11.44].

LEMMA 1. Let X be a locally compact Hausdorff space and L be a Borel mea-
sure on X such that ({x}) =0 forall x € X and  is inner regular. Suppose that A
is a measurable set and 0 < o0 < L(A) is a real number. Then there is a compact subset
K of A such that u(K) = o.

Let @ and ¥ be Orlicz functions. In the sequel, the space L*(G) x LY (G) will
be equipped with the F'-norm

I(f,8) o = max {[|fllo. Iglw} (f €L%(G).g € LY(G)).

Also the function y,4 denotes the characteristic function of a subset A.

Let us note a simple fact that will be used in the following theorem: if @ is a
concave function on [0,0) then ®(Az) > AdD(z) forall 0< A <1 and # > 0. Also, we
have

/G<I>(|f|)d/l <Ifle  (FeL®G) I fle <1).

Let us remark that our method for the proof of the following theorem is based
on that used essentially in [10]. However, several technical problems in the case of
concave Orlicz functions arise had to be figured out to get our result.

THEOREM 1. Let G be a non-discrete locally compact group with a fixed left
Haar measure A . Also let ® and W be concave Orlicz functions with
o(1)

limsup - = 0.

f—o0
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Then for any compact symmetric neighborhood V of the identity element of G, the set
E={(f,8) € L%(G) xLY(G): Ix €V, |f] *|g|(x) < =}

is of first category in L*(G) x L¥(G).

Proof. Take a compact symmetric neighborhood V' of the identity element of G.
For any natural number n, put

E,={(f.8) € L*(G) xL¥(G): Ix €V, |f|*|g|(x) <n}

So, E = U,enEn. We will show that for each n € N, E, is a nowhere dense set in
L?(G) x LY(G). This will complete the proof.

Let
N =sup{A(x): xeV}
and ¢ =1/9. Then 8¢ =1—c. Fix 0 < & < ¢, then 8¢ < 1 — c¢. By continuity of the

map x — 8¢t /x on (0,1), we conclude that there exist 0 < f < 1— o and d < 1 such
that 8a < (1 —d).

Fix neN, 0<r< o and (f,g) € E,. Since G is not discrete, inf{A(U) :
A(U) >0} =0. Hence, we can choose a compact symmetric neighborhood F in V
with A(FV) <2A(V) such that

Brrid’a(F)o! (ﬁ) p! (%) > 16n. )

Also, by Lemma 1, there exists a compact subset Uy of F such that A (UO_ 1) =—A(F).

Now, define functions f and g on G by setting

f) y ¢ Uo
)= 4 FO)+ B0 (3 Re(£(3) 20, v € Uy

)= Bro~! (5 ) Relf(3) <0, v € U,
8(y) yEUy 'V

2

¢0)+Br¥ ! (2t ) Re(e() >0, veUg v

2

g(y) — Bre! <4M’FV)> Re(g(y)) <0,y€e UO’IV.

oy
=
I
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It follows that
2 n 2n
/G(D (?q) 1 (A(F)A(x) Ao (x>>> dh(x) < /UO AW
- 20
21 P2
G
4

and analogously

/Glp (%\pl (ﬁx%lv@c))) drx) < .

The above inequalities imply that

and

Consequently,
~ r - r
If =fllo <5 and fg—glle < 5.
Thus it remains only to show that for any positive real number 8 with

PAU ")

O < AV

we get B((f.8),6r) C B((f,8),0r) \ E,. To prove this, take (h,k) € B((f,8),57).
Put

A= {x € Up: [h(x)] < Brd @ (W) } :

Blzz{er(;1V:k(x)<ﬁrd\P—1< - )}
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Therefore we have

6> |17 =Hllo > | (7 =) zalo
> ([ (11 = 1A]) xa, ||
> |jpro (15) - prao! (75 |
- [pra-ae (35)),

npr(l—d)
= A, Wd?t(x)

Accordingly,

B SrA(F)  SA(F)  SA(UZY  AUyh
1 0 0
M) —d) " Bam <28 <8
Furthermore,
6r>|lg—kllw>Il(g— k)XBIH‘P
)XBl
> (i)
M
> | Py .

v

that implies

48rA(Fv) _ra(Uy") AUy Y
Bri(1—d) < 8an < 8n
The above inequalities also show that the sets

Ay:=Up\A, and By:=U,'V\B;

A,(Bl)<

are of positive measure and so non-empty.
Now, let z € V be an arbitrary element, and define the sets

H=(Ay"2)NB, and S=zH "

Since A5 IzC Uy 'V | we obtain
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Also, SC As and S~z C B,.
Finally, we conclude that

kO lar0) > [ prae: (l(FT)?A(y)>\P_1 <4A€;v>)d“y)
2
2/5‘32’2"2$“’1< <1F>>‘P ( A(FV))"“”
1

—
~

4
r2
> 827 nis 0 ()9 ()
ﬁ27'4d2 B 1 3 }"2
=550 (7 )Y ()
>n

This means that (h,k) ¢ E,. O

REMARK 1. By using a similar argument as used in [1, 2, 10], it can be seen that
the assertion of Theorem | holds if we assume that ¥ is a Young function.

The following is a consequence of our main result.

COROLLARY 1. Let G be alocally compact group and let @ be a concave Orlicz
function with
D(r
limsup % =0.

f—o0

Then the following hold:
1) The convolution of any two functions in L®(G) exists if and only if G is discrete.

2) If ® is sub-multiplicative (i.e., ®(st) < CP(s)D(¢) for some C > 1 and each
positive reals s,t ) then L®(G) is a topological algebra under convolution if and
only if G is discrete.

Proof.

1) Assume that the convolution of any two functions in L®(G) exists and, by way
of contradiction, G is non-discrete. Since L*(G) x L®(G) is complete with
respect to its metric, by the Baire category theorem, it can not be meager and, in
particular, can not coincide with the set E in Theorem 1. This contradicts our
assumption and it follows that G is discrete.

For the converse, assume that G is discrete, then L‘D(G) cL! (G). Because,
given a function f € L®(G), we can find o > 0 and an at most countable set
H C G such that forevery x € H, f(x) # 0. Also we have

Y, @(alf()]) <

xeH
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Now since @ is concave, for any 0 < s <1,

o0 20).
t N

Hence for all except finitely many elements of H, we have 0 < ®(a|f]) < ®(1).
It follows that 0 < ¢t|f| < 1, and consequently a®(1)|f| < ®(c|f]).

2) In view of Part 1), we only need to consider when G is discrete. By the fact
that for any non-negative reals a and b, ®(a+b) < ®(a) + D(b) we obtain, for
every f and g in L®(G),

|f*gl(x F0)lg(yx)]
XGZGQ(c:fncpngncp) Z‘D<Z IFlolgle )
1g(v"'x)|
5%%“Qv) (mm)

<Clfllollgllo-

Therefore [|fxgllo < C|fllollgllo. O
Let us give an example.

EXAMPLE 1. Define ®(x) =In(1+x+ /(1 +x)?— 1) and note that

limd(r)/Vi = V2

and

tlim D)/t =0.
By Corollary 1, the Orlicz space L®(G) is an algebra under convolution if and only if
G is discrete.

Finally, as an another corollary of our main theorem, we recover a result due to W.
Zelazko [23]; see also [4]. Note that in the special case ®(r) = P for some 0 < p < 1
we have L®(G) = LP(G) and

1fllo = ( / f<r>|f’dx<t>)”l”.

COROLLARY 2. For a locally compact group G and for 0 < p < 1, the space
LP(G) is an algebra under convolution multiplication if and only if G is discrete.
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