THE PROOF OF A NOTABLE SYMMETRIC INEQUALITY

Vasile Cirtoaje*, Alina Simona Baiesu and Marian Popescu

(Communicated by I. Perić)

Abstract. In this paper we give a proof of the inequality

$$
\frac{1}{a_{1}^{2}+1}+\frac{1}{a_{2}^{2}+1}+\cdots+\frac{1}{a_{n}^{2}+1} \geqslant \frac{n}{2}
$$

for nonnegative real numbers $a_{1}, a_{2}, \ldots, a_{n}$ satisfying

$$
\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j}=\frac{n(n-1)}{2} .
$$

The inequality is an equality for $a_{1}=a_{2}=\cdots=a_{n}=1$, and also for $a_{1}=a_{2}=\cdots=a_{n-1}=$ $\sqrt{\frac{n}{n-2}}$ and $a_{n}=0$ (or any cyclic permutation).

1. Introduction

A proof of the inequality

$$
\begin{equation*}
\frac{1}{a_{1}^{2}+1}+\frac{1}{a_{2}^{2}+1}+\cdots+\frac{1}{a_{n}^{2}+1} \geqslant \frac{n}{2} \tag{1}
\end{equation*}
$$

is given in [3] for $n \leqslant 8$ and nonnegative real numbers $a_{1}, a_{2}, \ldots, a_{n}$ under the constraint

$$
\begin{equation*}
\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j}=\frac{n(n-1)}{2} . \tag{2}
\end{equation*}
$$

Note that this inequality was proposed and proved for $n=3$ in 2005 (see [2]). Later, the inequality was given for $n=4$ at the Olympic Revenge Contest from Brazil-2013 (see [5]) and, in the same year, Henrique Vaz posted it on the website Art of Problem Solving [6], where the readers have presented three distinct proofs (for $n=4$).

In this paper, we give a proof for any integer $n \geqslant 3$. The proof is based on the following result in [3] (Theorem 4.1):

[^0]THEOREM 1. Let $a_{1}, a_{2}, \ldots, a_{n}$ be nonnegative real numbers such that $a_{1} \geqslant a_{2} \geqslant$ $\cdots \geqslant a_{n}$ and

$$
\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j}=\frac{n(n-1)}{2} .
$$

Let $k=\left\lfloor\frac{n}{2}\right\rfloor+1$. If the inequality (1) holds for the particular cases
a) $a_{1}=a_{2}=\cdots=a_{k}$ and $a_{n}=0$,
b) $a_{1}=a_{2}=\cdots=a_{k}$ and $a_{n-1}=a_{n}>0$,
then it holds for all $a_{1}, a_{2}, \ldots, a_{n}$.
To prove the inequality (1) under the constraint (2), we will assume

$$
a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{n}
$$

and will use the induction method, Theorem 1 and the method of Lagrange multipliers (for fixed $\sum_{i=1}^{n} a_{i}$ and $\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j}$).

2. Method of Lagrange multipliers

Let $a_{1} \geqslant a_{2} \geqslant \cdots \geqslant a_{n} \geqslant 0$ and

$$
\begin{gathered}
f_{1}\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i}, \\
f_{2}\left(a_{1}, \ldots, a_{n}\right)=\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j} .
\end{gathered}
$$

Under the constraints

$$
\begin{gathered}
\sum_{i=1}^{n} a_{i}=S_{1} \\
\sum_{1 \leqslant i<j \leqslant n} a_{i} a_{j}=\frac{n(n-1)}{2}:=S_{2}
\end{gathered}
$$

(which define a smooth compact manifold), the minimum $m\left(S_{1}\right)$ of the expression

$$
E=\frac{1}{a_{1}^{2}+1}+\frac{1}{a_{2}^{2}+1}+\cdots+\frac{1}{a_{n}^{2}+1}
$$

exists. Thus, to prove the inequality (1) under the constraint (2), it suffices to show that $m\left(S_{1}\right) \geqslant \frac{n}{2}$, that means to prove the inequality (1) for a_{i} chosen to minimize the expression E. The minimum of E occurs at a point $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{n}=0$, or at a point that satisfies the Lagrange multiplier equations

$$
\begin{equation*}
\frac{-a_{i}}{\left(a_{i}^{2}+1\right)^{2}}+\lambda-\mu a_{i}=0, \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

(where λ and μ are real constants), or at a point where ∇f_{1} and ∇f_{2} are linearly dependent (that is when all a_{i} are equal) - see [1, 4]. We claim that the equation $f(x)=0$, where

$$
f(x)=\frac{-x}{\left(x^{2}+1\right)^{2}}+\lambda-\mu x
$$

has at most three distinct nonnegative roots. From

$$
f^{\prime}(x)=\frac{3 x^{2}-1}{\left(x^{2}+1\right)^{3}}-\mu, \quad f^{\prime \prime}(x)=\frac{12 x\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{4}}
$$

it follows that $f^{\prime}(x)$ is strictly increasing on $[0,1]$ and strictly decreasing on $[1, \infty)$. Since

$$
f^{\prime}(0)=-1-\mu<-\mu=f^{\prime}(\infty)
$$

there are four possible cases:

- $f^{\prime}(x) \geqslant 0$ for $x \in[0, \infty)$;
- $f^{\prime}(x)<0$ for $x \in\left[0, x_{1}\right), f^{\prime}\left(x_{1}\right)=0$ and $f^{\prime}(x)>0$ for $x \in\left(x_{1}, \infty\right)$;
- $f^{\prime}(x)<0$ for $x \in\left[0, x_{1}\right), f^{\prime}(x)>0$ for $x \in\left(x_{1}, x_{2}\right)$ with $0<x_{1}<x_{2}$, and $f^{\prime}(x)<$ 0 for $x \in\left(x_{2}, \infty\right)$;
- $f^{\prime}(x) \leqslant 0$ for $x \in[0, \infty)$.

The equation $f(x)=0$ can have at most three distinct nonnegative roots. It can have three distinct nonnegative roots only in the third case, when $f(x)$ is decreasing on $\left[0, x_{1}\right]$, increasing on $\left[x_{1}, x_{2}\right]$ and decreasing on $\left[x_{2}, \infty\right)$. Since the Lagrange multiplier equations (3) can be satisfied only when all a_{i} take at most three distinct nonnegative values, it suffices to consider the following three cases:

- $a_{n}=0$;
- a_{i} take two distinct positive values;
- a_{i} take three distinct positive values.

We will use the induction method.

$$
\text { 3. Case } a_{n}=0
$$

We need to show that

$$
\begin{equation*}
\sum_{1 \leqslant i<j \leqslant n-1} a_{i} a_{j}=\frac{n(n-1)}{2} \tag{4}
\end{equation*}
$$

involves

$$
\begin{equation*}
\frac{1}{a_{1}^{2}+1}+\frac{1}{a_{2}^{2}+1}+\cdots+\frac{1}{a_{n-1}^{2}+1} \geqslant \frac{n-2}{2} . \tag{5}
\end{equation*}
$$

Using the substitution

$$
a_{i}=\sqrt{k} x_{i}, \quad k=\frac{n}{n-2}, \quad i=1,2, \ldots, n-1
$$

we need to prove that

$$
\sum_{1 \leqslant i<j \leqslant n-1} x_{i} x_{j}=\frac{(n-1)(n-2)}{2}
$$

involves

$$
\frac{1}{k x_{1}^{2}+1}+\frac{1}{k x_{2}^{2}+1}+\cdots+\frac{1}{k x_{n-1}^{2}+1} \geqslant \frac{n-2}{2}
$$

which is equivalent to

$$
\frac{k+1}{k x_{1}^{2}+1}+\frac{k+1}{k x_{2}^{2}+1}+\cdots+\frac{k+1}{k x_{n-1}^{2}+1} \geqslant n-1
$$

We will show that

$$
\frac{k+1}{k x_{1}^{2}+1}+\frac{k+1}{k x_{2}^{2}+1}+\cdots+\frac{k+1}{k x_{n-1}^{2}+1} \geqslant \frac{2}{x_{1}^{2}+1}+\frac{2}{x_{2}^{2}+1}+\cdots+\frac{2}{x_{n-1}^{2}+1} \geqslant n-1
$$

The right inequality follows by the induction hypothesis, while the left inequality is equivalent to

$$
b_{1} c_{1}+b_{2} c_{2}+\cdots+b_{n-1} c_{n-1} \geqslant 0
$$

where

$$
b_{i}=\frac{2}{x_{i}^{2}+1}-1, \quad c_{i}=\frac{1}{k x_{i}^{2}+1}, \quad i=1,2, \ldots, n-1
$$

By the induction hypothesis, we have

$$
b_{1}+b_{2}+\cdots+b_{n-1} \geqslant 0
$$

Assuming $x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{n-1}$, the sequences $\left(b_{1}, b_{2}, \ldots, b_{n-1}\right)$ and $\left(c_{1}, c_{2}, \ldots, c_{n-1}\right)$ are increasing. By the rearrangement inequality and the induction hypothesis, we have: $(n-1)\left(b_{1} c_{1}+b_{2} c_{2}+\cdots+b_{n-1} c_{n-1}\right) \geqslant\left(b_{1}+b_{2}+\cdots+b_{n-1}\right)\left(c_{1}+c_{2}+\cdots+c_{n-1}\right) \geqslant 0$.

4. Case where a_{i} take two distinct positive values

We need to prove the inequality

$$
\begin{equation*}
\frac{a}{x^{2}+1}+\frac{b}{y^{2}+1} \geqslant \frac{a+b}{2} \tag{6}
\end{equation*}
$$

where a, b are positive integer numbers and $x>y>0$ such that

$$
\begin{equation*}
g(x, y)=d \tag{7}
\end{equation*}
$$

where

$$
g(x, y)=a(a-1) x^{2}+b(b-1) y^{2}+2 a b x y
$$

and

$$
d=a(a-1)+b(b-1)+2 a b=(a+b)(a+b-1)
$$

Write the inequality (6) in the homogeneous form

$$
\frac{a}{d x^{2}+g}+\frac{b}{d y^{2}+g} \geqslant \frac{a+b}{2 g}
$$

which is equivalent to

$$
\frac{(a+b-1)\left(b x^{2}+a y^{2}\right)+g}{\left(d x^{2}+g\right)\left(d y^{2}+g\right)} \geqslant \frac{1}{2 g}
$$

or

$$
g^{2}-[a(a-1)-b(b-1)]\left(x^{2}-y^{2}\right) g-d^{2} x^{2} y^{2} \geqslant 0
$$

or

$$
\begin{gathered}
(a-1)(b-1)\left(x^{4}+y^{4}\right)+2\left(a^{2}+b^{2}-a-b\right) x y\left(x^{2}+y^{2}\right) \\
-2\left(2 a^{2}+2 b^{2}+a b-3 a-3 b+1\right) x^{2} y^{2} \geqslant 0
\end{gathered}
$$

or

$$
(x-y)^{2}\left[(a-1)(b-1)\left(x^{2}+y^{2}\right)+2 A x y\right] \geqslant 0
$$

where

$$
A=(a-1)^{2}+(b-1)^{2}+a b-1 .
$$

Since $a, b \geqslant 1$, the last inequality is clearly true.

5. Case where a_{i} take three distinct positive values

We need to prove the inequality

$$
\begin{equation*}
\frac{a}{x^{2}+1}+\frac{b}{y^{2}+1}+\frac{c}{z^{2}+1} \geqslant \frac{a+b+c}{2}, \tag{8}
\end{equation*}
$$

where a, b, c are positive integer numbers and $x>y>z>0$ such that

$$
\begin{gather*}
a(a-1) x^{2}+b(b-1) y^{2}+c(c-1) z^{2}+2 a b x y+2 b c y z+2 c a z x \tag{9}\\
=(a+b+c)(a+b+c-1)
\end{gather*}
$$

According to Theorem 1, it suffices to consider

$$
a=\left\lfloor\frac{a+b+c}{2}\right\rfloor+1
$$

and $c \geqslant 2$ (the case a) in Theorem 1 being proved at section 3). From

$$
a \geqslant \frac{a+b+c-1}{2}+1
$$

we get

$$
a \geqslant b+c+1 \geqslant b+3 \geqslant 4
$$

On the other hand, since $x>y>z$, from (9) we get

$$
\begin{gathered}
a(a-1) x^{2}+b(b-1) x^{2}+c(c-1) x^{2}+2 a b x^{2}+2 b c x^{2}+2 c a x^{2} \\
>(a+b+c)(a+b+c-1)
\end{gathered}
$$

hence $x>1$. Since

$$
\begin{gathered}
\frac{2}{x^{2}+1}=1-\frac{x^{2}-1}{x^{2}+1}>1-\frac{x^{2}-1}{2 x}=1-\frac{x}{2}+\frac{1}{2 x} \\
\frac{2}{y^{2}+1}=2-\frac{2 y^{2}}{y^{2}+1} \geqslant 2-y
\end{gathered}
$$

and

$$
\frac{2}{z^{2}+1} \geqslant 2-z
$$

it suffices to show that

$$
a\left(1-\frac{x}{2}+\frac{1}{2 x}\right)+b(2-y)+c(2-z) \geqslant a+b+c
$$

which is equivalent to $F \geqslant 0$, where

$$
\begin{equation*}
F=\frac{a}{x}-a x-2 b y-2 c z+2 b+2 c \tag{10}
\end{equation*}
$$

To prove the inequality $F \geqslant 0$, it is more convenient to consider

$$
x \geqslant y \geqslant z \geqslant 0
$$

instead of $x>y>z>0$. For fixed x, taking into account the constraint (9), we may consider y as a function of z. Clearly, $y(z)$ is decreasing on its domain $[m, M]$. Note that $m=0$ when $y(0) \leqslant x$, and $m>0$ when $y(0)>x$. In addition, we have $z=m>0$ when $y=x$. By deriving (9) and (10), we get

$$
y^{\prime}=\frac{-c}{b} \cdot \frac{a x+b y+(c-1) z}{a x+(b-1) y+c z}<0
$$

hence

$$
F^{\prime}(z)=-2 b y^{\prime}-2 c=\frac{2 c(y-z)}{a x+(b-1) y+c z} \geqslant 0
$$

Since $F(z)$ is increasing, the inequality $F(z) \geqslant 0$ holds if $F(m) \geqslant 0$. Thus, it suffices to prove the inequality $F \geqslant 0$ for $z=0$ and for $y=x$.

Case 1: $z=0$. Taking into account (9) and (10), we need to show that

$$
\begin{equation*}
a(a-1) x^{2}+b(b-1) y^{2}+2 a b x y=(a+b+c)(a+b+c-1) \tag{11}
\end{equation*}
$$

involves $F_{1} \geqslant 0$, where

$$
\begin{equation*}
F_{1}=\frac{a}{x}-a x-2 b y+2 b+2 c . \tag{12}
\end{equation*}
$$

Since $x \geqslant y$, from (11) we get

$$
a(a-1) x^{2}+b(b-1) x^{2}+2 a b x^{2} \geqslant(a+b+c)(a+b+c-1),
$$

hence

$$
\begin{aligned}
x & \geqslant \sqrt{\frac{(a+b+c)(a+b+c-1)}{(a+b)(a+b-1)}} \\
& \geqslant \sqrt{\frac{(a+b+2)(a+b+1)}{(a+b)(a+b-1)}>1 .}
\end{aligned}
$$

Consider x as function of y. From the constraint (11), it follows that $x(y)$ is a decreasing function on its domain $\left[0, M_{1}\right]$. Moreover, since $y \leqslant x, y$ has its maximum value M_{1} when $y=x$. By deriving (11) and (12), we get

$$
x^{\prime}=\frac{-b}{a} \cdot \frac{a x+(b-1) y}{(a-1) x+b y}<0
$$

and

$$
\begin{aligned}
F_{1}^{\prime}(y) & =-a\left(\frac{1}{x^{2}}+1\right) x^{\prime}-2 b \\
& =b\left(\frac{1}{x^{2}}+1\right) \frac{a x+(b-1) y}{(a-1) x+b y}-2 b .
\end{aligned}
$$

We will show that $F_{1}^{\prime}(y) \leqslant 0$. This is equivalent to

$$
(a-2) x^{2}+(b+1) x y \geqslant a+\frac{(b-1) y}{x}
$$

Since $x>1$, we have

$$
(b+1) x y \geqslant(b-1) x y \geqslant \frac{(b-1) y}{x} .
$$

Thus, we only need to show that

$$
(a-2) x^{2} \geqslant a
$$

It is true if

$$
(a-2)(a+b+2)(a+b+1) \geqslant a(a+b)(a+b-1)
$$

which is equivalent to

$$
a(a-2) \geqslant(b+1)(b+2)
$$

Since $a \geqslant b+3$, we get

$$
\begin{aligned}
a(a-2)-(b+1)(b+2) & \geqslant(b+3)(b+1)-(b+1)(b+2) \\
& =b+1>0
\end{aligned}
$$

Because $F_{1}(y)$ is decreasing, the inequality $F_{1}(y) \geqslant 0$ holds if $F_{1}\left(M_{1}\right) \geqslant 0$. Thus, it suffices to show that $F_{1} \geqslant 0$ for $y=x$. According to (11) and (12), we need to show that $b \geqslant 1, c \geqslant 2, a \geqslant b+c+1 \geqslant 4$ and

$$
x=\sqrt{\frac{(a+b+c)(a+b+c-1)}{(a+b)(a+b-1)}}
$$

involves

$$
\frac{a}{x}-(a+2 b) x+2 b+2 c \geqslant 0
$$

Write the inequality as

$$
(a+b)\left(\frac{1}{x}-x\right)-b\left(x+\frac{1}{x}-2\right)+2 c \geqslant 0
$$

For fixed c and $a+b, x$ is also fixed. Since $b \leqslant a-c-1$ and the left side of the inequality has the minimum value when b is maximum, it suffices to take $b=a-c-1$. So, we need to prove that

$$
2(a-1) x \geqslant(3 a-2 c-2) x^{2}-a
$$

for

$$
x=\sqrt{\frac{(2 a-1)(2 a-2)}{(2 a-c-1)(2 a-c-2)}} .
$$

The inequality can be written as

$$
2(a-1) \sqrt{\frac{(2 a-1)(2 a-2)}{(2 a-c-1)(2 a-c-2)}} \geqslant \frac{A}{(2 a-c-1)(2 a-c-2)},
$$

where

$$
A=-a c^{2}-\left(4 a^{2}-9 a+4\right) c+4(a-1)^{2}(2 a-1)
$$

By squaring, we need to prove that

$$
8(a-1)^{3}(2 a-1)(2 a-c-1)(2 a-c-2) \geqslant A^{2}
$$

For fixed $a(a \geqslant 4)$, this inequality is equivalent to $c f(c) \geqslant 0$, where

$$
f(c)=-a^{2} c^{3}-2 a\left(4 a^{2}-9 a+4\right) c^{2}+B c+C, \quad c \in[2, a-2]
$$

$$
\begin{aligned}
& B=16 a^{4}-24 a^{3}-9 a^{2}+24 a-8 \\
& C=8\left(-4 a^{4}+12 a^{3}-13 a^{2}+6 a-1\right)
\end{aligned}
$$

Since

$$
f^{\prime \prime}(c)=-6 a^{2} c-4 a\left(4 a^{2}-9 a+4\right)<0
$$

$f(c)$ is concave. Therefore, to prove that $f(c) \geqslant 0$, it suffices to show that $f(2) \geqslant 0$ and $f(a-2) \geqslant 0$. We have

$$
f(2)=2(a-2)\left(8 a^{2}-13 a+6\right)>0
$$

and

$$
\begin{aligned}
f(a-2) & =7 a^{5}-32 a^{4}+11 a^{3}+50 a^{2}-40 a+8 \\
& >a\left(7 a^{4}-32 a^{3}+11 a^{2}+50 a-120\right) \\
& =a(a-4)\left(7 a^{3}-4 a^{2}-5 a+30\right) \\
& \geqslant a^{2}(a-4)\left(7 a^{2}-4 a-5\right) \geqslant 0 .
\end{aligned}
$$

Case 2: $y=x$. Taking into account (9) and (10), we need to show that

$$
\begin{equation*}
(a+b)(a+b-1) x^{2}+c(c-1) z^{2}+2(a+b) c x z=(a+b+c)(a+b+c-1) \tag{13}
\end{equation*}
$$

involves $F_{2} \geqslant 0$, where

$$
\begin{equation*}
F_{2}=\frac{a}{x}-(a+2 b) x-2 c z+2 b+2 c . \tag{14}
\end{equation*}
$$

Consider x as function of z. From the constraint (13), it follows that $x(z)$ is a decreasing function on its domain $\left[0, M_{2}\right]$. Moreover, since $z \leqslant x, z$ has its maximum value M_{2} when $z=x$. By deriving (13) and (14), we get

$$
x^{\prime}=\frac{-c}{a+b} \cdot \frac{(a+b) x+(c-1) z}{(a+b-1) x+c z}<0
$$

and

$$
\begin{aligned}
F_{2}^{\prime}(z) & =-\left(\frac{a}{x^{2}}+a+2 b\right) x^{\prime}-2 c \\
& =\left(\frac{a}{x^{2}}+a+2 b\right) \cdot \frac{c}{a+b} \cdot \frac{(a+b) x+(c-1) z}{(a+b-1) x+c z}-2 c
\end{aligned}
$$

We will show that $F_{2}^{\prime}(z) \leqslant 0$. This is equivalent to

$$
\begin{aligned}
& \frac{2(a+b)[(a+b-1) x+c z}{(a+b) x+(c-1) z} \geqslant \frac{a}{x^{2}}+a+2 b \\
& \frac{(a-2)(a+b) x+(a c+a+2 b) z}{(a+b) x+(c-1) z} \geqslant \frac{a}{x^{2}}
\end{aligned}
$$

which can be written in the homogeneous form

$$
\begin{gathered}
\frac{(a-2)(a+b) x^{3}+(a c+a+2 b) x^{2} z}{a[(a+b) x+(c-1) z]} \\
\geqslant \frac{(a+b)(a+b-1) x^{2}+c(c-1) z^{2}+2(a+b) c x z}{(a+b+c)(a+b+c-1)}
\end{gathered}
$$

or

$$
\begin{equation*}
(x-z)\left(A x^{2}+B x z+C z^{2}\right) \geqslant 0 \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
A & =(a+b)[(a+b+c)(a+b+c-1)(a-2)-a(a+b)(a+b-1)] \\
& \geqslant(a+b)[(a+b+2)(a+b+1)(a-2)-a(a+b)(a+b-1)] \\
& =2(a+b)\left[a(a-2)-b^{2}-3 b-2\right] \\
& \geqslant 2(a+b)\left[(b+3)(b+1)-b^{2}-3 b-2\right] \\
& =2(a+b)(b+1)>0, \\
B & =a c(c-1)(3 a+3 b+c-1)>0, \\
C & =a c(c-1)^{2}>0 .
\end{aligned}
$$

Since $x \geqslant z$ and $A, B, C>0$, the inequality (15) is true. Finally, since $F_{2}(z)$ is decreasing, the inequality $F_{2}(z) \geqslant 0$ holds if $F_{2}\left(M_{2}\right) \geqslant 0$. Thus, it suffices to show that $F_{2} \geqslant 0$ for $z=x$. From the constraint (13), we get $z=x=1$, hence $F_{2}=0$.

The proof is completed. The equality occurs for $a_{1}=a_{2}=\cdots=a_{n}=1$, and also for $a_{1}=a_{2}=\cdots=a_{n-1}=\sqrt{\frac{n}{n-2}}$ and $a_{n}=0$ (or any cyclic permutation).

REFERENCES

[1] M. Avriel, Nonlinear Programming: Analysis and Methods, Dover Publ., Inc., Mineola, New York (2003).
[2] V. Cirtoaje, A special symmetric inequality, Art of problem solving [Online forum: COMMUNITY - High School Olympiads - Inequalities proposed], January 6, 2005, https://artofproblemsolving.com/community/c6h22848p146302.
[3] V. Cirtoaje, On a notable inequality, Journal of Inequalities and Special Functions, Vol. 13, Issue 3 (2022), 10-22, http://www.ilirias.com/jiasf/online.html.
[4] Z. Denkowski, S. Migorski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Springer, New York (2003).
[5] H. VAZ, Olympic Revenge-Brazil, Art of problem solving [Online forum: COMMUNITY - CONTEST COLLECTIONS - BRAZIL CONTESTS - Olympic Revenge - 2013 Olympic Revenge], 2013, https://artofproblemsolving.com/community/c4268.
[6] H. VAZ, Problem 3, Olympic Revenge 2013, Art of problem solving [Online forum: COMMUNITY - High School Olympiads - Inequalities proposed], January 27, 2013, https://artofproblemsolving.com/community/c6h518184p2916452.

Vasile Cirtoaje
Department of Automation and Computers
Petroleum-Gas University of Ploiesti
Bdul Bucuresti, No. 39, 100680, Ploiesti, Romania
e-mail: vcirtoaje@upg-ploiesti.ro
Alina Simona Baiesu
Department of Automation and Computers
Petroleum-Gas University of Ploiesti
Bdul Bucuresti, No. 39, 100680, Ploiesti, Romania
e-mail: agutu@upg-ploiesti.ro
Marian Popescu
Department of Automation and Computers
Petroleum-Gas University of Ploiesti
Bdul Bucuresti, No. 39, 100680, Ploiesti, Romania
e-mail: mpopescu@upg-ploiesti.ro

[^0]: Mathematics subject classification (2020): 26D10, 26D20.
 Keywords and phrases: Symmetric constraint, symmetric inequality, Lagrange multipliers, induction method.

 * Corresponding author.

