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BOUNDEDNESS OF INTEGRAL OPERATORS OF DOUBLE PHASE

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA *

(Communicated by I. Peric)

Abstract. Our aim in this note is to establish a Sobolev-type inequality and Trudinger-type in-
equality for fractional maximal and Riesz potential operators in the framework of general double
phase functionals given by

Q(x,1) = @1 (1) + @2(b(x)t), xeR", t >0,

where @y, are positive convex functions on (0,e°) and b is a nonnegative function on [0, o)
which is Holder continuous of order 6 € (0,1].

1. Introduction

The classical Sobolev’s inequality for Riesz potentials of L? -functions (see, e.g.
[1, Theorem 3.1.4 (b)]) has been extended to various function spaces. For Orlicz spaces,
Sobolev’s inequality was studied in e.g. [6, 22]. On the other hand, the classical
Trudinger’s inequality for Riesz potentials of L? -functions (see, e.g. [1, Theorem 3.1.4
(c)]) has also been extended to function spaces as above. In [2, 21, 22], Trudinger type
exponential integrability was studied on Orlicz spaces, as extensions of [9, 10, 12]. See
also [11].

The double phase functional introduced by Zhikov ([28]) has been studied by
many mathematicians. Regarding regularity theory of differential equations, Baroni,
Colombo and Mingione [4, 7, 8] studied a double phase functional

P(x,t) =t +a(x)?, xeR", t>0,

where 1 < p < g, a is nonnegative, bounded and Holder continuous in R" of order
0 € (0,1]. In [3], regularity for general functionals was studied under the condition
q < (14 6/n)p. We refer the reader to [15, 19, 20, 23, 25] for Sobolev inequality and
[16] for Trudinger’s inequality in the double phase setting. For other recent works, see
e.g. [5, 13, 14,24, 26].

In the present note, we consider a general form of double phase functional given
by

@(x;1) = @i (1) + ga(b(x)t), x€eR", >0,
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where @i, ¢, are positive convex functions on (0,e) and b is a nonnegative function
on [0,e0) which is Holder continuous of order 6 € (0,1]. For typical examples, see
Section 2.

Our aim in this note is to establish a Sobolev-type inequality as well as a Trudinger-
type inequality for fractional maximal and Riesz potential operators in the framework
of general double phase functionals, as an extension of [15, 16, 19, 20]. By treating the
general case, we can show new results (e.g. Corollaries 4.2, 6.5 and 6.13) which have
not been found in the literature.

Throughout this paper, let C denote various constants independent of the variables
in question and C(a,b,---) be a constant that depends on a,b,---. Moreover, f ~ g
means that C~'g(r) < f(r) < Cg(r) for a constant C > 0.

2. Orlicz functions
Consider a positive convex function ¢ on (0,0) satisfying
(90) 9(0) =limo(r) =0

(pl) t — 1t P1o(r) is almost increasing in (0,c0) for some p; > 1, that is, there
exists a constant A; > 1 such that

s Plo(s) <A Plo(r) whenever 0 <s <f.

The typical examples are
o(r) =rP(log(c+r))9,exp(r’) — 1,etc.,

where p > 1 and c is chosen so that ¢c(p—1)+¢ > 0. If ¢, (r) =r"(log(e+r))?, then
it may be replaced by

o(r)= r{ sup sp(log(e—l-s))q}t_ldt,

0 O<s<t

which is convex and @) ~ @;.
Note here that

(p1") s~ 'o(s) <t 'o(r) whenever 0 <s <1;
(02) /(: o(s)/s2ds < Ao (1) )t for 1 > 0:
(¢=!) ¢! is doubling, more precisely,
o '(2r) <290 ! (r) for r>0.

We define
oz =inf {30 [ g/ <1}
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for f € L, (R"). Let L?(R") denote the set all functions f such that || f||zegn) <
co. Note that L?(R") = LP(R") when ¢(r) = r? for p > 1. The Hardy-Littlewood
maximal function is defined by

Mf(x / )ld
f() r>0|er| B(x,r) ‘y

for f € L} (R"). Our fundamental tool is the boundedness of maximal operator.
By using weak L! estimate in Stein [27, Chapter 1] and [17, Theorem 1.10.2], we
have the boundedness of maximal operator as in [18, Lemma 2.5].

LEMMA 2.1. Let @ be a positive convex function on (0,0) satisfying (¢0) and
(@l). Then there exists a constant C > 1 such that

1M flle@ny < CllfllLown

forfELlOC( .

3. Integrability of the fractional maximal functions

For o > 0 the fractional maximal function is defined by

Maf0) = swp i | (1)l

r>0

for f € Ll .(R"). When o =0, we write Mf instead of M f which is the usual
maximal function.
In this section, we give integrability of M, f in Orlicz spaces.

LEMMA 3.1. (cf. [6, Theorem 1]) Let ¢ and @* be positive convex functions on
(0,00) satisfying (@0) and (@1l). Suppose that

(pa) k(t) =t~ (t7") is almost decreasing on (0,c0), that is, there exists a
constant K; > 0 such that

k(s) < Kik(t) when 0<s<t;
(@™ o) there exists a constant K, > 0 such that
0 (to(t)"“N) <Kyo(t) fort>0.
Then there exists a constant C > 1 such that
1Mo f |l o+ ) < CIIF o @)

for f € LlOC(R ).



706 Y. MIZUTA AND T. SHIMOMURA

Proof. Let f be a function in Lj, (R") such that ||f|| ern) < 1. Let # > 0. If
0 <r<t,then

|Bx}"‘/xr ‘dy<taMf()

If + < r, then we have by Jensen’s inequality, (¢ ') and (o)

1
T / [ Oy < s (—w i (“)<p(f(y)l)dy>
r*n

Craqofl( )

so that
Mo f(x) < t*Mf(x)+Ct%@ =" (17").
Letting 7 = {@(Mf(x))}~'/", we find
Mo f(x) < Ci{o(Mf(x)}*/"M[(x). (1)

By (p9*a),
¢" (Mo f(x)/C1) < Kap(Mf(x)). (2)

Hence we obtain by Lemma 2.1
Lo Maf)/Cdr < K [ o(bf(x)ds
<G [ osto)dx
< C2a

so that

/Rn " (Mo f(x)/(C1Cr))dx < 1.

Thus this lemma is proved. [

We say that ¢* is the Sobolev conjugate of ¢.

4. Integrability of the fractional maximal functions of double phase

In this section, we show integrability of M, f of double phase. Let ¢; and ¢, be
positive convex functions on (0,e) satisfying (¢0) and (¢1). For 0 < 0 < 1 let b be
a nonnegative function satisfying

b(x) —b(y)| <Clx—y|® for x,y e R".
Let us consider the double phase functional

@(x,1) = @1 () + 2(b(x)1)
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for x e R” and r > 0. Set
@"(x,1) = @ (1) + @3 (b(x)t),

which plays the Sobolev conjugate of ¢. The norm || - || Lo(rn) 1s defined as before.

THEOREM 4.1. [cf. [20, Theorem 3.1]] Suppose (@), (@10 +0), (¢r00),
(pro7a), (proyo+0) and (@295 ¢t) hold. Then there exists a constant C > 1 such
that

Mo flo ) < CU ey + L 2o
for f €L (R).
Proof. Let f be a functionin L. (R") such that
£l o ey + 1BF || Loy < 1.

In view of Lemma 3.1, we have by (@) and (¢ ¢; o),

[ oiMartnar < [ anllrhax<c.
R” R~

Next note that
)| d
|er|/xr yldy
BT o (P =) s |/“ yldy
< — d
\er|/“ 17O yﬂB |/“ Fldy
oc+6
)| d
|Bx”'| B(x,r) |/xr | .
Therefore

b(x)Me.f(x) < CMaof(x) +Malbf](x),
so that Lemma 3.1 gives
16Mea 5 gy < € { Mars0 05 gy + 1Mal N 5 g }
C{IIf lzor mry + 10f | Lo2ny } »

//\

which proves the result. [

COROLLARY 4.2. Let 1 <p<gq, 0<0 <1 and
1/g"=1/g—a/n=1/p—(a+0)/n=1/p"—6/n>0.

Then there exists a constant C > 1 such that
1Mol sy + 1Mafl e ny < CELF o gam) + 16 F agan
forfeLlOC( .
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5. Riesz potentials

For 0 < oo <nand f € L. _(R") we define

Iaf(@) = [ =] ")y
In this section, we show integrability of I, f of double phase.

LEMMA 5.1. [cf. [6, Theorem 2]] Let ¢ and ¢* be positive convex functions on
(0,00) satisfying (©0) and (@1l). Suppose (p@*o) and

(pa+€) t%T€@~1(+7") is almost decreasing in (0,o0)

for some € > 0. Then there exists a constant C > 1 such that
Hof || zo* (ny < CllfllLo ge)
for f €Ll (R").

Proof. Let f be a function in L, (R") such that | f||zen) < 1. For x € R" and
r >0 write

af )= [ O [ e )y
= I1(x) + I(x).
Note that
1] < Crmf ().

Further we see from Jensen’s inequality, (¢~!) and (@a + €) that

< [T ([ o)t
<c[ g (B“ L ooy la
C/ %ot (")t dr

_ C/ 191 (1) e Ly
< Croc+e(P—l (r—n) /mt—e—ldt
r

<Criot(rT).

Thus we obtain
Lo f (x)| < CroMf(x) +Cro%~" (r").
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Here, taking r = {@ (Mf(x))}~'/", we find
1o ()] < COMF() {0 (MF ()}

In view of (@@* o), we establish

0" ltar @)l /Cdx <K | p0r(0)as

<C/ o(lf(0)])
Rn

THEOREM 5.2. Let @1 and @y be positive convex functions on (0,c0) satisfying
(90) and (@l). Let € > 0. Suppose (pia+¢€), (pro+0+¢), (pro+e), (Piofor),
(P10 +0) and (@295 ) hold. Then there exists a constant C > 1 such that

o f 1 2 ey < CLILf Nl zor ey + 10 || L2 Rny b

which gives the result. [J

for f €Ll . (R").
Proof. Let f be a functionin L. (R") such that

£ llzor @y + 1Bf || o2 (mry < 1.

In view of Lemma 5.1, we have by (@, +¢) and (¢, 9; @),

[ oilliareihax < [ il

For x € R" and r > 0 we have

b f(@)] < C [ [x=3{""{b(0) =bW)HIOdy+C [ =31 "b)A )y
< Clay10lf1(x) +Clalblf1)(x):

Therefore Lemma 5.1 gives
5y < C{ W L1 gy + WLl g }

< C{IIflzor ey + 16 Loz ny } »
which obtains the result. [

161011

COROLLARY 5.3. [cf. [15, Theorem 5.8]] Let 1 <p<gq, 0< 0 <1 and
1/g"=1/g—a/n=1/p—(a+06)/n=1/p*—6/n>0.

Then there exists a constant C > 1 such that
Mo f oy + 180l oy < CLLE L gaen) + 16 an )

forfeLlOC( .
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6. Exponential integrability

In this section, we give exponential integrability of My f and I, f of douoble
phase.

6.1. Exponential integrability for fractional maximal functions

By Jensen’s inequality we have

B |/x, My < o (er|/“ f<>|>dy)

If 7%@~!(r~") is bounded, then M, f is bounded when ||f]|zo1 (gn) < o

LEMMA 6.1. Let @ and y be positive convex functions on (0,0) satisfying (¢0)
and (@1). Suppose

(pwox) there exists a constant K > 0 such that
y(re(r)~ ") <K{1+ (N} forr>0.

Let G be a bounded open set in R". Then there exists a constant C > 1 such that

1Mo fllLv(G) < Cllfllo(6)

for f € Llloc(G).

Proof. Let f be a function in Lj, (R") such that || f||ze(n) < 1. For x € G and
t > 0 we have by (1)

Maf(x) < Ci{oM[(x)} */"Mf(x),

so that

V(Mo f(x)/C1) < K{1+@(Mf(x))}

by (@yox), which gives the result. [

REMARK 6.2. Let ¢(r) =rP(log(c+r)) "¢ for p=n/oo>1and 0 < e <c(p—
1). Set

w(r) = exp(r’/¥) — 1.
Then
v(re(r)~*" < Cc(1+¢(r)) for r>0.
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COROLLARY 6.3. Ler ¢(r) = rP(log(c+r))"¢ for p=n/oe>1 and 0 < & <
c(p—1). Set w(r) =exp(r’/€) =1 for r> 0. If G is a bounded open set in R", then
there exists a constant C > 1 such that

Mo fllzv ) < Cllfllze o)
for f € Llloc(G).

THEOREM 6.4. Let @1, ¢y and Y, be positive convex functions on (0,00) satis-

fying (90) and (@1). Suppose (¢1ct), (@1o; ), (Pryr20+ 0%) and (Qryr00x) hold.
Set

y(x,r) = @1 (r) + ya(b(x)r).
If G is a bounded open set in R", then there exists a constant C > 1 such that

[Mafllvi)y < CLUIf o) + 1Df 1l Lo2(6) }
for f € LIIOC(G).

Proof. As in the proof of Theorem 4.1, Theorem 6.4 is proved by Lemmas 3.1 and
6.1. O

COROLLARY 6.5. Let 1<p<q,0<0<1,0<g <c(p—1),0<er<c(qg—1)
and
l/g—a/n=1/p—(a+0)/n=0.

Set
@1 (r) =r"(log(c+r)) ™

and
@ (r) = r1(log(c +r)) 2.

If p/e1 =q/& and
ya(r) = exp(r?/®) — 1.
Then there exists a constant C > 1 such that

6Moflv2 () < CLS o) + 16f o2 (6}

for feLl (G).

loc

6.2. Exponential integrability for Riesz potentials

We say that a nonnegative function £ on (0,c0) is of log type in (0,0) if there
exists a constant K > 0 such that

K~ k(r) <k(r*) < Kk(r) for r>0.

Finally we are interested in exponential integrability for Riesz potentials.
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LEMMA 6.6. Let @ and y be positive convex functions on (0,0) satisfying (¢0)
and (1) such that w=" is of log type and there exists a positive continuous function
k on (0,00) satisfying

(1) r*"k(r Yo (k(r~1))"! is almost decreasing or bounded in (0,);
(2) there exists a constant Ky > 0 such that

PG k() < Kiy (1)) for > 0;

(3) there exists a constant Ky > 0 such that

dg
/ 1%kt Y tdr < Koy Y1 )r) for r> 0,
g

where dg denotes the diameter of a bounded open set G in R".

Then there exists a constant C > 1 such that

Moflzv(c) < Cllfllzoco)
for f € LlOC( )
Proof. For x € G and r > 0 write
f @) = [ el Oy [ eyl )y
GNB(x,r)
= I1(x) + h(x).
Note that
11 (x)] < CroMf(x).

Further we see from (¢@1") and our assumptions (1)—(3) that
W= [ ey )y
G\B(x,r)

< [ el (=l Dy
G\B(x,r)

o O (0]
S A Ol v e e

< C/rdGz“k(fl)flderC{l+r°‘*”k(r’1)<P( k(r=' )"y st olf(y))dy
<Cy (1/r).

Thus we obtain

o f (X)] < CroMf(x)+Cy ' (1/r).
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Here, taking r = {Mf(x)} ~"/*{y~" (Mf(x))}"/*, we find

o f(x)| < CyH(Mf(x))

since y~! is of log type. In view of Jensen’s inequality, Lemma 2.1 and (¢ '), we
establish

/V/ o f (x) C/ M (x)dx
1 1

<cl6lo™ (g [ oarcoas)
a1

< C[Glg (a [ o(ls >dx),

which gives the result. [J

REMARK 6.7. Let ¢(r) =rP(log(c+r))* for p=n/oe>1and c(p—1)+a>0,
and k(r) = r*(log(e+r))"*9/P Then

(1) "k Yek(r 1) ~ (log(e+ 1)) P-1-a)/p,
(2) 1%(") = (log(e4171))"U+9/P and
dg
/ 1%k(t~ ")~ dr < Clog(e+r~ 1)) U+a/p
when 1 —(14a)/p>0.

COROLLARY 6.8. Ler ¢(r) =rP(log(c+r))* for p=nja>1, ¢ = —a/(p—1)
and —1 <a < p—1. Set y(r) = exp(r’ P~1=9) =1 for r > 0. If G is a bounded
open set in R", then there exists a constant C > 1 such that

Mofllzv(c) < Cllfllzoco)
for f € LlOC( ).

REMARK 6.9. Let ¢(r) = rP(log(e +r))?~! for p=n/a > 1 and
k(r) = r*(log(e +r)) "' (log(e + (log(e +r))))~'/7. Then

(1) r*"k( D (k(r)) ™! ~ (log(e+ (logle+r~1)))) ' 7

(2) 1% (1) = (log(e+171)) " (log(e + (10g(e+t’1))))*1/17 and

/dG’ak(fl)fldt < C(log(e + (log(e+r~ 1)) =17,
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COROLLARY 6.10. Let ¢(r) = r?(log(e+7r))P~! for p=n/a > 1. Set y(r) =

exp(exp(rpl) —1)—=1 for r>0. If G is a bounded open set in R", then there exists a
constant C > 1 such that

Mot llzv(c) < Cllfllze o)
for f € Llloc(G).
Compare Corollaries 6.8 and 6.10 with [21, Theorems A and B].

THEOREM 6.11. Let {a, @, y2} and {o.+ 60,¢,,y1} be as in Lemma 6.6. Sup-
pose there exists a constant K > 0 such that

va(r) S K{1+wi(r)} forr>0. 3)
Then there exists a constant C > 1 such that
161 flzv2 6y < C{IIfllzor () + [1Df |o2(6) }

for f € LIIOC(G).

Proof. As in the proof of Theorem 5.2, Theorem 6.11 is proved by Lemma 6.6.
We have only to note that in view of (3) and Lemma 6.6

/wz (UosolF1(2) K/{l+wl (Tl £1(x)]) }elx
< c+c/ o1 (|f())dx < C
G

since {ot+ 60, ¢,y } is asin Lemma 6.6. [J
COROLLARY 6.12. [cf. [16, Theorem4.10]] Let 1 <p <gq, 0< 0 <1 and

l/g—o/n=1/p—(ax+6)/n=0
Set )
ya(r) =exp(r!) — 1.

Then there exists a constant C > 1 such that

o110 () + 161ef w2 (6) < CLS o) + 10 196y}
for f € LIIOC(G).

COROLLARY 6.13. Let ¢(r) = rP1(log(c; +r))* with py =n/(a+ 0) and
0 (r) = rP2(log(cp + r))* with p, = n/a. Suppose ci(p1—1)+a; =0, ca(pr—
D+ay>20, —l<a<pi—1, —l<a<py—1,
P1 D2

= > 1
pi—l—a pr—1-a
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and set

w(r) = exp(r?/(P1=1ma)y

Then there exists a constant C > 1 such that

1bIaf|lLv(c) < CLIIf o1 ) + 1Df o2 (6) }

for f € Llloc(G).
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