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Abstract. In this paper we give a proof of the inequality
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for nonnegative real numbers a1,a2, . . . ,an satisfying

∑
1�i< j�n

aia j =
n(n−1)

2
.

The inequality is an equality for a1 = a2 = · · · = an = 1 , and also for a1 = a2 = · · · = an−1 =√
n

n−2
and an = 0 (or any cyclic permutation).

1. Introduction

A proof of the inequality
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is given in [3] for n � 8 and nonnegative real numbers a1,a2, . . . ,an under the con-
straint

∑
1�i< j�n

aia j =
n(n−1)

2
. (2)

Note that this inequality was proposed and proved for n = 3 in 2005 (see [2]). Later,
the inequality was given for n = 4 at the Olympic Revenge Contest from Brazil-2013
(see [5]) and, in the same year, Henrique Vaz posted it on the website Art of Problem
Solving [6], where the readers have presented three distinct proofs (for n = 4).

In this paper, we give a proof for any integer n � 3. The proof is based on the
following result in [3] (Theorem 4.1):
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THEOREM 1. Let a1,a2, . . . ,an be nonnegative real numbers such that a1 � a2 �
· · · � an and

∑
1�i< j�n

aia j =
n(n−1)

2
.

Let k =
⌊n
2

⌋
+1 . If the inequality (1) holds for the particular cases

a) a1 = a2 = · · · = ak and an = 0 ,

b) a1 = a2 = · · · = ak and an−1 = an > 0 ,
then it holds for all a1,a2, . . . ,an .

To prove the inequality (1) under the constraint (2), we will assume

a1 � a2 � · · · � an

and will use the induction method, Theorem 1 and the method of Lagrange multipliers
(for fixed ∑n

i=1 ai and ∑1�i< j�n aia j) .

2. Method of Lagrange multipliers

Let a1 � a2 � · · · � an � 0 and

f1(a1, . . . ,an) =
n

∑
i=1

ai,

f2(a1, . . . ,an) = ∑
1�i< j�n

aia j.

Under the constraints
n

∑
i=1

ai = S1,

∑
1�i< j�n

aia j =
n(n−1)

2
:= S2

(which define a smooth compact manifold), the minimum m(S1) of the expression

E =
1

a2
1 +1

+
1

a2
2 +1

+ · · ·+ 1
a2

n +1

exists. Thus, to prove the inequality (1) under the constraint (2), it suffices to show

that m(S1) � n
2

, that means to prove the inequality (1) for ai chosen to minimize the

expression E . The minimum of E occurs at a point (a1,a2, . . . ,an) with an = 0, or at
a point that satisfies the Lagrange multiplier equations

−ai

(a2
i +1)2

+ λ − μai = 0, i = 1,2, . . . ,n (3)
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(where λ and μ are real constants), or at a point where ∇ f1 and ∇ f2 are linearly
dependent (that is when all ai are equal) – see [1, 4]. We claim that the equation
f (x) = 0, where

f (x) =
−x

(x2 +1)2 + λ − μx ,

has at most three distinct nonnegative roots. From

f ′(x) =
3x2−1

(x2 +1)3 − μ , f ′′(x) =
12x(1− x2)
(x2 +1)4 ,

it follows that f ′(x) is strictly increasing on [0,1] and strictly decreasing on [1,∞) .
Since

f ′(0) = −1− μ < −μ = f ′(∞),

there are four possible cases:

• f ′(x) � 0 for x ∈ [0,∞) ;

• f ′(x) < 0 for x ∈ [0,x1) , f ′(x1) = 0 and f ′(x) > 0 for x ∈ (x1,∞) ;

• f ′(x) < 0 for x∈ [0,x1) , f ′(x) > 0 for x∈ (x1,x2) with 0 < x1 < x2 , and f ′(x) <
0 for x ∈ (x2,∞) ;

• f ′(x) � 0 for x ∈ [0,∞) .

The equation f (x) = 0 can have at most three distinct nonnegative roots. It can have
three distinct nonnegative roots only in the third case, when f (x) is decreasing on
[0,x1] , increasing on [x1,x2] and decreasing on [x2,∞) . Since the Lagrange multiplier
equations (3) can be satisfied only when all ai take at most three distinct nonnegative
values, it suffices to consider the following three cases:

• an = 0;

• ai take two distinct positive values;

• ai take three distinct positive values.

We will use the induction method.

3. Case an = 0

We need to show that

∑
1�i< j�n−1

aia j =
n(n−1)

2
(4)
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1
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+
1
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n−1 +1

� n−2
2
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Using the substitution

ai =
√

kxi, k =
n

n−2
, i = 1,2, . . . ,n−1,

we need to prove that

∑
1�i< j�n−1

xix j =
(n−1)(n−2)

2

involves
1
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+
1

kx2
2 +1

+ · · ·+ 1
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which is equivalent to
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kx2
n−1 +1
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We will show that
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kx2
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+
k+1

kx2
2 +1

+ · · ·+ k+1

kx2
n−1 +1

� 2

x2
1 +1

+
2

x2
2 +1

+ · · ·+ 2

x2
n−1 +1

� n−1.

The right inequality follows by the induction hypothesis, while the left inequality is
equivalent to

b1c1 +b2c2 + · · ·+bn−1cn−1 � 0,

where

bi =
2

x2
i +1

−1, ci =
1

kx2
i +1

, i = 1,2, . . . ,n−1.

By the induction hypothesis, we have

b1 +b2 + · · ·+bn−1 � 0.

Assuming x1 � x2 � · · · � xn−1 , the sequences (b1,b2, . . . ,bn−1) and (c1,c2, . . . ,cn−1)
are increasing. By the rearrangement inequality and the induction hypothesis, we have:

(n−1)(b1c1 +b2c2 + · · ·+bn−1cn−1) � (b1 +b2+ · · ·+bn−1)(c1 +c2+ · · ·+cn−1) � 0.

4. Case where ai take two distinct positive values

We need to prove the inequality

a
x2 +1

+
b

y2 +1
� a+b

2
, (6)

where a,b are positive integer numbers and x > y > 0 such that

g(x,y) = d, (7)
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where
g(x,y) = a(a−1)x2 +b(b−1)y2 +2abxy

and

d = a(a−1)+b(b−1)+2ab= (a+b)(a+b−1).

Write the inequality (6) in the homogeneous form

a
dx2 +g

+
b

dy2 +g
� a+b

2g
,

which is equivalent to

(a+b−1)(bx2 +ay2)+g
(dx2 +g)(dy2 +g)

� 1
2g

,

or
g2− [a(a−1)−b(b−1)](x2− y2)g−d2x2y2 � 0,

or
(a−1)(b−1)(x4 + y4)+2(a2 +b2−a−b)xy(x2 + y2)

−2(2a2 +2b2 +ab−3a−3b+1)x2y2 � 0,

or
(x− y)2[(a−1)(b−1)(x2 + y2)+2Axy] � 0 ,

where
A = (a−1)2 +(b−1)2 +ab−1.

Since a,b � 1, the last inequality is clearly true.

5. Case where ai take three distinct positive values

We need to prove the inequality

a
x2 +1

+
b

y2 +1
+

c
z2 +1

� a+b+ c
2

, (8)

where a,b,c are positive integer numbers and x > y > z > 0 such that

a(a−1)x2 +b(b−1)y2 + c(c−1)z2 +2abxy+2bcyz+2cazx (9)

= (a+b+ c)(a+b+ c−1).

According to Theorem 1, it suffices to consider

a =
⌊

a+b+ c
2

⌋
+1
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and c � 2 (the case a) in Theorem 1 being proved at section 3). From

a � a+b+ c−1
2

+1,

we get
a � b+ c+1 � b+3 � 4.

On the other hand, since x > y > z , from (9) we get

a(a−1)x2 +b(b−1)x2 + c(c−1)x2 +2abx2 +2bcx2 +2cax2

> (a+b+ c)(a+b+ c−1),

hence x > 1. Since

2
x2 +1

= 1− x2−1
x2 +1

> 1− x2 −1
2x

= 1− x
2

+
1
2x

,

2
y2 +1

= 2− 2y2

y2 +1
� 2− y

and
2

z2 +1
� 2− z,

it suffices to show that

a

(
1− x

2
+

1
2x

)
+b(2− y)+ c(2− z)� a+b+ c,

which is equivalent to F � 0, where

F =
a
x
−ax−2by−2cz+2b+2c. (10)

To prove the inequality F � 0, it is more convenient to consider

x � y � z � 0

instead of x > y > z > 0. For fixed x , taking into account the constraint (9), we may
consider y as a function of z . Clearly, y(z) is decreasing on its domain [m,M] . Note
that m = 0 when y(0) � x , and m > 0 when y(0) > x . In addition, we have z = m > 0
when y = x . By deriving (9) and (10), we get

y′ =
−c
b

· ax+by+(c−1)z
ax+(b−1)y+ cz

< 0,

hence

F ′(z) = −2by′ −2c =
2c(y− z)

ax+(b−1)y+ cz
� 0.

Since F(z) is increasing, the inequality F(z) � 0 holds if F(m) � 0. Thus, it suffices
to prove the inequality F � 0 for z = 0 and for y = x .
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Case 1: z = 0. Taking into account (9) and (10), we need to show that

a(a−1)x2 +b(b−1)y2 +2abxy = (a+b+ c)(a+b+ c−1) (11)

involves F1 � 0, where
F1 =

a
x
−ax−2by+2b+2c. (12)

Since x � y , from (11) we get

a(a−1)x2 +b(b−1)x2 +2abx2 � (a+b+ c)(a+b+ c−1),

hence

x �
√

(a+b+ c)(a+b+ c−1)
(a+b)(a+b−1)

�
√

(a+b+2)(a+b+1)
(a+b)(a+b−1)

> 1.

Consider x as function of y . From the constraint (11), it follows that x(y) is a decreas-
ing function on its domain [0,M1] . Moreover, since y � x , y has its maximum value
M1 when y = x . By deriving (11) and (12), we get

x′ =
−b
a

· ax+(b−1)y
(a−1)x+by

< 0

and

F ′
1(y) = −a

(
1
x2 +1

)
x′ −2b

= b

(
1
x2 +1

)
ax+(b−1)y
(a−1)x+by

−2b.

We will show that F ′
1(y) � 0. This is equivalent to

(a−2)x2 +(b+1)xy � a+
(b−1)y

x
.

Since x > 1, we have

(b+1)xy � (b−1)xy � (b−1)y
x

.

Thus, we only need to show that

(a−2)x2 � a.

It is true if
(a−2)(a+b+2)(a+b+1)� a(a+b)(a+b−1),
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which is equivalent to
a(a−2) � (b+1)(b+2).

Since a � b+3, we get

a(a−2)− (b+1)(b+2)� (b+3)(b+1)− (b+1)(b+2)
= b+1 > 0.

Because F1(y) is decreasing, the inequality F1(y) � 0 holds if F1(M1) � 0. Thus, it
suffices to show that F1 � 0 for y = x . According to (11) and (12), we need to show
that b � 1, c � 2, a � b+ c+1 � 4 and

x =

√
(a+b+ c)(a+b+ c−1)

(a+b)(a+b−1)

involves a
x
− (a+2b)x+2b+2c� 0.

Write the inequality as

(a+b)
(

1
x
− x

)
−b

(
x+

1
x
−2

)
+2c � 0.

For fixed c and a + b , x is also fixed. Since b � a− c− 1 and the left side of the
inequality has the minimum value when b is maximum, it suffices to take b = a−c−1.
So, we need to prove that

2(a−1)x � (3a−2c−2)x2−a

for

x =

√
(2a−1)(2a−2)

(2a− c−1)(2a− c−2)
.

The inequality can be written as

2(a−1)

√
(2a−1)(2a−2)

(2a− c−1)(2a− c−2)
� A

(2a− c−1)(2a− c−2)
,

where
A = −ac2− (4a2−9a+4)c+4(a−1)2(2a−1).

By squaring, we need to prove that

8(a−1)3(2a−1)(2a− c−1)(2a− c−2)� A2.

For fixed a (a � 4), this inequality is equivalent to c f (c) � 0, where

f (c) = −a2c3−2a(4a2−9a+4)c2 +Bc+C, c ∈ [2,a−2],
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B = 16a4−24a3−9a2 +24a−8,

C = 8(−4a4 +12a3−13a2 +6a−1).

Since
f ′′(c) = −6a2c−4a(4a2−9a+4)< 0,

f (c) is concave. Therefore, to prove that f (c) � 0, it suffices to show that f (2) � 0
and f (a−2) � 0. We have

f (2) = 2(a−2)(8a2−13a+6)> 0

and

f (a−2) = 7a5−32a4 +11a3 +50a2−40a+8

> a(7a4−32a3 +11a2 +50a−120)

= a(a−4)(7a3−4a2−5a+30)

� a2(a−4)(7a2−4a−5) � 0.

Case 2: y = x . Taking into account (9) and (10), we need to show that

(a+b)(a+b−1)x2+ c(c−1)z2 +2(a+b)cxz = (a+b+ c)(a+b+ c−1) (13)

involves F2 � 0, where

F2 =
a
x
− (a+2b)x−2cz+2b+2c. (14)

Consider x as function of z . From the constraint (13), it follows that x(z) is a decreas-
ing function on its domain [0,M2] . Moreover, since z � x , z has its maximum value
M2 when z = x . By deriving (13) and (14), we get

x′ =
−c

a+b
· (a+b)x+(c−1)z

(a+b−1)x+ cz
< 0

and

F ′
2(z) = −

( a
x2 +a+2b

)
x′ −2c

=
( a

x2 +a+2b
)
· c
a+b

· (a+b)x+(c−1)z
(a+b−1)x+ cz

−2c.

We will show that F ′
2(z) � 0. This is equivalent to

2(a+b)[(a+b−1)x+ cz
(a+b)x+(c−1)z

� a
x2 +a+2b,

(a−2)(a+b)x+(ac+a+2b)z
(a+b)x+(c−1)z

� a
x2 ,
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which can be written in the homogeneous form

(a−2)(a+b)x3+(ac+a+2b)x2z
a[(a+b)x+(c−1)z]

� (a+b)(a+b−1)x2+ c(c−1)z2 +2(a+b)cxz
(a+b+ c)(a+b+ c−1)

,

or

(x− z)(Ax2 +Bxz+Cz2) � 0, (15)

where

A = (a+b)[(a+b+ c)(a+b+ c−1)(a−2)−a(a+b)(a+b−1)]
� (a+b)[(a+b+2)(a+b+1)(a−2)−a(a+b)(a+b−1)]

= 2(a+b)[a(a−2)−b2−3b−2]

� 2(a+b)[(b+3)(b+1)−b2−3b−2]
= 2(a+b)(b+1)> 0,

B = ac(c−1)(3a+3b+ c−1)> 0,

C = ac(c−1)2 > 0.

Since x � z and A,B,C > 0, the inequality (15) is true. Finally, since F2(z) is decreas-
ing, the inequality F2(z) � 0 holds if F2(M2) � 0. Thus, it suffices to show that F2 � 0
for z = x . From the constraint (13), we get z = x = 1, hence F2 = 0.

The proof is completed. The equality occurs for a1 = a2 = · · · = an = 1, and also

for a1 = a2 = · · · = an−1 =
√

n
n−2

and an = 0 (or any cyclic permutation).
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