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BOUNDEDNESS OF INTEGRAL OPERATORS OF DOUBLE PHASE

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA ∗

(Communicated by I. Perić)

Abstract. Our aim in this note is to establish a Sobolev-type inequality and Trudinger-type in-
equality for fractional maximal and Riesz potential operators in the framework of general double
phase functionals given by

ϕ(x,t) = ϕ1(t)+ϕ2(b(x)t), x ∈ R
n, t � 0,

where ϕ1,ϕ2 are positive convex functions on (0,∞) and b is a nonnegative function on [0,∞)
which is Hölder continuous of order θ ∈ (0,1] .

1. Introduction

The classical Sobolev’s inequality for Riesz potentials of Lp -functions (see, e.g.
[1, Theorem 3.1.4 (b)]) has been extended to various function spaces. For Orlicz spaces,
Sobolev’s inequality was studied in e.g. [6, 22]. On the other hand, the classical
Trudinger’s inequality for Riesz potentials of Lp -functions (see, e.g. [1, Theorem 3.1.4
(c)]) has also been extended to function spaces as above. In [2, 21, 22], Trudinger type
exponential integrability was studied on Orlicz spaces, as extensions of [9, 10, 12]. See
also [11].

The double phase functional introduced by Zhikov ([28]) has been studied by
many mathematicians. Regarding regularity theory of differential equations, Baroni,
Colombo and Mingione [4, 7, 8] studied a double phase functional

ϕ̃(x,t) = t p +a(x)tq, x ∈ R
n, t � 0,

where 1 � p < q , a is nonnegative, bounded and Hölder continuous in R
n of order

θ ∈ (0,1] . In [3], regularity for general functionals was studied under the condition
q � (1+ θ/n)p . We refer the reader to [15, 19, 20, 23, 25] for Sobolev inequality and
[16] for Trudinger’s inequality in the double phase setting. For other recent works, see
e.g. [5, 13, 14, 24, 26].

In the present note, we consider a general form of double phase functional given
by

ϕ(x,t) = ϕ1(t)+ ϕ2(b(x)t), x ∈ R
n, t � 0,

Mathematics subject classification (2020): 31B15, 46E35.
Keywords and phrases: Fractional maximal functions, Riesz potentials, Sobolev’s inequality, Trudin-

ger’s inequality, Orlicz spaces, double phase functionals.
∗ Corresponding author.

c© � � , Zagreb
Paper MIA-26-42

703

http://dx.doi.org/10.7153/mia-2023-26-42


704 Y. MIZUTA AND T. SHIMOMURA

where ϕ1,ϕ2 are positive convex functions on (0,∞) and b is a nonnegative function
on [0,∞) which is Hölder continuous of order θ ∈ (0,1] . For typical examples, see
Section 2.

Our aim in this note is to establish a Sobolev-type inequality as well as a Trudinger-
type inequality for fractional maximal and Riesz potential operators in the framework
of general double phase functionals, as an extension of [15, 16, 19, 20]. By treating the
general case, we can show new results (e.g. Corollaries 4.2, 6.5 and 6.13) which have
not been found in the literature.

Throughout this paper, let C denote various constants independent of the variables
in question and C(a,b, · · ·) be a constant that depends on a,b, · · · . Moreover, f ∼ g
means that C−1g(r) � f (r) � Cg(r) for a constant C > 0.

2. Orlicz functions

Consider a positive convex function ϕ on (0,∞) satisfying

(ϕ0) ϕ(0) = lim
r→0

ϕ(r) = 0;

(ϕ1) t → t−p1ϕ(t) is almost increasing in (0,∞) for some p1 > 1, that is, there
exists a constant A1 � 1 such that

s−p1ϕ(s) � A1t
−p1ϕ(t) whenever 0 < s < t .

The typical examples are

ϕ(r) = rp(log(c+ r))q,exp(rp)−1,etc.,

where p > 1 and c is chosen so that c(p−1)+q � 0. If ϕ1(r) = rp(log(e+ r))q , then
it may be replaced by

ϕ2(r) =
∫ r

0
{ sup

0<s<t
sp(log(e+ s))q}t−1dt,

which is convex and ϕ1 ∼ ϕ2 .
Note here that

(ϕ1′) s−1ϕ(s) � t−1ϕ(t) whenever 0 < s < t ;

(ϕ2)
∫ t

0
ϕ(s)/s2ds � A2ϕ(t)/t for t > 0;

(ϕ−1) ϕ−1 is doubling, more precisely,

ϕ−1(2r) � 2ϕ−1(r) for r > 0 .

We define

‖ f‖Lϕ (Rn) = inf

{
λ > 0 :

∫
Rn

ϕ(| f (x)|/λ )dx � 1

}
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for f ∈ L1
loc(R

n) . Let Lϕ (Rn) denote the set all functions f such that ‖ f‖Lϕ (Rn) <
∞ . Note that Lϕ(Rn) = Lp(Rn) when ϕ(r) = rp for p > 1. The Hardy-Littlewood
maximal function is defined by

M f (x) = sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy

for f ∈ L1
loc(R

n) . Our fundamental tool is the boundedness of maximal operator.
By using weak L1 estimate in Stein [27, Chapter 1] and [17, Theorem 1.10.2], we

have the boundedness of maximal operator as in [18, Lemma 2.5].

LEMMA 2.1. Let ϕ be a positive convex function on (0,∞) satisfying (ϕ0) and
(ϕ1) . Then there exists a constant C > 1 such that

‖M f‖Lϕ (Rn) � C‖ f‖Lϕ (Rn)

for f ∈ L1
loc(R

n) .

3. Integrability of the fractional maximal functions

For α � 0 the fractional maximal function is defined by

Mα f (x) = sup
r>0

rα

|B(x,r)|
∫

B(x,r)
| f (y)|dy

for f ∈ L1
loc(R

n) . When α = 0, we write M f instead of Mα f which is the usual
maximal function.

In this section, we give integrability of Mα f in Orlicz spaces.

LEMMA 3.1. (cf. [6, Theorem 1]) Let ϕ and ϕ∗ be positive convex functions on
(0,∞) satisfying (ϕ0) and (ϕ1) . Suppose that

(ϕα) k(t) = tα ϕ−1 (t−n) is almost decreasing on (0,∞) , that is, there exists a
constant K1 > 0 such that

k(s) � K1k(t) when 0 < s < t ;

(ϕϕ∗α) there exists a constant K2 > 0 such that

ϕ∗(tϕ(t)−α/N) � K2ϕ(t) for t > 0 .

Then there exists a constant C > 1 such that

‖Mα f‖Lϕ∗ (Rn) � C‖ f‖Lϕ (Rn)

for f ∈ L1
loc(R

n) .
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Proof. Let f be a function in L1
loc(R

n) such that ‖ f‖Lϕ (Rn) � 1. Let t > 0. If
0 < r < t , then

rα

|B(x,r)|
∫

B(x,r)
| f (y)|dy � tαM f (x).

If t � r , then we have by Jensen’s inequality, (ϕ−1) and (ϕα)

rα

|B(x,r)|
∫

B(x,r)
| f (y)|dy � rα ϕ−1

(
1

|B(x,r)|
∫

B(x,r)
ϕ(| f (y)|)dy

)

� Crα ϕ−1 (
r−n)

� Ctα ϕ−1 (
t−n) ,

so that

Mα f (x) � tαM f (x)+Ctα ϕ−1 (t−n) .

Letting t = {ϕ(M f (x))}−1/n , we find

Mα f (x) � C1{ϕ(M f (x))}−α/nM f (x). (1)

By (ϕϕ∗α) ,
ϕ∗(Mα f (x)/C1) � K2ϕ(M f (x)). (2)

Hence we obtain by Lemma 2.1
∫

Rn
ϕ∗(Mα f (x)/C1)dx � K2

∫
Rn

ϕ(M f (x))dx

� C2

∫
Rn

ϕ(| f (x)|)dx

� C2,

so that ∫
Rn

ϕ∗(Mα f (x)/(C1C2))dx � 1.

Thus this lemma is proved. �
We say that ϕ∗ is the Sobolev conjugate of ϕ .

4. Integrability of the fractional maximal functions of double phase

In this section, we show integrability of Mα f of double phase. Let ϕ1 and ϕ2 be
positive convex functions on (0,∞) satisfying (ϕ0) and (ϕ1) . For 0 � θ � 1 let b be
a nonnegative function satisfying

|b(x)−b(y)|� C|x− y|θ for x,y ∈ R
n .

Let us consider the double phase functional

ϕ(x,t) = ϕ1(t)+ ϕ2(b(x)t)
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for x ∈ R
n and t � 0. Set

ϕ∗(x,t) = ϕ∗
1 (t)+ ϕ∗

2(b(x)t),

which plays the Sobolev conjugate of ϕ . The norm ‖ · ‖Lϕ(Rn) is defined as before.

THEOREM 4.1. [cf. [20, Theorem 3.1]] Suppose (ϕ1α) , (ϕ1α + θ ) , (ϕ2α) ,
(ϕ1ϕ∗

1 α) , (ϕ1ϕ∗
2 α + θ ) and (ϕ2ϕ∗

2 α) hold. Then there exists a constant C > 1 such
that

‖Mα f‖Lϕ∗ (Rn) � C{‖ f‖Lϕ1 (Rn) +‖b f‖Lϕ2(Rn)}
for f ∈ L1

loc(R
n) .

Proof. Let f be a function in L1
loc(R

n) such that

‖ f‖Lϕ1 (Rn) +‖b f‖Lϕ2(Rn) � 1.

In view of Lemma 3.1, we have by (ϕ1α) and (ϕ1ϕ∗
1 α ),∫

Rn
ϕ∗

1 (Mα f (x))dx � C
∫

Rn
ϕ1(| f (x)|)dx � C.

Next note that

b(x)
rα

|B(x,r)|
∫

B(x,r)
| f (y)|dy

=
rα

|B(x,r)|
∫

B(x,r)
{b(x)−b(y)}| f (y)|dy+

rα

|B(x,r)|
∫

B(x,r)
b(y)| f (y)|dy

� rα

|B(x,r)|
∫

B(x,r)
C|x− y|θ | f (y)|dy+

rα

|B(x,r)|
∫

B(x,r)
b(y)| f (y)|dy

� C
rα+θ

|B(x,r)|
∫

B(x,r)
| f (y)|dy+

rα

|B(x,r)|
∫

B(x,r)
b(y)| f (y)|dy.

Therefore

b(x)Mα f (x) � CMα+θ f (x)+Mα [b f ](x),

so that Lemma 3.1 gives

‖bMα f‖
Lϕ∗2 (Rn)

� C
{
‖Mα+θ f‖

Lϕ∗2 (Rn)
+‖Mα [b f ]‖

Lϕ∗2 (Rn)

}

� C
{‖ f‖Lϕ1 (Rn) +‖b f‖Lϕ2(Rn)

}
,

which proves the result. �

COROLLARY 4.2. Let 1 < p < q, 0 < θ < 1 and

1/q∗ = 1/q−α/n = 1/p− (α + θ )/n = 1/p∗−θ/n > 0.

Then there exists a constant C > 1 such that

‖Mα f‖Lp∗ (Rn) +‖bMα f‖Lq∗ (Rn) � C{‖ f‖Lp(Rn) +‖b f‖Lq(Rn)}
for f ∈ L1

loc(R
n) .
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5. Riesz potentials

For 0 < α < n and f ∈ L1
loc(R

n) we define

Iα f (x) =
∫

Rn
|x− y|α−n f (y)dy.

In this section, we show integrability of Iα f of double phase.

LEMMA 5.1. [cf. [6, Theorem 2]] Let ϕ and ϕ∗ be positive convex functions on
(0,∞) satisfying (ϕ0) and (ϕ1) . Suppose (ϕϕ∗α) and

(ϕα + ε) tα+εϕ−1 (t−n) is almost decreasing in (0,∞)

for some ε > 0 . Then there exists a constant C > 1 such that

‖Iα f‖Lϕ∗ (Rn) � C‖ f‖Lϕ (Rn)

for f ∈ L1
loc(R

n) .

Proof. Let f be a function in L1
loc(R

n) such that ‖ f‖Lϕ (Rn) � 1. For x ∈ R
n and

r > 0 write

Iα f (x) =
∫

B(x,r)
|x− y|α−n f (y)dy+

∫
Rn\B(x,r)

|x− y|α−n f (y)dy

= I1(x)+ I2(x).

Note that

|I1(x)| � CrαM f (x).

Further we see from Jensen’s inequality, (ϕ−1) and (ϕα + ε ) that

|I2(x)| � C
∫ ∞

r
tα−n

(∫
B(x,t)

| f (y)|dy

)
t−1dt

� C
∫ ∞

r
tα ϕ−1

(
1

|B(x,t)|
∫

B(x,t)
ϕ(| f (y)|)dy

)
t−1dt

� C
∫ ∞

r
tα ϕ−1 (

t−n) t−1dt

= C
∫ ∞

r
tα+εϕ−1 (

t−n) t−ε−1dt

� Crα+εϕ−1 (
r−n)∫ ∞

r
t−ε−1dt

� Crα ϕ−1 (
r−n) .

Thus we obtain
|Iα f (x)| � CrαM f (x)+Crα ϕ−1 (

r−n) .
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Here, taking r = {ϕ (M f (x))}−1/n , we find

|Iα f (x)| � C1M f (x){ϕ (M f (x))}−α/n.

In view of (ϕϕ∗α) , we establish∫
Rn

ϕ∗(|Iα f (x)|/C1)dx � K2

∫
Rn

ϕ(M f (x))dx

� C
∫

Rn
ϕ(| f (x)|)dx,

which gives the result. �

THEOREM 5.2. Let ϕ1 and ϕ2 be positive convex functions on (0,∞) satisfying
(ϕ0) and (ϕ1) . Let ε > 0 . Suppose (ϕ1α +ε) , (ϕ1α +θ +ε) , (ϕ2α +ε) , (ϕ1ϕ∗

1 α) ,
(ϕ1ϕ∗

2 α + θ ) and (ϕ2ϕ∗
2 α) hold. Then there exists a constant C > 1 such that

‖Iα f‖Lϕ∗ (Rn) � C{‖ f‖Lϕ1 (Rn) +‖b f‖Lϕ2(Rn)}

for f ∈ L1
loc(R

n) .

Proof. Let f be a function in L1
loc(R

n) such that

‖ f‖Lϕ1 (Rn) +‖b f‖Lϕ2(Rn) � 1.

In view of Lemma 5.1, we have by (ϕ1α + ε) and (ϕ1ϕ∗
1 α ),

∫
Rn

ϕ∗
1 (|Iα f (x)|)dx � C

∫
Rn

ϕ1(| f (x)|)dx � C.

For x ∈ R
n and r > 0 we have

b(x)|Iα f (x)| � C
∫

Rn
|x− y|α−n{b(x)−b(y)}| f (y)|dy+C

∫
Rn

|x− y|α−nb(y)| f (y)|dy

� CIα+θ | f |(x)+CIα [b| f |](x).
Therefore Lemma 5.1 gives

‖bIα f‖
Lϕ∗2 (Rn)

� C
{
‖Iα+θ | f |‖Lϕ∗2 (Rn)

+‖Iα [b| f |]‖
Lϕ∗2 (Rn)

}

� C
{‖ f‖Lϕ1 (Rn) +‖b f‖Lϕ2(Rn)

}
,

which obtains the result. �

COROLLARY 5.3. [cf. [15, Theorem 5.8]] Let 1 < p < q, 0 < θ < 1 and

1/q∗ = 1/q−α/n = 1/p− (α + θ )/n = 1/p∗−θ/n > 0.

Then there exists a constant C > 1 such that

‖Iα f‖Lp∗ (Rn) +‖bIα f‖Lq∗ (Rn) � C{‖ f‖Lp(Rn) +‖b f‖Lq(Rn)}

for f ∈ L1
loc(R

n) .
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6. Exponential integrability

In this section, we give exponential integrability of Mα f and Iα f of douoble
phase.

6.1. Exponential integrability for fractional maximal functions

By Jensen’s inequality we have

rα

|B(x,r)|
∫

B(x,r)
| f (y)|dy � rα ϕ−1

(
1

|B(x,r)|
∫

B(x,r)
ϕ(| f (y)|)dy

)
.

If rα ϕ−1(r−n) is bounded, then Mα f is bounded when ‖ f‖Lϕ1 (Rn) < ∞ .

LEMMA 6.1. Let ϕ and ψ be positive convex functions on (0,∞) satisfying (ϕ0)
and (ϕ1) . Suppose

(ϕψα∗) there exists a constant K > 0 such that

ψ(rϕ(r)−α/n) � K{1+ ϕ(r)} for r > 0 .

Let G be a bounded open set in R
n . Then there exists a constant C > 1 such that

‖Mα f‖Lψ (G) � C‖ f‖Lϕ (G)

for f ∈ L1
loc(G) .

Proof. Let f be a function in L1
loc(R

n) such that ‖ f‖Lϕ (Rn) � 1. For x ∈ G and
t > 0 we have by (1)

Mα f (x) � C1{ϕ(M f (x))}−α/nM f (x),

so that

ψ(Mα f (x)/C1) � K{1+ ϕ(M f (x))}

by (ϕψα∗ ), which gives the result. �

REMARK 6.2. Let ϕ(r) = rp(log(c+ r))−ε for p = n/α > 1 and 0 < ε < c(p−
1) . Set

ψ(r) = exp(rp/ε)−1.

Then
ψ(rϕ(r)−α/n) � C(1+ ϕ(r)) for r > 0 .
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COROLLARY 6.3. Let ϕ(r) = rp(log(c + r))−ε for p = n/α > 1 and 0 < ε <

c(p−1) . Set ψ(r) = exp(rp/ε)−1 for r > 0 . If G is a bounded open set in R
n , then

there exists a constant C > 1 such that

‖Mα f‖Lψ (G) � C‖ f‖Lϕ (G)

for f ∈ L1
loc(G) .

THEOREM 6.4. Let ϕ1 , ϕ2 and ψ2 be positive convex functions on (0,∞) satis-
fying (ϕ0) and (ϕ1) . Suppose (ϕ1α) , (ϕ1ϕ∗

1 α) , (ϕ1ψ2α +θ∗) and (ϕ2ψ2α∗) hold.
Set

ψ(x,r) = ϕ∗
1 (r)+ ψ2(b(x)r).

If G is a bounded open set in R
n , then there exists a constant C > 1 such that

‖Mα f‖Lψ (G) � C{‖ f‖Lϕ1 (G) +‖b f‖Lϕ2(G)}

for f ∈ L1
loc(G) .

Proof. As in the proof of Theorem 4.1, Theorem 6.4 is proved by Lemmas 3.1 and
6.1. �

COROLLARY 6.5. Let 1< p < q, 0< θ < 1 , 0< ε1 < c(p−1) , 0 < ε2 < c(q−1)
and

1/q−α/n = 1/p− (α + θ )/n = 0.

Set
ϕ1(r) = rp(log(c+ r))−ε1

and
ϕ2(r) = rq(log(c+ r))−ε2 .

If p/ε1 = q/ε2 and
ψ2(r) = exp(rq/ε2)−1.

Then there exists a constant C > 1 such that

‖bMα f‖Lψ2 (G) � C{‖ f‖Lϕ1 (G) +‖b f‖Lϕ2(G)}

for f ∈ L1
loc(G) .

6.2. Exponential integrability for Riesz potentials

We say that a nonnegative function k on (0,∞) is of log type in (0,∞) if there
exists a constant K > 0 such that

K−1k(r) � k(r2) � Kk(r) for r > 0 .

Finally we are interested in exponential integrability for Riesz potentials.
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LEMMA 6.6. Let ϕ and ψ be positive convex functions on (0,∞) satisfying (ϕ0)
and (ϕ1) such that ψ−1 is of log type and there exists a positive continuous function
k on (0,∞) satisfying

(1) rα−nk(r−1)ϕ(k(r−1))−1 is almost decreasing or bounded in (0,∞);

(2) there exists a constant K1 > 0 such that

rα−nk(r−1)ϕ(k(r−1))−1 � K1ψ−1(1/r) for r > 0;

(3) there exists a constant K2 > 0 such that

∫ dG

r
tαk(t−1)t−1dt � K2ψ−1(1/r) for r > 0 ,

where dG denotes the diameter of a bounded open set G in R
n .

Then there exists a constant C > 1 such that

‖Iα f‖Lψ (G) � C‖ f‖Lϕ (G)

for f ∈ L1
loc(G)

Proof. For x ∈ G and r > 0 write

Iα f (x) =
∫

G∩B(x,r)
|x− y|α−n f (y)dy+

∫
G\B(x,r)

|x− y|α−n f (y)dy

= I1(x)+ I2(x).

Note that

|I1(x)| � CrαM f (x).

Further we see from (ϕ1′ ) and our assumptions (1)–(3) that

|I2(x)| =
∫

G\B(x,r)
|x− y|α−n| f (y)|dy

�
∫

G\B(x,r)
|x− y|α−nk(|x− y|−1)dy

+
∫

G\B(x,r)
|x− y|α−n| f (y)| | f (y)|−1ϕ(| f (y)|)

k(|x− y|−1)−1ϕ(k(|x− y|−1))
dy

� C
∫ dG

r
tαk(t−1)t−1dt +C{1+ rα−nk(r−1)ϕ(k(r−1))−1}

∫
G\B(x,r)

ϕ | f (y)|)dy

� Cψ−1(1/r).

Thus we obtain
|Iα f (x)| � CrαM f (x)+Cψ−1(1/r).
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Here, taking r = {M f (x)}−1/α{ψ−1 (M f (x))}1/α , we find

|Iα f (x)| � Cψ−1(M f (x))

since ψ−1 is of log type. In view of Jensen’s inequality, Lemma 2.1 and (ϕ−1 ), we
establish

∫
G

ψ(|Iα f (x)|)dx � C
∫

G
M f (x)dx

� C|G|ϕ−1
(

1
|G|

∫
G

ϕ(M f (x))dx

)

� C|G|ϕ−1
(

1
|G|

∫
G

ϕ(| f (x)|)dx

)
,

which gives the result. �

REMARK 6.7. Let ϕ(r) = rp(log(c+r))a for p = n/α > 1 and c(p−1)+a� 0,
and k(r) = rα(log(e+ r))−(1+a)/p . Then

(1) rα−nk(r−1)ϕ(k(r−1))−1 ∼ (log(e+ r−1))(p−1−a)/p ;

(2) tαk(t−1) = (log(e+ t−1))−(1+a)/p and

∫ dG

r
tαk(t−1)t−1dt � C(log(e+ r−1))1−(1+a)/p

when 1− (1+a)/p> 0.

COROLLARY 6.8. Let ϕ(r) = rp(log(c+ r))a for p = n/α > 1 , c � −a/(p−1)
and −1 < a < p− 1 . Set ψ(r) = exp(rp/(p−1−a))− 1 for r > 0 . If G is a bounded
open set in R

n , then there exists a constant C > 1 such that

‖Iα f‖Lψ (G) � C‖ f‖Lϕ (G)

for f ∈ L1
loc(G) .

REMARK 6.9. Let ϕ(r) = rp(log(e+ r))p−1 for p = n/α > 1 and
k(r) = rα(log(e+ r))−1(log(e+(log(e+ r))))−1/p . Then

(1) rα−nk(r−1)ϕ(k(r−1))−1 ∼ (log(e+(log(e+ r−1))))1−1/p ;

(2) tαk(t−1) = (log(e+ t−1))−1(log(e+(log(e+ t−1))))−1/p and

∫ dG

r
tαk(t−1)t−1dt � C(log(e+(log(e+ r−1))))1−1/p.
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COROLLARY 6.10. Let ϕ(r) = rp(log(e+ r))p−1 for p = n/α > 1 . Set ψ(r) =
exp(exp(rp′)−1)−1 for r > 0 . If G is a bounded open set in R

n , then there exists a
constant C > 1 such that

‖Iα f‖Lψ (G) � C‖ f‖Lϕ (G)

for f ∈ L1
loc(G) .

Compare Corollaries 6.8 and 6.10 with [21, Theorems A and B].

THEOREM 6.11. Let {α,ϕ2,ψ2} and {α + θ ,ϕ1,ψ1} be as in Lemma 6.6. Sup-
pose there exists a constant K > 0 such that

ψ2(r) � K{1+ ψ1(r)} for r > 0 . (3)

Then there exists a constant C > 1 such that

‖bIα f‖Lψ2 (G) � C{‖ f‖Lϕ1 (G) +‖b f‖Lϕ2(G)}

for f ∈ L1
loc(G) .

Proof. As in the proof of Theorem 5.2, Theorem 6.11 is proved by Lemma 6.6.
We have only to note that in view of (3) and Lemma 6.6

∫
G

ψ2(Iα+θ | f |(x)|)dx � K
∫

G
{1+ ψ1(Iα+θ | f |(x)|)}dx

� C+C
∫
G

ϕ1(| f (x)|)dx � C

since {α + θ ,ϕ1,ψ1} is as in Lemma 6.6. �

COROLLARY 6.12. [cf. [16, Theorem 4.10]] Let 1 < p < q, 0 < θ < 1 and

1/q−α/n = 1/p− (α + θ )/n = 0.

Set
ψ2(r) = exp(rq′)−1.

Then there exists a constant C > 1 such that

‖Iα f‖Lp∗ (G) +‖bIα f‖Lψ2 (G) � C{‖ f‖Lp(G) +‖b f‖Lq(G)}

for f ∈ L1
loc(G) .

COROLLARY 6.13. Let ϕ1(r) = rp1(log(c1 + r))a1 with p1 = n/(α + θ ) and
ϕ2(r) = rp2(log(c2 + r))a2 with p2 = n/α . Suppose c1(p1 − 1) + a1 � 0 , c2(p2 −
1)+a2 � 0 , −1 < a1 < p1−1 , −1 < a2 < p2−1 ,

p1

p1−1−a1
=

p2

p2−1−a2
> 1
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and set
ψ(r) = exp(rp1/(p1−1−a1))−1.

Then there exists a constant C > 1 such that

‖bIα f‖Lψ (G) � C{‖ f‖Lϕ1 (G) +‖b f‖Lϕ2(G)}

for f ∈ L1
loc(G) .
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