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DIRAC INEQUALITY FOR HIGHEST
WEIGHT HARISH-CHANDRA MODULES II

PAVLE PANDZIC*, ANA PRLIC, VLADIMIR SOUCEK AND VIT TUCEK

(Communicated by J. Pecari¢)

Abstract. Let G be a connected simply connected noncompact exceptional simple Lie group of
Hermitian type. In this paper, we work with the Dirac inequality which is a very useful tool for
the classification of unitary highest weight modules.

1. Introduction

Let G be a connected simply connected noncompact exceptional simple Lie group
of Hermitian type. That means that G is either of type Eg or of type E7. Let © be a
Cartan involution of G and let K be the group of fixed points of ©. Then K/Z is a
maximal compact subgroup of G/Z, where Z denotes the center of G.

We will denote by go the Lie algebra of G and by ¢, the Lie algebra of K. Let
go = o ©po be the Cartan decomposition and let ty be a Cartan subalgebra of €.
Our assumptions on G imply that {y is also a Cartan subalgebra of gy. We delete the
subscript 0 to denote complexifications.

Let A;r D A; denote fixed sets of positive respectively positive compact roots.
Since the pair (G,K) is Hermitian, we have a K -invariant decomposition p = p™ @ p~
and pT are abelian subalgebras of p. Let p denote the half sum of positive roots for g.

We will consider A € t* which are A -dominant integral (% e NU{0},
Vo€ Af). Let N(1) denote the generalized Verma module. From definition N(A) ~
S(p~)® F, , where F), is the irreducible ¢-module with highest weight A . The general-
ized Verma module N(A) is a highest weight module. In case N(A) is not irreducible,
we will consider the irreducible quotient L(A) of N(A). Our main goal is to determine
those weights A which correspond to unitarizable L(A) using the Dirac inequality. We
consider only real highest weights A since this is a necessary condition for unitarity.

To learn more about highest weight modules see [1], [2], [3], [4], [5], [10].

The K -types of S(p~) are called the Schmid modules. For each of the Lie algebras
in Table 2, the general Schmid module s is a nonnegative integer combination of the

Mathematics subject classification (2020): 22E47.

Keywords and phrases: Unitary highest weight modules, Dirac inequality.

P. Pandzi¢, A. Prli¢ are and V. Tucek were supported by the QuantiXLie Center of Excellence, a project cofinanced
by the Croatian Government and European Union through the European Regional Development Fund — the Competitiveness
and Cohesion Operational Programme (KK.01.1.1.01.0004). V. Soucek is supported by the grant GACR GX19-28628.

* Corresponding author.

© t1€I"€N' Zagreb 729

Paper MIA-26-44


http://dx.doi.org/10.7153/mia-2023-26-44

730 P. PANDZIC, A. PRLIC, V. SOUCEK AND V. TUCEK

so called basic Schmid modules. The basic Schmid modules for each exceptional Lie
algebra go for which (G,K) is a Hermitian symmetric pair are given in Table 2. To
learn more about the Schmid modules see [13].

The Dirac operator is an element of U(g) ® C(p) defined as D =3 .b; ® d; where
b; is a basis of p and d; is the dual basis of p with respect to the Killing form B. The
Dirac operator acts on the tensor product X ® S where X is a (g,K)-module, and S is
the spin module for C(p). The square of the Dirac operator is:

D* = —(Casg ® L +|p||*) + (Case, + ¢ ).

where pg is a half sum of the compact positive roots. To learn more about the Dirac
operators in representation theory see [6], [8], [9], [7]).

If a (g,K)-module is unitary, then D is self adjoint with respect to an inner prod-
uct, so D> > 0. By the formula for D? the Dirac inequality becomes explicit on any
K-type Fr of L(A)® S

1T+ pell® > 12 +plI.

In [3] it was proved that L(2) is unitary if and only if D*> >0 on F, @ A'Pp* for
any K-type F, of L(A) other than F}, that is if and only if

lu+pl* > A +p|>

The following theorem gives us motivation to study the Dirac inequality (see [1 1]
for the case of classical Lie groups):

THEOREM 1.1. Let us assume that g,p,A,s are as in tables 1 and 2.
(1) Let 5o be a Schmid module such that the strict Dirac inequality

I(2=s5)"+pl*> 2 +p]? (1.1)
holds for any Schmid module s of strictly lower level than sq, and such that
12 =s50)" +pl> < 12 +pl*

Then L(A) is not unitary.
(2)If
1A =s)" +pl* > 2 +p? (1.2)

holds for all Schmid modules s, then N(A) is irreducible and unitary.

In Theorem 1.1, (A —s) is the unique £-dominant W -conjugate of A —s, which
means that (A —s)" is as in the third column of Table 2.

The proof of the above theorem requires some tools from representation theory, so
we will omit it in this paper and prove it in [12].
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In Table 1, sq(A) = A — ig;‘; o is the reflection of A with respect to the hy-
perplane orthogonal to a root ¢, W is the Weyl group of £ generated by the s, and

No =NU{0}.

Table 1: p and We
| Lie algebra | p | generators of W

96 (07 17273747_4,_474) Sgl-:tgj7 5 2 i > ]

17 17 Sgii8'75>i>j’
€7 (071727374757_777) !

S
7 (es—&7—€6—&5—&4—E3—&r+€1)

Table 2: The weights of basic Schmid modules and the condition for the t-highest weights
)L = (1172'27'”7241)

| Lie algebra | basic Schmid modules | highest weights |

A= (xl7l27x37x471572'672'67_2'6)
A< << s
l,'—z,]‘EZ, 20 €7, 1,j<5.

. si=3(1,1,1,1,1,—-1,—1,1),
6 s2:(0a0a0a0a1a_17_1?1)

A‘ - (11,1271372,4,15,%717,—217>
s; = (0,0,0,0,0,0,—1,1), M| <A< < s
€7 322(070707071717_17 )7 Ai—z//‘EZ, 21«[62, l;]<5

= (0,0,0,0,0,2,—1,1
$3=( ) and § (A= S, A+ h) € Ng

.1
1

Here A and p are elements of t* which is identified with C", and ¢&; denotes
the projection to the i-th coordinate. The roots are certain functionals on t* and the
relevant ones are those in the subscripts of the reflections s in Table 1, like & — €; or
&+E;j.

We will frequently use the following lemma in our calculations (see [11]):

LEMMA 1.1. Let g be one of the Lie algebras listed in the above tables. Let |
and v be weights as in Table 2. Let wy,w, € We. Then

Iowrp =wav) ™ +p > = [ (1 = v)* +plI.
In Lemma 1.1, (wipt —w,v)* is the unique dominant We-conjugate of wilt —wyV,

which means (wj —wy V)™ is as in the third column of Table 2. The proof requires
some representation theory and we leave it for [12].
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2. Dirac inequalities

2.1. Dirac inequality for ¢

The basic Schmid ¢-modules in S(p~) have lowest weight —s;, i = 1,2, where

1
S1 :ﬁl = E (1717171717_17_171)7
s2=Bi+B>=(0,0,0,0,1,—1,—1,1).
The highest weight (g, K)-modules have highest weights of the form

2’ = (Alax’27l37l4ax'57167167_A'ﬁ)7 ‘xl‘ < AQ < A'f'a < A,4 < A*Sa
Ai—AjEZ7 2%5627 i,jE{1,2,3,4,5}

In this case
p=1(0,1,2,3,4,—4,-4.,4).

The basic necessary condition for unitarity is the Dirac inequality
1A =s0)" +plP =12 +pl.
As before, we write (A —s1)T = A — 1. Then the Dirac inequality is equivalent to

2(n|A+p) < |nl*

1 1 1 1

We have
PP (Y U FOUE U WL PR PUNY DOV U ST S PO
51 = 1 25 2 25 3 25 4 27 5 27 27 27 6 2

At+p=A, A+ 1, 342,44 +3,A5+4, 4 — 4,46 —4,— A6 +4)

There are eight cases.

Case 1.1: A1+ Ay > 1. In this case 7, = s1. The basic inequality is equivalent to

5
ZA,- +20 < 3.
i=1

Case 1.2: 2p=—A1, A3— Ay > 1. In this case y; = %(—1,—17171717—1,—171).
The basic inequality is equivalent to

5
D A+ 18<32.
i=1

Case1.3: i3 =24 =—2A1, A >0, l4—A, > 1. Inthiscase y; = $(—1,1,—1,1,1,
—1,—1,1). The basic inequality is equivalent to

5
D A+ 16<3%.
i=1
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Case1.4: l3=A =21, =0, A4 > 1. Inthiscase y; = %(1,—17—1,1,1,—17—1,1).
The basic inequality is equivalent to

5
D it 14<3%
i=1

Case1.5: L4y =A3 =2 =—A1, 4, >0, As— A, > 1. Inthis case y; = %( 1,1,1,
—1,1,—1,—1,1). The basic inequality is equivalent to

5
ZA,-+14< 36
i=1

Case 1.6: A4 =23 =4 =241 =0, As— A, > 1. Inthis case 7 = 3(—1,—1,—1,
—1,1,—1,—1,1). The basic inequality is equivalent to

Case 1.7: As =24 =23 =A, = —A;, A, > 0. In this case y = 2( 1,1,1,1,—1,
—1,—1,1). The basic inequality is equivalent to

5
Zx,-+12<316.

i=1

Case 1.8: As=A4 =23 =2, =2 =0. Inthiscase y = 3(1,—1,—1,—-1,—-1,—1,
—1,1). The basic inequality is equivalent to

5
Zli < 32,
i—1

- /IISIOZWOwe are going to see in which cases the Dirac inequality holds for s,. We have
A—s2= (A1, A0, A3, A4, A5 — L, Ag+ 1, A6+ 1, —Ac — 1).
We write (A —s2)" = A — 7. Then the Dirac inequality for s,
12 =s2)* +pl> = 2 +p|?

is equivalent to
2(p.A+p) <l

There are seven cases.
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Case 2.1: As # A4. In this case 9» = s,. The Dirac inequality for s, is equivalent
to
As+ 14 < 3.

Case 2.2: As = A4 > A3. In this case 9» = (0,0,0,1,0,—1,—1,1). The Dirac
inequality for s; is equivalent to

As+13 < 3.
Case2.3: As = A4 = A3 > A,. In this case p» = (0,0,1,0,0,—1,—1,1). The Dirac
inequality for s; is equivalent to
As+12 < 3.
Case 2.4: As = A4 = 23 = A» > |A4|. In this case p = (0,1,0,0,0,—1,—1,1).
The Dirac inequality for s, is equivalent to
As+ 11 < 32.
Case2.5: As =1 = A3 =24, = A > 0. In this case p» = (1,0,0,0,0,—1,—1,1).
The basic inequality for s, is equivalent to
As+10 < 3.
Case2.6: As=2A4=A3=A=—A; >0. Inthiscase » = (—1,0,0,0,0,—1,—1,1).
The Dirac inequality for s, is equivalent to
As 410 < 3.

Case2.7: As = Ay = A3 = A, = A; =0. In this case y» = (0,0,0,0,—1,—1,—1,1).
The Dirac inequality for s, is equivalent to

As +6 < 32,

ie. Ag = 2.
It is easy to see that in the cases 1.1,1.2,1.3,1.4,1.5 and 1.7 if the Dirac inequal-
ity holds for s; then it also holds for s,, since

As < Z/li

1

Therefore we have three basic cases:

Case 1: 4;=0,i¢c{1,2,3,4,5}.
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In this case the basic Dirac inequality can be written as

A6 = 0.

The Dirac inequality for the second basic Schmid module is equivalent to

Ao = 2.

Case?2: A;=0,i€{1,2,3,4}, 25 #0.
In this case the basic Dirac inequality can be written as

As+8 < 3.
The Dirac inequality for the second basic Schmid module is equivalent to

As+ 14 < 3.

Case3: A isoftype 1.1,1.2,1.3,1.4, 1.50r 1.7, i.e. (A1,42,43,A4) # (0,0,0,0).
The Dirac inequality for the second basic Schmid module is automatically satisfied if
the basic Dirac inequality holds.

Let

Sap = asi +bsy = (g,g,g,g,g+b,—g—b,—g—b,g+b>, a,beNy, a+b>0

be a general Schmid module.

THEOREM 2.1. (Case 1) Let A be the highest weight of the form A = (0,0,0,0,0,
2'672'67 _2'6)

1. If A > 2 then A satisfies the strict Dirac inequality

I(A =sap)* +pI> > IA+p|*> Va,beNo,a+b#0.
2. If 0 < A <2 then
1A =s2)t +plIP <A +p|?

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than s, .

3. If A¢ <0 than the basic Dirac inequality fails.

Proof.
1. We have
a a a a a a a a
A‘_Su,h - <—§,—§,—§,—§,—5—b,lﬁ+§+b,%+§+b,—%—§—b>,
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and therefore

gyt (4 daaa 4 I A P )
(2, sa7b) ( 272727272+b7lﬁ+2+b7lﬁ+2+ba A’ﬁ ) b
a a a a a a a a
:2’_<_7__7__a__a___ a___ba___b7_ b)
202720 202 2 2 2+

Then the strict Dirac inequality
12 =sap)"+pl? > 12 +p|?

is equivalent to
2 Yu,h ‘A +p> < HYa,bH2a
a

'whére Yab = (%,—%,—%,—5,—% —b,—5—b,—5—b,3 —|—b) and this inequal-
ity is equivalent to

—2a* —4b* —4ab — 10a — 8b < 3(As —4)(a +2b).
Since A¢ > 2, 3(A¢ —4)(a+2b) > —6(a -+ 2b) . Furthermore, the inequality
—2a® — 4b* — 4ab — 10a — 8b < —6(a + 2b)

holds for all a,b € Ng,a+b # 0. So the strict Dirac inequality holds for any
Schmid module s, .

2. If 0 < A¢ < 2 then
I(A=s2)* +pl> < |2 +pl*

Since the level of s; is equal to two, and the level of as; + bs; is equal to a+2b,
the only Schmid module of strictly lower level than s; is 7.

For 51 we have Ag > 0, which implies
I(A =s)"+p[>> 2 +p]>

3. If A¢ < 0 than the basic Dirac inequality obviously fails since the basic Dirac
inequality in Case 1 is equivalentto A > 0. O

THEOREM 2.2. (Case 2) Let A be the highest weight of the form A = (0,0,0,0,
x’Sa 2'67 A’ﬁa _A'ﬁ)

1. If 3A¢ — As > 14 than A satisfies the strict Dirac inequality
I(X =sap)" +plI> > 12 +p|*> Va,b€No,a+b#0.
2. If 8 <3¢ — As < 14 then
(2 =s2)" +pl> <12 +p|?

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than s, .
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3. If 346 — As < 8 than the basic Dirac inequality fails.

Proof.
1. We have
a a a a a a a a
)L_sa,b_ <_§7_§7_§7_§7A'5_ 5_b7lﬁ+§+bakﬁ+§+ba_lﬁ_§_b>7

and therefore

(5,44, 45— 5 —b A6+ 5+b A+ 5+b —As—
(AS_%_bv%7%727272’6+ +b)t'6+ +b 2’6
(—4%,%.%.% A+ 5+bA+5+bAc+§+b,—
A_(_%’_%7_%7_%’%+b’_%_b’_%_b7§+ )’2’5>a+b

- (—x5+%+b7—%—%—%%—%»—ﬂ—b ~§-b,4+b), b<Is<ath

2
42s—%—b,—5—b,—%—b,%+b), As <b.

a
—(5-5-5-
Then the strict Dirac inequality

2 2
1A = sap)"+plI* > 1A +p]
is equivalent to

2a* +4b* +4ab — 10a —32b+ (34— As)(a+2b) > 0, As > a+b
2a> +4b* +dab —2a — 24b+ (30— As)(a+2b) —8As >0, b < As <a+b
2a* +4b* +4ab —2a — 16b + (346 — As)(a+2b) — 1645 > 0, As < b

Since 3A¢ — As > 14, then (346 —As)(a+2b) > 14a+28b. To prove the strict
Dirac inequality it is enough to prove

a*+2b*+2ab+2a—2b>0, As >a+b
a*+2b%+2ab+2a—2b>0,b<As<a+b
a*>+2b*+2ab+6a—2b>0, As <b

This is true for all a,b € Ny, (a,b) # (0,0). So the strict Dirac inequality holds
for any Schmid module s .

2. If 8 <31 — A5 < 14 then
12 =s2) +pl> <12 +p]*

Since s; is the only Schmid module of strictly lower level than s, and for s; we
have 34¢ — A5 > 8, it follows that

12 =s1)"+p[? > [IA +p|.
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3. If 346 — As < 8 than the basic Dirac inequality obviously fails since in Case 2
the basic Dirac inequality is equivalentto 3A¢ —As > 8. [

LEMMA 2.1. Let A be a highest weight such that (A1,22,23,A4,A5) # (0,0,0,0,0)
and
1A —=s52)* +pI* > A +p]*
Then
1A = s2)" +p|* > A" +plI?,
where ' = (A —s2)". If Al =0 for i =1,2,3,4,5, then

(A =sap)T+pl>> A +p|? VabeNy, a+b#0.

Proof. We have

(A1, 42,43, 44,45 — L, A+ 1,46+ 1,—A¢ — 1), A asin case 2.1
(A1, A2,A3,4s — 1, A5, A6 + 1,46+ 1,—A¢ — 1), A asin case 2.2
(A1, A2,As — 1,As, A5, A6 + 1,A6 + 1, —A¢ — 1), A asin case 2.3
(/11,7L5—1 As A5, A5, Aq+ 1, A6+ 1, — 6—1)
(As — 1,As5,45, 45,45, A6 + 1,46+ 1,—A¢ — 1), A asin case 2.5
(-

As+ 1, 5,45, 45, A5, A6 + 1,46+ 1,—2A¢ — 1), A as in case 2.6

A as in case 2.4

If A" is as in case 2.1 (AL # A}), then A is either as in case 2.1 or as in case 2.2. We
have
, , As—3A¢—4 < —14—4=—18, A asincase 2.1
7L5—3l6= .
As—3A¢—3< —13—3=—16, A asin case 2.2

Thus, A —3A¢{ < —14. It follows that the strict Dirac inequality holds for the second
basic Schmid module.

If A’ is asin case 2.2 (Al = A; > A}), then A is either as in case 2.1 or as in case
2.3. We have

A As—3A¢—4 < —14—4=—18, A asincase 2.1
ST T Y As =346 —3< —12—3=—15, A as in case 2.3
Thus, A{ —3A, < —13. It follows that the strict Dirac inequality holds for the second
basic Schmid module.
If A" is as in case 2.3 (A{ = Ay = A{ > A}), then A is either as in case 2.1 or as in
case 2.4. We have

A —3M = As—3A6—4 < —14—4=—18, A asin case 2.1
As—3A—3<—11-3=—14, A asincase 2.4

Thus, A{ —3A, < —12. It follows that the strict Dirac inequality holds for the second
basic Schmid module.
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If A/ is as in case 2.4 (Al = A, = A{ = A5 > |A{|), then A is either as in case 2.1
or as in case 2.5 or as in case 2.6. We have

30— As—3A—4 < —14—4=—18, A asin case 2.1
> 6= As—3A6—3 < —10—3= —13, A as in case 2.5 or as in case 2.6

Thus, A —3A, < —11. It follows that the strict Dirac inequality holds for the second
basic Schmid module.

If A/ is as in case 2.5 or as in case 2.6 (A = Ay = A = 4] = |A{| > 0), then A is

either as in case 2.1 or as in case 2.5 (for 4| = 2) or as in case 2.6 (for A; = %). We
have

30— As—3A—4 < —14—4=—18, A asin case 2.1
> 6= As—3A6—3 < —10—3= —13, A as in case 2.5 or as in case 2.6

Thus, A{ —3A, < —10. It follows that the strict Dirac inequality holds for the second
basic Schmid module.

If A" isasincase 2.7 (Al = = Ay =A) =] =0), then A = (0,0,0,0, 1, A, A,
—A¢) and 1 —34¢ < —14, that is A¢ > 5 and A{ = A¢+1 > 6 > 2. The strict Dirac
inequality holds for the second basic Schmid module.

It follows from theorem 2.1 that

A =sap) T+ o> =M +p|>>0 VapeNy a+b#0. O

LEMMA 2.2. Let A be a highest weight such that (A1, A2, A3,44) # (0,0,0,0) and
[(A =s)"+p]>> 2 +p]>
Then
1A =s1)" +pl* > A" +plI?,
where ' = (A —s1)T. If Al =0 for i=1,2,3,4, then

I(A" = sap) T +p[>> |2 +p|> Va,beNy, a+b#0.

Proof. We have

A= ’ 71 5714 é: 57%4-%,%4-%, Ao— 1) A asincase 1.1
/l2+27/12+27/13 27/14 2» 2,7L6+2,7Ls+2, —Ae— 2) A asin case 1.2
25 a5, Mot g, Aa— 5, A 2,7L6+2,7Ls+2, —X6—3%), A asincase 1.3
333 gAs— 2’164-2,164-2, —2X6—%), A asin case 1.4

Totr =2 L3 M+3 45— 3. A6+ %, A6+ 4, —A6—%), A as in case 1.5
) +é7/l2 27/12 27/12 2»7L2+2,7%+2,7L6+2, —Ae— 2) A asin case 1.7

p

A=

(
(=
(=
(=
(=
(=
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If A" is asincase 1.1 (A{ +A) > 1), then A is either as in case 1.1 or as in case 1.2.
‘We have

25:/1,_3%,_ S Ai—3Ag—4<—20—4=—24 Aasincase 1.1
T T | L A= 3—2 < —18—2=—20, A as in case 1.2

Thus, Y23, A/ — 34, < —20. It follows that the strict basic Dirac inequality holds.
If A" isasincase 1.2 (—A{ = AJ,A; — 4] > 1), then A is either as in case 1.1 or
as in case 1.3. We have

XS:JL’ A — Z;?L,-—S?Lﬁ—4<—20—4:—24,kasincasel.l
i1 l o Z?:ﬂi—37%—2<—16—2:—18,kasincasel.S

Thus, 35, A/ — 3, < —18. It follows that the strict basic Dirac inequality holds.
If A isasincase 1.3 (A =24 = —A[,A] > 0,4, —A) > 1), then A is either as in
case 1.1 or as in case 1.4 or as in case 1.5. We have
5 Z?Zlki—3/16—4<—20—4:—24,/lasincase 1.1
Z?Ll-’—3/16’ =32 A4i—3A—2<—14—2=—16, A as in case 1.4
=l S Ai—3k—2< —14—2=—16, A as in case 1.5

Thus, 323, A/ — 34, < —16. It follows that the strict basic Dirac inequality holds.
If 2/ is asin case 1.4 (A{ = A}, = A5 = 0,4, > 0), then A is either as in case 1.1
or as in case 1.5. We have

il’—fﬁk’— ZL?L,-—SM—4<—20—4:—24,kasincasel.l
P ' 6= Z?lei—3%—2<—14—2:—16,kasincasel.S

Thus, >, A/ — 34, < —14. It follows that the strict basic Dirac inequality holds.
If A isasincase 1.5 (Ay =A, =A) = —A{,A] > 0,A, —2) > 1), then A is either
asincase 1.1 or as in case 1.4 or as in case 1.7. We have
5 S0 Ai—3k—4< —20—4=—24 ) asincase 1.1
Z?L,-’—?))Lé =3 Ai—3d—2<—14—2=—16, A as in case 1.4
i=1 S0 Ai—3k—2<—12—2=—14, A asin case 1.7

Thus, 3, A/ — 34, < —14. It follows that the strict basic Dirac inequality holds.
If A isasincase 1.6 (A, =A; =4, =A{ =0,A, — A, > 1), then A is either as in
case 1.1 or as in case 1.7. We have

5
M=3Ag=> A —3A=

{Zflzi—3zﬁ—4 < -20—4=—24, Aasincase 1.1
i=1

S Ai—3M—2<—12—2=—14, A asincase 1.7

Thus, Af —3A; < —14. It follows that the strict Dirac inequality for the second basic
Schmid module holds and thus, from the proof of theorem 2.2 we have

(A = sap) T +pl> = IA +p|*>0 Va,beNg, a+b#0.
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If A’ isasin case 1.7 (A{ = A; = Af = A) = —A{,A) > 0), then A is either as in
case 1.1 or as in case 1.4. We have

XS:JL’ 3 Zleki—fi?hﬁ—4<—20—4:—24,kasincasel.l
i1 i ° Z?:lxi_37%—2<—14—2=—16,lasincasel.4

Thus, 3, A/ — 34, < —12. It follows that the strict basic Dirac inequality holds.
If A" isasincase 1.8 (Al =A; =A; =24 =A{ =0), then A is asin case 1.1. We
have

5 5
—3A6=> M =326= Ai—3A—4<-20—4=-24

i=1 i=1

Thus, A{ > 8 > 2. The strict Dirac inequality holds for the second basic Schmid
module.
It follows from theorem 2.1 that

A =sap)t +p> = A +p|>>0 VabeNy a+b#0. O

THEOREM 2.3. (Case 3) Let A be the highest weight as in Case 3, i.e., (A1, A2, A3,
A4) #(0,0,0,0) such that strict basic Dirac inequality holds. Then

(2 =sap)" +pI> =12 +p|*> >0 Va,beNo,(a,b) # (0,0).

Proof. Let A be as in Case 3, and let us assume that the strict basic Dirac inequal-
ity holds. First we will prove that in this case we have

1A =s05)" +pI? =2 +p|>>0 VbeN. 2.1)

Let us denote A’ = (A — ;). We have already proved that if A is in Case 3 and the
strict basic Dirac inequality holds, then the strict Dirac inequality also holds for s;. So
we have

12" +pI? > A +p]*.

Let us assume that b > 1. Let w € W; be such that A — sy = w(A —s3)™. From Lemma
1.1 we have

1A =s05)" +plI> =X —s2=505-1)" +p* = |(WA —52)" —50,-1)" +p]I*
> (A =s52)" —s0p-1)" +plI> = (A" = s05-1)" +pl*-

It follows from the last two inequalities that
1A =s05)"+pI> =12 +pIP > (A" =s0p-1)" +pIP = IA"+p|> ¥b>1 (2.2)
If A/ =0 for i =1,2,3,4,5, then it follows from lemma 2.1 that

12 =s0p-0)" +pl2 > A" +p]?, Vb >1,
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and it follows from (2.2) that

12 =s06)" +pl> =2 +p|*>0, ¥b>1.
Since [|[A'+p||> > |A +p]|?, we have

12 = s05)* +pIP— [A+p]> >0, WbeN.

If (A,A5,A5,A4,AL) # (0,0,0,0,0) and if b > 2 then it follows from lemma 2.1 and
from (2.2) that

12" =s05-1)* +pI2 = A" +pl* > (A" =s05-2)" +p[> ~IA" +plI?,
where 1" = (A’ — )™ . By induction, it follows
12 =s0p)" +pl> =2 +p[>>0 VbeN.

Now we will prove that if A is as in Case 3, and the strict basic Dirac inequality
holds, then

12 =sap)" +pI> =12 +p|*> >0 Va,beNo,(a,b) # (0,0).
Let us denote A = (A4 —s;)". We have
12 +pl?> 1|12 +p]

Letus assume that a > 1 or a= 1, b > 0. Let w € W be such that A —s; = w(A —s)T.
It follows from Lemma 1.1 that

1A = s05)* +PIP = (A 51— 50m16)* +pIP = |05A = 51)* = 50m1.)* +pI
> (A =51)" = suc1)* +pI2 = (A =s5010)* +pI-

It follows from the last two inequalities that
1A =sap)" +pIP =12 +pI> > (A =sa-1p)" oI = IR +pl7.  @23)
If 4; =0 for i = 1,2,3,4, then it follows from lemma 2.2 that
12 = sa-15)" +pI* > 12 +plP,
and it follows from (2.3) that
(A =sap)" +pl>— A +p>>0 Va,beNy, atb#0.

If (A1,2,23,44) # (0,0,0,0) and a > 1, then it follows from lemma 2.2 and from
(2.3) that

12 = sa-16)" +pI> =12 +PIP > |2 = sa2)" +p > = |2+,
where A = (A —s;)*. By induction and by (2.1), it follows that
1A =sap)*+pl? =12 +p[* >0 Va,b€No,(a,b) #(0,0). O
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2.2. Dirac inequality for e¢;

The basic Schmid ¢-modules in S(p~) have lowest weights —s;, i = 1,2,3, where

S1 :ﬁl = (OaOaOaOaOaOa_171)7
$2 :ﬁ1+ﬁ2: (OaOaOaOalala_171)a
$3 :ﬁ1+ﬁ2+ﬁ3 = (070707070727_171)~

The highest weight (g, K)-modules have highest weight of the form

A‘ = (11,12,3,3,2,4,15,2,6,3,7,—2,7), |A‘1‘ g A‘Z g AG g A‘4 g A‘S7
Ai—ijZ, 2&1'627 1<l<]<5
5

5
%(Ag—k7—%+2(—1)"("))t,- €No, Y _n(i) even,

i=1 n=1

which can be written more shortly as

A‘ = (11,12,3,3,2,4,15,2,6,3,7,—2,7), |A‘1‘ g A‘Z g AG g A‘4 g A‘S7
Ai—ijZ, 2%5627 1<l<]<5

A—A1—A—As—A— A3 — A+ A1) € No.

N | =

In this case

17 17
=10,1,2,3,4,5,———,— | .
p (aaaaaa 2a2>

The basic necessary condition for unitarity is the Dirac inequality
1A =s0)" +plP =12 +pl.
As before, we write (4 —s1)T = A — 1. Then the Dirac inequality is equivalent to
2(n. A+p) <|nl*
We have
A—s1= (A1, A, A3, A4, A5, A6, A7 + 1, — A7 — 1)

17 17
wbp= (Mt LAk 24 35 40+ 50— a1 )

There are two basic cases.

Case 1.1: %(Ag—?ﬁ—lﬁ—%—?u—lg—kg—l—kl) > 1. In this case y = 5.
The basic inequality is equivalent to

A7 > 8.
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Case 1.2: %(x,g—1,7—&6—15—14—13—124-&1) = 0. We have
Sal (2,1,2,2713,x4,2,5716,2,7+ 17_x’7_ l)

1 1 1 1 1 1 1 1
= (AI‘FE,M— E’M - 5,14— E,AS— E,lﬁ— 5;174'5,—17— 5) .
In this case we have eight subcases.

Case 1.2.1: %(2,8—17—16—15—14—13—12-}-11) =0, 4 <.
In this case

1 1 1 1 1 1 1 1
A—s) =M+ b—=MB—=M—=As— =, A— = A1+=,—A7— =
( Sl) < 1+27 2 27 3 27 4 27 5 272'6 27 7+27 7 2)
and y; = %(—17 1,1,1,1,1,—1,1). The basic inequality is equivalent to

15
A«7 2 7

Case 1.2.2: %(x,g—1,7—&6—15—14—A3—12+11) =0, =L < As3.
In this case

1 1 1 1 1 1 1 1
— ¢ )T = _ — _ i i i e — =
(A‘ Sl) _<2’2 2,;\,2+2,A«3 2aA4 2aA‘5 272'6 272’7—’_27 A‘ 2)

and y; = %( —1,1,1,1,1,—1,1). The basic inequality is equivalent to

=1

Case 1.2.3: %(x,g—1,7—&6—15—14—A3—12+11) =0,0< =L =MA<
A
In this case

(=51 = (=gl 3hat 3. A= 3As— 5 de= gt 5ok 3

1 1 1 1 1 1 1 1
2’ 2’ 2

and 7 = 3(1,1,—1,1,1,1,—1,1). The basic inequality is equivalent to

/1727.

Case 1.2.4: %(2,8—17—16—15—14—13—124-11) =0,0=A4 =L =43<
Aa.
In this case

111 1 1 1 1 1
_ +_ (2 2 = _ _ _ = [ PR
(A —s1) (2,2,2,14 2,15 2,7% 2717-1-2, A 2)
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and y; = %(—17—1,—17 1,1,1,—1,1). The basic inequality is equivalent to

A7 > 6.

Case 1.2.5: %(lg—)L7—)%—)L5—)L4—)Lg—)t,2+)tl) =0,0< A ===
7L4<7L5.
In this case

1

1 1 1 1 1 1
M= At pids= 306 St 3.~ 1)

1
)T = __ __
(A —s1) (M S =3, :

and y; = %(1, 1,1,—1,1,1,—1,1). The basic inequality is equivalent to

A7 > 6.

Case 1.2.6: %(lg—)L7—)Lﬁ—7L5—)L4—)Lg—)Lz+)Ll):O, 0=A = =23 =
A4 < As. We have

50515827815834»84 <§7_§7_§7_§72’5 - 572'6_ 572’74_ 5’_2/7 - 5

:(OaOaOaOaA‘S - 1,16— 15177_17)~

1 1 1 1 1 1 1 1)

In this case
(A —s1)" =(0,0,0,0,A5 — 1,46 — 1,47,—17)
and y = (0,0,0,0,1,1,0,0). The basic inequality is equivalent to
A > 4.

Case 1.2.7: %(2,8—17—16—15—14—13—124-11)ZO, O<M=A=A3=
g =As.
In this case

1 1 1 1 1 1
(A—s1)" = (%-5,15—

1 1
—As— = As— = As+ =, A — =, A7+ =, A7 — =
2a 5 2a 5 2a 5+272'6 27 7+27 7 2)
and y = %(1, 1,1,1,—1,1,—1,1). The basic inequality is equivalent to

11
A«7 2 7
Case 1.2.8: %(2,8—17—16—15—14—13—124—11)ZO, O=A == =
A4 = As. We have

1 1 1 1 1 1 1 1
5857815111582+83s£4+85 <§,—§,—§,—§,—§,%— 572’74_ 57_1‘7 - _>

2
:(0,0,0,0, 1,16— laA‘77_A‘7)'



746 P. PANDZIC, A. PRLIC, V. SOUCEK AND V. TUCEK

In this case
(A’ _S1)+ = (07070707 1716 - 17177_17)

and v, = (0,0,0,0,—1,1,0,0). The basic inequality is equivalent to
A7 > 0.
Now we are going to see in which cases the Dirac inequality holds for s, . We have
A—s2=(A1,A2,A3,A4,45s — L, Ag — L, A7+ 1,— 27 — ).
We write (A —s2)™ = A — ¥%. Then the Dirac inequality for s,
I =2 +pI2 > 1A +pl?

is equivalent to
2(p.A+p) <l

There are seven cases.

Case 2.1: As > A4. In this case }» = s, . The Dirac inequality for s, is equivalent
to
As+Ag— 217+ 24 < 0.

Case 2.2: A5 = A4 > A3. In this case
(2' —S2)+ = (2,1,%2713,2,5 - 171'572'6 - 1717 + 17_x’7 - l)
and 9 = (0,0,0,1,0,1,—1,1). The Dirac inequality for s, is equivalent to

As+ g — 247 +23 < 0.

Case 2.3: A5 = A4 = A3 > A, In this case
(2' —S2)+ = (2'17A'27A'5 - 1,%5,2,5,2,6 - 1717 + 17_x’7 - l)
and v = (0,0,1,0,0,1,—1,1). The Dirac inequality for s, is equivalent to

As+ g — 247 +22 < 0.

Case2.4: As = Ay = A3 = Ay > |A4|. In this case
(2’ —52)+ = (1’172’5 - 172'5a1572'572'6 - laa‘7 + la_2’7 - 1)
and v = (0,1,0,0,0,1,—1,1). The Dirac inequality for s, is equivalent to

As+ A —2A47+21 <0.

Case 2.5: A5 = A4 = A3 = A, = A; > 0. We have two subcases:
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Case2.5.1: is=A=3=A=21,>0, %(/11—7L2—7L3—7L4—7L5—26—7L7+7Lg)
> 1.
In this case

(A —s52)" = (As — 1,45, 45,45, 45,6 — L, A7+ 1,—A; — 1)
and v = (1,0,0,0,0,1,—1,1). The Dirac inequality for s, is equivalent to
As+ A¢ —247+20 < 0.
Case2.52: As=A=23=2 =1 >0, %(11—12—13—14—15—%—174—18)
=0. We have
Soy (As —1,As5,45,45, 45,46 — 1, A7 +1,—47— 1)

1 1 1 1 1 3 1 1
(as—tas—ia—ia— il -t
(AS 2,2,5 va'S va'S 27 5 27 6 27 7+27 7 2)

In this case

1 1 1 1 3 1 1
_ [ _ _ _ _ _z B -
2715 2715 2715 272'6 27A'7+27 7 2)

1
(h=s2) = (s 3 -
2
and y = %(1, 1,1,1,1,3,—1,1). The Dirac inequality for s, is equivalent to

As+ g —2A7+19 < 0.

Case 2.6: As = Ay = A3 = Ap = —A; > 0. In this case
(A’ —S2)+ = (_A’S + 1715,2,5715,2,5,2,6 - 17A'7+ 17_x'7 - 1)
and 9 = (—1,0,0,0,0,1,—1,1). The Dirac inequality for s, is equivalent to

As+ g — 247 +20 < 0.

Case2.7: As = Ay = A3 = A, = A1 = 0. We have two subcases:

Case271.1: As=A=A3=A=21,=0, %(/11—7L2—7L3—7L4—7L5—26—7L7+7Lg)
> 1.
In this case

(A‘ —52)+ = (07070707 172'6_ 17;\’7"_ la_2'7 - 1)
and 9 = (0,0,0,0,—1,1,—1,1). The Dirac inequality for s, is equivalent to

As+ g — 247+ 16 < 0.
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Case272: is=A=A3=A=21,=0, %(/11—7L2—7L3—7L4—7L5—26—7L7+7Lg)
= 0. We have

S£5_84Sg4+85 (0,0,0,0, _1716 - 171’7 + 1, _AJ - l)
=(0,0,0,0,1,A¢ — 1,47+ 1,— 47— 1)
SoySey—e) Sezte450 (OaOaOaOa laa‘ﬁ - laa‘7 + 17 _A‘7 - 1)
= (07070707072'6 - 27A'77 _2'7) .
In this case
(A‘ - S2)+ = (0,0,0,0,0,A«ﬁ - 2al77 _17)
and 9 = (0,0,0,0,0,2,0,0). The Dirac inequality for s, is equivalent to

As+ A6 —2A7 +8 <0,

i.e. A,7 > 2.
Now we are going to see in which cases the Dirac inequality holds for s3. We have

A’ —83 = (11712,2,3714715,2,6 _2717 + 17_x’7 - 1)7
and therefore (A —s3)" = A — s3. Then the Dirac inequality for s3
(A =s3)"+pl>= 2 +p]?
is equivalent to
2 (s3,A+p) <53,
i.e.,
As—A7+12<0.

It is easy to see that in cases 1.1,1.2.1,1.2.2,1.2.3,1.2.4,1.2.5 or 1.2.7 if the Dirac
inequality holds for s; then it also holds for s, . Let us assume that the Dirac inequality
holds for s;. We have

As+Ae <AL — A — A3 — Ay — 247 < =24,

ie. 1
— =22,

2
and therefore the Dirac inequality obviously holds for s, if A is in one of the cases
2.3,2.4,2.5,2.60r27. If A isin case 2.1 or in case 2.2 and also in one of the cases
1.1,1.2.1,1.2.2,1.2.3,1.2.4 or 1.2.5 (if A is in case 2.1 or 2.2, then A can not be in
case 1.2.7) and the Dirac inequality holds for s; then A7 > 6 and therefore

As+Ag — 247 < —4A; < (—4)

As+ A — 227 < —4d7 < (—4)-6 = —24,

so the Dirac inequality holds for s,.
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Furthermore, in cases 1.1,1.2.1,1.2.2,1.2.3,1.2.4,1.2.5 or 1.2.7 if the Dirac in-
equality holds for s; then it also holds for s3, since Ag <A —A—A3— Ay —As — 247 <
—2A7 and therefore

11
Ao =l +12< =327 +12< (=3)-5 +12<0.

Therefore, we have three basic cases:

Case 1: A;=0,i€{1,2,3,4,5},A¢ = —2A7 (case 1.2.8)
In this case the basic Dirac inequality can be written as

A7 = 0.

The Dirac inequality for the second basic Schmid module is equivalent to
A7 = 2.

The Dirac inequality for the third basic Schmid module is equivalent to
A7 = 4.

It is clear that if the Dirac inequality holds for the third basic Schmid module, then it
automatically holds for the first and the second basic Schmid module.

Case?2: A;=0,i€{1,2,3,4}, A5 >0, —As — A¢ — 247 = 0 (case 1.2.6)
In this case the basic Dirac inequality can be written as

A7 = 4.
The Dirac inequality for the second basic Schmid module is equivalent to
A7 = 6.
The Dirac inequality for the third basic Schmid module is equivalent to
Ae—A7+12<0.

If the Dirac inequality holds for the second basic Schmid module, then it automatically
holds for the first and the third basic Schmid module, since

A=A+ 12=—2As =347, +12< =34, +12< —18+12<0.
Case 3: A is of type 1.1,1.2.1,1.2.2,1.2.3,1.2.4,1.2.5 or 1.2.7. The Dirac in-
equality for the second and the third Schmid module is automatically satisfied if the

basic Dirac inequality holds.
Let

Sab.c = as| +bsy +cs3
=(0,0,0,0,b,b+2¢c,—a—b—c,a+b+c), a,b,ce Ny, a+b+c>0

be a general Schmid module.
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THEOREM 2.4. (Case 1) Let A be the highest weight of the form A = (0,0,0,0,0,
_21'772’77 _A'7)

1. If A7 > 4 then A satisfies the strict Dirac inequality for any Schmid module s, .,
ie.

(A =Sape)™+plI* > A +p|?, ab,c €Ny, (a,b,c)# (0,0,0)
2. If 2 < A7 <4 then
(A =s3)"+pl> <2 +p]?

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than sj3.

3. If0< A7 <2 then
1A =s52)" +pl> < |2 +p]?

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than s .

4. If A7 <0 than the basic Dirac inequality fails.

Proof.
1. We have
A —S4pc=1(0,0,0,0,—b,—217—b—2c,As+a+b+c,—A3—a—b—c)

Ses—e1So Sey—e1Seq+e55e)+e350 Ses—e45e4+ €5 ()L - Su,h,c)

=(0,0,0,0,a,—247—a—2b—2¢c,A7+c¢,—A7—¢)
and therefore
(A =5ape)" =1(0,0,0,0,a,—2A7 —a—2b—2c¢, A7+ c,—A7 —¢)
=1-(0,0,0,0,—a,a+2b+2c,—c,c).
Then the strict Dirac inequality
12 =sap.e)™ +pl? > 12 +p|?

is equivalent to
| 2

)

2(Yaper 2+ P) < Vape

where 7,5 = (0,0,0,0,—a,a+2b+2c¢,—c,c) and this inequality is equivalent
to

2(—2A7(a+2b+3¢) +a+ 10b+27¢) < a® + (a+2b +2¢)* 4 2.
Since A7 >4, —2A7(a+2b+3c¢) < —8(a+2b+3c). We see that the inequality
2(—8(a+2b+3c)+a+10b+27c) < a® + (a+2b+2¢)* +2¢2

holds for all a,b,c € Ny,a+ b+ c # 0. So the strict Dirac inequality holds for
any Schmid module s, .
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2. If 2 < A7 < 4 then
[(A—s3)"+pll> <2 +p]*

Since the level of s; is equal to i where i € {1,2,3}, and the level of as| + bs, +
cs3 is equal to a+2b + 3c, the only Schmid modules of strictly lower level than
s3 are s1,s7 and 2s; . For s;,i € {1,2}, we have A7 >2 >0, i.e.

12 =si)" +plI* > 12 +pl.

We have (A —2s1)" =4 —(0,0,0,0,—2,2,0,0). Therefore, the strict Dirac in-
equality for 2s; is equivalent to A; > —% , which is true since 2 < A7 < 4.

3. If 0 < A7 <2 then
I(A—=s2)"+pl? <2 +p]

Since the level of s, is equal to 2 and the level of as; + bsy 4 cs3 is equal to
a+2b+3c, the only Schmid module of strictly lower level than s, is s;. For s;
we have A; > 0, which implies

12 =s1)"+p[ > [IA+p|.

4. If A7 < 0 than the basic Dirac inequality obviously fails since in Case 1 the basic
Dirac inequality is equivalentto A; > 0. [

THEOREM 2.5. (Case2) Let A be the highest weight of the form A = (0,0,0,0, As,
Ae, A7, —A7) such that As >0 and —As — A — 247 = 0.

1. If 27 > 6 than A satisfies the strict Dirac inequality for any Schmid module
Sabc» L€

1A =sape)™+pI> > 1A+, a,b,c € No, (a,b,¢) # (0,0,0)
2. If 4 < A7 <6 then
I(A =)™ +pl> <2 +p|

and the strict Dirac inequality holds strictly for any Schmid module of strictly
lower level than s, .

3. If A7 < 4 than the basic Dirac inequality fails.

Proof.
1. We have
A —54pc=1(0,0,0,0,A5 —b,A¢—b—2c,As+a+b+c,—Ay—a—b—c)

SoySez+e45e 150y (7L - Sa7b7c)

=(0,0,0,0,As—a—b,As—a—b—2¢c,A\7+b+c,—A;—b—c)
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and therefore

(A —Sape)”
(0,0,0,0,As —a—b,Asc—a—b—2c,A\7+b+c,—A—b—c), As >a+Db
(0,0,0,0,—As+a+b,Ag—a—b—2c, Ay+b+c,—A;—b—c), b < As < a+b
Soy Sey+eySey—e15ay (0,0,0,0,—As+a+b,Ag—a—b—2c¢, Ay+b+c,—A7—b—c)
=(0,0,0,0,a,A5+A¢ —a—2b—2¢c,As+ A7+c,—As— A7 —c), As < b
A —(0,0,0,0,a+b,a+b+2c,—b—c,b+c), As >a+Db
=¢A—(0,0,0,0,2As —a—b,a+b+2c,—b—c,b+c),b<As<a+b

A —1(0,0,0,0,As —a,—As+a+2b+2c,—As—c,As+c), As < b.

Then the strict Dirac inequality
1A = sape)* +p I > 12 +p|?

is equivalent to

—2As¢ —2A7(a+2b+3c) +9a+26b+27c
<(a+b)>+2(a+b)c+2c+ (b+c)?,

As>a+b

—2Asc —2A7(a+2b+3c) +8As+a+ 18b+27c
<(a+b)?+2(a+b)c+2c+ (b+c)?,

b<As<a+b

—2Asc —2A7(a+2b+3c) + 16As+a+ 10b+27¢
<a®+2a(b+c)+c*+2(b+c)?,

2,5 <b

Let us assume that A7 > 6. Since As > 0, to prove the strict Dirac inequality it is
enough to prove

—3a+2b—9c< (a+b)*+2(a+b)c+2c3+ (b+c)? As >a+b
—3a+2b—9c< (a+b)*+2(a+b)c+2c*+ (b+c)’, b<As<a+b
—1la+2b—9c < a®+2a(b+c)+c*+2(b+c)* As < b

This is true for all a,b,c € Ny, (a,b,c) # (0,0,0). So the strict Dirac inequality
holds for any Schmid module s .

2. If 4 < A7 < 6 then
(A =s2)* +pl* <2 +p]*

Since s7 is the only Schmid module of strictly lower level than s, and for s; we
have A; > 4, it follows that

12 =s1)"+p[? > 1A +p|.
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3. If A7 <4 than the basic Dirac inequality obviously fails since in Case 2 the basic
Dirac inequality is equivalentto A; > 4. [

LEMMA 2.3. Let A be a highest weight such that
1A =s3)"+pl>> 12 +pl*

Then
1A' =s3)"+pl>> |2 +p]?,

where ' = (A —s3)".

Proof. We have
AM=A—-s3)" =4 —s3= (41,420,243, A, 45, 46 — 2,47+ 1,— A, — 1).
The strict Dirac inequality
1 =53 +p 2> 1A'+ pIP?

is equivalent to
Ag—Ap+12<0

and this is equivalent to
e —A7+9<0,

which is true since
Ao —A+12<0. O

LEMMA 2.4. Let A be a highest weight such that (A1,22,23,A4,A5) = (0,0,0,0,0)
and
1A =s2)* +p[>> 2 +p]>
Then
[ —s0p0)* +pIP > [A+p|? VbeN

Proof. We have A —sg0=(0,0,0,0,—b,As —b,A7+b,—A7; —b). Now we have
two cases.

Case 1: —Ag—2A7—2b > 0.
In this case

(A —s050)" =(0,0,0,0,b,A6 — b, A7 +b,—A7 —b) = L — (0,0,0,0,—b,b,—b,b).
The strict Dirac inequality
1A =s050)" +pI7 > 1A +p]

is equivalent to
2(y, A +p) < |7,
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where Y= (0,0,0,0,—b,b,—b,b) and the last inequality is equivalent to
Ao —2A7+ 18 < 20.

Since in this case —A¢ — 247 —2b >0, then A is not in case 2.7.2.. Therefore, A isin
case 2.7.1. Since the strict Dirac inequality holds for the second basic Schmid module,
we have Ag —2A7 4+ 16 < 0 and therefore Ag — 247+ 18 <2 < 2b.

Case2: —Ag—2A7—2b <.

Then

Sang3+g4S£2_£1Sa1(O,O,O,O,b,xﬁ—b,xq—f—b,—AJ—b)

Ae+2A7 Ag As As

= _ — — —2 _— —
(0’070?07 2 ) 2 117 b7 27 2 b

)
2A A
(A —s050)" = (0,0,0,0,—#,%—17—217,—%,76) =17,

where 7 = (0,0,0,0, % + A7, % +A7+2b,A7+ %, A7 — %) . The strict Dirac in-
equality

1A =s0p0)" +pI> > 1A +p]?
is equivalent to

—2(&6+2A7)<b<ﬁ,7—%+b—5>. 2.4)

Since in this case we have —Ag — 247 < 2D, it is enough to prove
A
4b<b(7t7—76+b—5).

The last inequality is equivalent to

Ae—2A7+ 18 < 2b.
If A isincase 2.7.1, then we have

A =227+ 16 <0,

since we assumed that the strict Dirac inequality holds for the second basic Schmid
module. Therefore
Ao —2A7+ 18 <2 < 2b.

If A isin case 2.7.2, then we have Ag+2A7 = 0, so inequality (2.4) is equivalent to
A«ﬁ — 22,7 <2b—10.

Since we assumed that the strict Dirac inequality holds for the second basic Schmid
module, we have
2'6 —2A7 < -8
and therefore
Ae—2A7<2—-10<2b—10. O
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LEMMA 2.5. Let A be a highest weight such that (A1,2,,3,A4,As) # (0,0,0,0,0)
and

I(A—=s)"+pl>> 2 +p]
Then

1A' =s2)* +pl* > 2" +pl,
where ' = (A —s3)". If Al =0 for i =1,2,3,4,5, then

12 = s050)" +pl> > IA"+pl?, VbEN.

Proof. We have

(A1, A2, A3, A4, As — L, As — 1,47+ 1,—A7— 1), A asin case 2.1
(A1, A2,A3, As — 1, A5,46 — 1, A7+ 1,—A7 — 1), A as in case 2.2
(l 12,2,5—1 15,2,5,16—1 2,7—|-1 —17—1) A asin case 2.3
A= (117/15 1,45,45,45,4¢ — 1,47 +1,—A7 — 1), A as in case 2.4
(As — 7L57/l5,7t5,7t57/16 1 7L7+1 —A7—1), L asincase 2.5.1.
(As— , —,7L5—§,7L5— A 2,7L6 2,7L7+27 —A7— ) A as in case 2.5.2.
(— 7L5+1 As,As, A5, As, Ag — 1,7L7+1,—7L7— 1), A asin case 2.6

Therefore,

As+Ag—2A7 —4, A as in case 2.1

AL+ Al —20 =
st =24 As+Ag—24;—3, A asin case 2.2,2.3,2.4,2.5.1,2.5.2,2.6

Since the strict Dirac inequality holds for the second basic Schmid module, we have

—28, A as in case 2.1

—26, A as in case 2.2

—25, A as in case 2.3

—24, A as in case 2.4

—23, A asincase 2.5.1 or 2.6
—22, A asin case 2.5.2..

M-l <

It is clear that
1A' =s2)"+plP> 2 +p]?

if A isin one of the cases 2.1,2.2,2.3 or 2.4. If A is asin case 2.5.1 or 2.6, then A’
is not as in case 2.1 and therefore

(A" = s2)"+plI> > |4 +pl.
If A isasincase 2.5.2,then A’ is not as in case 2.1 or 2.2 and therefore

12" =s2)" +pl> > A"+l
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So the strict Dirac inequality holds for the second basic Schmid module for the
weight A/,
If A{ =2, = A =A) =A{ =0, then it follows from lemma 2.4 that

I = 5050)" +pIP > X' +p|? VbeN. O
LEMMA 2.6. Let A be a highest weight such that A is as in case 3 and
1A =s)" +pl*> |2 +pl

Then
1A =s)T+pl>> 2 +p]?,

where A' = (A —s1)". If A is as in Case 1 or Case 2, then

1A = sape) ™ +pIP> |A +pl% Va,b,c€Ny, a+b+c#0.

Proof. We have

(A1, 22,23, A4, As, A, M—l—l —7L7 1), A asincase 1.1

(/ll—i—z,?tg 2,7L 2,7L4 7. A 5,%—%,%7—%%7—%7—%) A as in case 1.2.1

(A— 2,2,24-2,2,3 2,2,4 2,2, é,lﬁ é,?m—é, Ag— %) A as in case 1.2.2

=1 (A3— 2,7L3 2,7L3+2,7L4 2,7L ,7% 7L7+2,—7L —l) A asin case 1.2.3

( 7% 27/14 27/1 27/16 27174—2, /17 ) A asin case 1.2.4

(A4 —2 7L4 2,7L4 2,7L4+2,7L5 2,7L6 2,7L7+27 —A7— ) A asin case 1.2.5
(As— 5 2,7L5 ,7L 2,154—2,16 7L7+2, —A7— )7La51ncase127

Since
A —=s)"+pl>> 2+,
it follows that
9, A asincase 1.1
8, A asincase 1.2.1
7+ %, A as in case 1.2.2
Ay > <7, Aasincase 1.2.3 (2.5)
6+ %, A asin case 1.2.4
6+ %7 A asin case 1.2.5
6, A asincase 1.2.7

It is clear that
1A' =s1)"+plP> 2 +p]?

if A isasincase 1.1 or 1.2.1. If A is as in case 1.2.2, then A’ is not as in case 1.1.
Also if A is as in case 1.2.3, then A’ is neither as in case 1.1 nor as in case 1.2.1. If
A isasincase 1.2.4 or 1.2.5, then A’ is not in any of the cases 1.1,1.2.1,1.2.2. If A
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isin case 1.2.7, then A’ is in none of the cases 1.1,1.2.1,1.2.2,1.2.3. It follows from
(2.5) that
1A =s)" +pl*> A +p|

Furthermore, it follows from (2.5) that if A is as in Case 3, then M > 6. Therefore, it
follows from the proof of theorem 2.4 and the proof of theorem 2.5 that if A" is as in
Case 1 (case 1.2.8.) or as in Case 2 (case 1.2.6.), then

IA =sape)™+pI>> 1A +p|* Va,b,c€No, a+b+c#0. O

THEOREM 2.6. (Case 3) Let A be the highest weight as in Case 3 such that the
strict basic Dirac inequality holds. Then

(A =S$ape)™+plI* > A +p|?, ab,c €Ny, (a,b,c)# (0,0,0)

Proof. Let A be as in Case 3, and let us assume that the strict basic Dirac inequal-
ity holds. First we will prove that in this case we have

12 =s0p.0)" +pI> = IA+p|>>0 VbeN. (2.6)

Let us denote A’ = (A —s52)". We have already proved that if A is in Case 3 and the
strict basic Dirac inequality holds, then the strict Dirac inequality also holds for s;. So
we have

12"+l > |12+ 2.7)

If Ai =4, = A3 = 44 = As = 0 then (2.6) obviously follows from Lemma 2.4. Let us
assume that (A1,A2,43,44,45) # (0,0,0,0,0). From Lemma 2.5 it follows that
1A =s2)"+pl* > 2" +pl> (2.8)

Let us assume that b > 1 ((2.6) obviously holds for b =1 since 5050 = 52). Let
w € We be such that A — s, = w(A —s5,)". From Lemma 1.1 we have
A —s2—S0p-10)" +pl|?
w(A —5)" —s0p-10)" +pI
(A —s2)" =s0p-10)" +pl
A —s0p-10)" +pl

(A —s0p0) " +pl* =l
=
> ||

It follows from the last inequality and (2.7) that

—~ o~ —~

1A =s5050)" +pIP =2 +pI* > (A" =s05-10)" +pI7 =12 +pl*. (2.9
If A/ =0 for i =1,2,3,4,5, then it follows from Lemma 2.4 and (2.8)
1A'= s05-10)" +pII> > |14 +p|*

and by (2.9)
(A —s050)"+pIIP =12 +p|*> > 0.
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If (A{,A5,A,24,A%) # (0,0,0,0,0) and b =2, then (2.6) follows from (2.9) and
(2.8).
If (A, A5,A4,A4,A%) # (0,0,0,0,0) and b > 2, then we have
1A = s05-10)" + Pl = 1A +p[> > (A" =s05-20)" +plI* = 12"+ plI?,
where 1" = (A’ —s,)™ . By induction, it follows that
IA = s050)" +pIP— A +p|2 >0 WbeN.
Now we will prove that
I(A=s0pe)" +pIP =2 +p|>>0 Vb,ceNg, b+c#0.  (2.10)

Let us denote A" = (A —s3)*. Since A is in Case 3, it is easy to check that A" is
also in Case 3. We have already proved that if A is in Case 3 and the strict basic Dirac
inequality holds, then the strict Dirac inequality also holds for s3. So we have

1A +p[ > |2 +p]
Let w' € W, be such that A —s3 = w/(4 — s3)". From Lemma (1.1) we have

1A =s0pe)" +p1? =X = s3=s0pc-)" +p]?
=W (A =s3)" =sope-1)" +pl?
> (A =s3)* =sope-1) +pl
= (A" = sope—1)" +pI7,
if ¢ > 1. From the last two inequalities it follows that

1A =s0pe) +p 1P =12 +pI? > (A" =s0pe-1)* +plI* = [IA"+p|?
Vb,c € No,b+c#0 (2.11)

Now (2.10) follows from Lemma 2.3, (2.2) and (2.6) by induction on c.
Now we will prove that if A is in Case 3, and the strict basic Dirac inequality
holds, then

(A —saﬁbﬁc)Jr —|—p||2— |4 —i—pH2 >0 Va,b,c €Ny, (a,b,c)+#(0,0,0).

Lat us assume that a > 0 (if a =0, the last inequality is exactly (2.10)). Let us denote
A= (A —s1)". We have .
1A +pl*> 1A +p]

Let w € Wy be such that A —s; = w(A — ;)" . From Corollary 2.9 we have
12 = sape)t +pl? =

=

> |

=

A —s1—Sa1pe) +pl?
WA —s1)" —sa160) " +p?
A —s1)" —sac10)" +p]?
A —Sa- 1be) Pl

—~ o~ —~
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From the last two inequalities it follows that
1A =supe) +PIP =12 +p P > | =sa100) +PIP = A +pl%  (2.12)
If A isin Case 1 or Case 2, then it follows from lemma 2.6 that
1A= su15)" 12 > 1A+,
and from (2.12) it follows that
(A =S$ape) ™ +pI?— A +p|>>0 Va,b,c € Nyg,a+b+c#0.
If A isin Case 3 and a > 1 then it follows from Lemma 2.6 and (2.12) that

I =sam15) 1P = 1A+l > (A = sam2p.)*+pl> =12 +pIP,

where A = (i —s1)T. By induction on a and by (2.10), it follows

||(?L—sa7bﬁc)++p||2—H?H—pH2>O Va,b,c € Ny, (a,b,c) # (0,0,0). O
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