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DIRAC INEQUALITY FOR HIGHEST

WEIGHT HARISH–CHANDRA MODULES II

PAVLE PANDŽIĆ ∗ , ANA PRLIĆ, VLADIMÍR SOUČEK AND VÍT TUČEK

(Communicated by J. Pečarić)

Abstract. Let G be a connected simply connected noncompact exceptional simple Lie group of
Hermitian type. In this paper, we work with the Dirac inequality which is a very useful tool for
the classification of unitary highest weight modules.

1. Introduction

Let G be a connected simply connected noncompact exceptional simple Lie group
of Hermitian type. That means that G is either of type E6 or of type E7 . Let Θ be a
Cartan involution of G and let K be the group of fixed points of Θ . Then K/Z is a
maximal compact subgroup of G/Z , where Z denotes the center of G .

We will denote by g0 the Lie algebra of G and by k0 the Lie algebra of K . Let
g0 = k0 ⊕ p0 be the Cartan decomposition and let t0 be a Cartan subalgebra of k0 .
Our assumptions on G imply that t0 is also a Cartan subalgebra of g0 . We delete the
subscript 0 to denote complexifications.

Let Δ+
g ⊃ Δ+

k denote fixed sets of positive respectively positive compact roots.
Since the pair (G,K) is Hermitian, we have a K -invariant decomposition p = p+⊕p−
and p± are abelian subalgebras of p . Let ρ denote the half sum of positive roots for g .

We will consider λ ∈ t∗ which are Δ+
k -dominant integral ( 2〈λ ,α〉

〈α ,α〉 ∈ N ∪ {0} ,

∀α ∈ Δ+
k ). Let N(λ ) denote the generalized Verma module. From definition N(λ ) 


S(p−)⊗Fλ , where Fλ is the irreducible k-module with highest weight λ . The general-
ized Verma module N(λ ) is a highest weight module. In case N(λ ) is not irreducible,
we will consider the irreducible quotient L(λ ) of N(λ ) . Our main goal is to determine
those weights λ which correspond to unitarizable L(λ ) using the Dirac inequality. We
consider only real highest weights λ since this is a necessary condition for unitarity.

To learn more about highest weight modules see [1], [2], [3], [4], [5], [10].
The K -types of S(p−) are called the Schmid modules. For each of the Lie algebras

in Table 2, the general Schmid module s is a nonnegative integer combination of the
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so called basic Schmid modules. The basic Schmid modules for each exceptional Lie
algebra g0 for which (G,K) is a Hermitian symmetric pair are given in Table 2. To
learn more about the Schmid modules see [13].

The Dirac operator is an element of U(g)⊗C(p) defined as D =
∑

i bi⊗di where
bi is a basis of p and di is the dual basis of p with respect to the Killing form B . The
Dirac operator acts on the tensor product X ⊗S where X is a (g,K)-module, and S is
the spin module for C(p) . The square of the Dirac operator is:

D2 = −(Casg⊗1+‖ρ‖2)+ (CaskΔ +‖ρ2
k‖),

where ρk is a half sum of the compact positive roots. To learn more about the Dirac
operators in representation theory see [6], [8], [9], [7]).

If a (g,K)-module is unitary, then D is self adjoint with respect to an inner prod-
uct, so D2 � 0. By the formula for D2 the Dirac inequality becomes explicit on any
K -type Fτ of L(λ )⊗S

‖τ + ρk‖2 � ‖λ + ρ‖2.

In [3] it was proved that L(λ ) is unitary if and only if D2 > 0 on Fμ ⊗
∧top p+ for

any K -type Fμ of L(λ ) other than Fλ , that is if and only if

‖μ + ρ‖2 > ‖λ + ρ‖2.

The following theorem gives us motivation to study the Dirac inequality (see [11]
for the case of classical Lie groups):

THEOREM 1.1. Let us assume that g,ρ ,λ ,s are as in tables 1 and 2.
(1) Let s0 be a Schmid module such that the strict Dirac inequality

‖(λ − s)+ + ρ‖2 > ‖λ + ρ‖2 (1.1)

holds for any Schmid module s of strictly lower level than s0 , and such that

‖(λ − s0)+ + ρ‖2 < ‖λ + ρ‖2.

Then L(λ ) is not unitary.
(2) If

‖(λ − s)+ + ρ‖2 > ‖λ + ρ‖2 (1.2)

holds for all Schmid modules s, then N(λ ) is irreducible and unitary.

In Theorem 1.1, (λ −s)+ is the unique k-dominant Wk -conjugate of λ −s , which
means that (λ − s)+ is as in the third column of Table 2.

The proof of the above theorem requires some tools from representation theory, so
we will omit it in this paper and prove it in [12].
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In Table 1, sα (λ ) = λ − 2〈λ ,α〉
〈α ,α〉 α is the reflection of λ with respect to the hy-

perplane orthogonal to a root α , Wk is the Weyl group of k generated by the sα and
N0 = N∪{0} .

Table 1: ρ and Wk

Lie algebra ρ generators of Wk

e6 (0,1,2,3,4,−4,−4,4) sεi±ε j , 5 � i > j

e7
(
0,1,2,3,4,5,− 17

2 , 17
2

) sεi±ε j , 5 � i > j,
s 1

2 (ε8−ε7−ε6−ε5−ε4−ε3−ε2+ε1)

Table 2: The weights of basic Schmid modules and the condition for the k -highest weights
λ = (λ1,λ2, . . . ,λn)

Lie algebra basic Schmid modules highest weights

e6
s1 = 1

2 (1,1,1,1,1,−1,−1,1),
s2 = (0,0,0,0,1,−1,−1,1)

λ = (λ1,λ2,λ3,λ4,λ5,λ6,λ6,−λ6)
|λ1| � λ2 � · · · � λ5

λi−λ j ∈ Z, 2λi ∈ Z, i, j � 5.

e7

s1 = (0,0,0,0,0,0,−1,1),
s2 = (0,0,0,0,1,1,−1,1),
s3 = (0,0,0,0,0,2,−1,1)

λ = (λ1,λ2,λ3,λ4,λ5,λ6,λ7,−λ7)
|λ1| � λ2 � · · · � λ5

λi −λ j ∈ Z, 2λi ∈ Z, i, j � 5

and 1
2

(
λ8−

∑7
i=2 λi + λ1

)
∈ N0

Here λ and ρ are elements of t∗ which is identified with C
n , and εi denotes

the projection to the i-th coordinate. The roots are certain functionals on t∗ and the
relevant ones are those in the subscripts of the reflections s in Table 1, like εi − ε j or
εi + ε j .

We will frequently use the following lemma in our calculations (see [11]):

LEMMA 1.1. Let g be one of the Lie algebras listed in the above tables. Let μ
and ν be weights as in Table 2. Let w1,w2 ∈Wk . Then

‖(w1μ −w2ν)+ + ρ‖2 � ‖(μ −ν)+ + ρ‖2.

In Lemma 1.1, (w1μ −w2ν)+ is the unique dominant Wk -conjugate of w1μ −w2ν ,
which means (w1μ −w2ν)+ is as in the third column of Table 2. The proof requires
some representation theory and we leave it for [12].



732 P. PANDŽIĆ, A. PRLIĆ, V. SOUČEK AND V. TUČEK

2. Dirac inequalities

2.1. Dirac inequality for e6

The basic Schmid k-modules in S(p−) have lowest weight −si , i = 1,2, where

s1 = β1 =
1
2

(1,1,1,1,1,−1,−1,1),

s2 = β1 + β2 = (0,0,0,0,1,−1,−1,1).

The highest weight (g,K)-modules have highest weights of the form

λ = (λ1,λ2,λ3,λ4,λ5,λ6,λ6,−λ6), |λ1| � λ2 � λ3 � λ4 � λ5,

λi −λ j ∈ Z, 2λi ∈ Z, i, j ∈ {1,2,3,4,5}
In this case

ρ = (0,1,2,3,4,−4,−4,4).

The basic necessary condition for unitarity is the Dirac inequality

||(λ − s1)+ + ρ ||2 � ||λ + ρ ||2.
As before, we write (λ − s1)+ = λ − γ1 . Then the Dirac inequality is equivalent to

2〈γ1 |λ + ρ〉� ‖γ1‖2.

We have

λ − s1 =
(

λ1− 1
2
,λ2 − 1

2
,λ3− 1

2
,λ4− 1

2
,λ5 − 1

2
,λ6 +

1
2
,λ6 +

1
2
,−λ6− 1

2

)
λ + ρ = (λ1,λ2 +1,λ3 +2,λ4 +3,λ5 +4,λ6−4,λ6−4,−λ6 +4)

There are eight cases.

Case 1.1: λ1 + λ2 � 1. In this case γ1 = s1 . The basic inequality is equivalent to

5∑
i=1

λi +20 � 3λ6.

Case 1.2: λ2 = −λ1 , λ3−λ2 � 1. In this case γ1 = 1
2 (−1,−1,1,1,1,−1,−1,1) .

The basic inequality is equivalent to

5∑
i=1

λi +18 � 3λ6.

Case 1.3: λ3 = λ2 =−λ1 , λ2 > 0, λ4−λ2 � 1. In this case γ1 = 1
2 (−1,1,−1,1,1,

−1,−1,1) . The basic inequality is equivalent to

5∑
i=1

λi +16 � 3λ6.
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Case 1.4: λ3 = λ2 = λ1 = 0, λ4 � 1. In this case γ1 = 1
2(1,−1,−1,1,1,−1,−1,1) .

The basic inequality is equivalent to

5∑
i=1

λi +14 � 3λ6.

Case 1.5: λ4 = λ3 = λ2 =−λ1 , λ2 > 0, λ5−λ2 � 1. In this case γ1 = 1
2(−1,1,1,

−1,1,−1,−1,1) . The basic inequality is equivalent to

5∑
i=1

λi +14 � 3λ6.

Case 1.6: λ4 = λ3 = λ2 = λ1 = 0, λ5 −λ2 � 1. In this case γ1 = 1
2(−1,−1,−1,

−1,1,−1,−1,1) . The basic inequality is equivalent to

5∑
i=1

λi +8 � 3λ6.

Case 1.7: λ5 = λ4 = λ3 = λ2 = −λ1 , λ2 > 0. In this case γ1 = 1
2(−1,1,1,1,−1,

−1,−1,1) . The basic inequality is equivalent to

5∑
i=1

λi +12 � 3λ6.

Case 1.8: λ5 = λ4 = λ3 = λ2 = λ1 = 0. In this case γ1 = 1
2 (1,−1,−1,−1,−1,−1,

−1,1) . The basic inequality is equivalent to

5∑
i=1

λi � 3λ6,

i.e. λ6 � 0.
Now we are going to see in which cases the Dirac inequality holds for s2 . We have

λ − s2 = (λ1,λ2,λ3,λ4,λ5−1,λ6 +1,λ6 +1,−λ6−1).

We write (λ − s2)+ = λ − γ2 . Then the Dirac inequality for s2

‖(λ − s2)+ + ρ‖2 � ‖λ + ρ‖2

is equivalent to
2〈γ2,λ + ρ〉� ‖γ2‖2

There are seven cases.
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Case 2.1: λ5 = λ4 . In this case γ2 = s2 . The Dirac inequality for s2 is equivalent
to

λ5 +14 � 3λ6.

Case 2.2: λ5 = λ4 > λ3 . In this case γ2 = (0,0,0,1,0,−1,−1,1) . The Dirac
inequality for s2 is equivalent to

λ5 +13 � 3λ6.

Case 2.3: λ5 = λ4 = λ3 > λ2 . In this case γ2 = (0,0,1,0,0,−1,−1,1) . The Dirac
inequality for s2 is equivalent to

λ5 +12 � 3λ6.

Case 2.4: λ5 = λ4 = λ3 = λ2 > |λ1| . In this case γ2 = (0,1,0,0,0,−1,−1,1) .
The Dirac inequality for s2 is equivalent to

λ5 +11 � 3λ6.

Case 2.5: λ5 = λ4 = λ3 = λ2 = λ1 > 0. In this case γ2 = (1,0,0,0,0,−1,−1,1) .
The basic inequality for s2 is equivalent to

λ5 +10 � 3λ6.

Case 2.6: λ5 = λ4 = λ3 = λ2 =−λ1 > 0. In this case γ2 = (−1,0,0,0,0,−1,−1,1) .
The Dirac inequality for s2 is equivalent to

λ5 +10 � 3λ6.

Case 2.7: λ5 = λ4 = λ3 = λ2 = λ1 = 0. In this case γ2 = (0,0,0,0,−1,−1,−1,1) .
The Dirac inequality for s2 is equivalent to

λ5 +6 � 3λ6,

i.e. λ6 � 2.
It is easy to see that in the cases 1.1,1.2,1.3,1.4,1.5 and 1.7 if the Dirac inequal-

ity holds for s1 then it also holds for s2 , since

λ5 �
5∑

i=1

λi

Therefore we have three basic cases:

Case 1: λi = 0, i ∈ {1,2,3,4,5} .
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In this case the basic Dirac inequality can be written as

λ6 � 0.

The Dirac inequality for the second basic Schmid module is equivalent to

λ6 � 2.

Case 2: λi = 0, i ∈ {1,2,3,4} , λ5 = 0.
In this case the basic Dirac inequality can be written as

λ5 +8 � 3λ6.

The Dirac inequality for the second basic Schmid module is equivalent to

λ5 +14 � 3λ6.

Case 3: λ is of type 1.1, 1.2, 1.3, 1.4, 1.5 or 1.7, i.e. (λ1,λ2,λ3,λ4) = (0,0,0,0) .
The Dirac inequality for the second basic Schmid module is automatically satisfied if
the basic Dirac inequality holds.

Let

sa,b = as1+bs2 =
(a

2
,
a
2
,
a
2
,
a
2
,
a
2

+b,−a
2
−b,−a

2
−b,

a
2

+b
)

, a,b∈N0, a+b > 0

be a general Schmid module.

THEOREM 2.1. (Case 1) Let λ be the highest weight of the form λ = (0,0,0,0,0,
λ6,λ6,−λ6).

1. If λ6 > 2 then λ satisfies the strict Dirac inequality

‖(λ − sa,b)+ + ρ‖2 > ‖λ + ρ‖2 ∀a,b ∈ N0,a+b = 0.

2. If 0 < λ6 < 2 then
‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than s2 .

3. If λ6 < 0 than the basic Dirac inequality fails.

Proof.

1. We have

λ − sa,b =
(
−a

2
,−a

2
,−a

2
,−a

2
,−a

2
−b,λ6 +

a
2

+b,λ6 +
a
2

+b,−λ6− a
2
−b
)

,
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and therefore

(λ − sa,b)+ =
(
−a

2
,
a
2
,
a
2
,
a
2
,
a
2

+b,λ6 +
a
2

+b,λ6 +
a
2

+b,−λ6− a
2
−b
)

= λ −
(a

2
,−a

2
,−a

2
,−a

2
,−a

2
−b,−a

2
−b,−a

2
−b,

a
2

+b
)

.

Then the strict Dirac inequality

‖(λ − sa,b)+ + ρ‖2 > ‖λ + ρ‖2

is equivalent to
2
〈
γa,b |λ + ρ

〉
< ||γa,b||2,

where γa,b =
(

a
2 ,− a

2 ,− a
2 ,− a

2 ,− a
2 −b,− a

2 −b,− a
2 −b, a

2 +b
)

and this inequal-
ity is equivalent to

−2a2−4b2−4ab−10a−8b< 3(λ6−4)(a+2b).

Since λ6 > 2, 3(λ6−4)(a+2b) > −6(a+2b) . Furthermore, the inequality

−2a2−4b2−4ab−10a−8b� −6(a+2b)

holds for all a,b ∈ N0,a + b = 0. So the strict Dirac inequality holds for any
Schmid module sa,b .

2. If 0 < λ6 < 2 then
‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2.

Since the level of s2 is equal to two, and the level of as1 +bs2 is equal to a+2b ,
the only Schmid module of strictly lower level than s2 is s1 .

For s1 we have λ6 > 0, which implies

‖(λ − s1)+ + ρ‖2 > ‖λ + ρ‖2.

3. If λ6 < 0 than the basic Dirac inequality obviously fails since the basic Dirac
inequality in Case 1 is equivalent to λ6 � 0. �

THEOREM 2.2. (Case 2) Let λ be the highest weight of the form λ = (0,0,0,0,
λ5,λ6,λ6,−λ6)

1. If 3λ6−λ5 > 14 than λ satisfies the strict Dirac inequality

‖(λ − sa,b)+ + ρ‖2 > ‖λ + ρ‖2 ∀a,b ∈ N0,a+b = 0.

2. If 8 < 3λ6−λ5 < 14 then

‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than s2 .
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3. If 3λ6−λ5 < 8 than the basic Dirac inequality fails.

Proof.

1. We have

λ −sa,b =
(
−a

2
,−a

2
,−a

2
,−a

2
,λ5− a

2
−b,λ6 +

a
2

+b,λ6 +
a
2

+b,−λ6− a
2
−b
)

,

and therefore

(λ − sa,b)+

=

⎧⎪⎨
⎪⎩
(

a
2 , a

2 , a
2 , a

2 ,λ5− a
2 −b,λ6 + a

2 +b,λ6 + a
2 +b,−λ6− a

2 −b
)
, λ5 > a+b(

λ5− a
2 −b, a

2 , a
2 , a

2 , a
2 ,λ6 + a

2 +b,λ6 + a
2 +b,−λ6− a

2 −b
)
, b � λ5 � a+b(− a

2 , a
2 , a

2 , a
2 ,−λ5 + a

2 +b,λ6 + a
2 +b,λ6 + a

2 +b,−λ6− a
2 −b

)
, λ5 < b

=

⎧⎪⎨
⎪⎩

λ − (− a
2 ,− a

2 ,− a
2 ,− a

2 , a
2 +b,− a

2 −b,− a
2 −b, a

2 +b
)
, λ5 > a+b

λ − (−λ5+ a
2+b,− a

2 ,− a
2 ,− a

2 ,λ5− a
2 ,− a

2−b,− a
2−b, a

2+b
)
, b � λ5 � a+b

λ − (a
2 ,− a

2 ,− a
2 ,− a

2 ,2λ5− a
2 −b,− a

2 −b,− a
2 −b, a

2 +b
)
, λ5 < b.

Then the strict Dirac inequality

‖(λ − sa,b)+ + ρ‖2 > ‖λ + ρ‖2

is equivalent to⎧⎪⎨
⎪⎩

2a2 +4b2 +4ab−10a−32b+(3λ6−λ5)(a+2b) > 0, λ5 > a+b

2a2 +4b2 +4ab−2a−24b+(3λ6−λ5)(a+2b)−8λ5 > 0, b � λ5 � a+b

2a2 +4b2 +4ab−2a−16b+(3λ6−λ5)(a+2b)−16λ5 > 0, λ5 < b

Since 3λ6 −λ5 > 14, then (3λ6−λ5)(a+2b) > 14a+28b . To prove the strict
Dirac inequality it is enough to prove⎧⎪⎨

⎪⎩
a2 +2b2 +2ab+2a−2b� 0, λ5 > a+b

a2 +2b2 +2ab+2a−2b� 0, b � λ5 � a+b

a2 +2b2 +2ab+6a−2b� 0, λ5 < b

.

This is true for all a,b ∈ N0,(a,b) = (0,0) . So the strict Dirac inequality holds
for any Schmid module sa,b .

2. If 8 < 3λ6−λ5 < 14 then

‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2.

Since s1 is the only Schmid module of strictly lower level than s2 , and for s1 we
have 3λ6−λ5 > 8, it follows that

‖(λ − s1)+ + ρ‖2 > ‖λ + ρ‖2.
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3. If 3λ6 − λ5 < 8 than the basic Dirac inequality obviously fails since in Case 2
the basic Dirac inequality is equivalent to 3λ6−λ5 � 8. �

LEMMA 2.1. Let λ be a highest weight such that (λ1,λ2,λ3,λ4,λ5) = (0,0,0,0,0)
and

‖(λ − s2)+ + ρ‖2 > ‖λ + ρ‖2.

Then
‖(λ ′ − s2)+ + ρ‖2 > ‖λ ′+ ρ‖2,

where λ ′ = (λ − s2)+ . If λ ′
i = 0 for i = 1,2,3,4,5 , then

‖(λ ′ − sa,b)+ + ρ‖2 > ‖λ ′ + ρ‖2, ∀a,b ∈ N0, a+b = 0.

Proof. We have

λ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ1,λ2,λ3,λ4,λ5−1,λ6 +1,λ6 +1,−λ6−1), λ as in case 2.1

(λ1,λ2,λ3,λ5−1,λ5,λ6 +1,λ6 +1,−λ6−1), λ as in case 2.2

(λ1,λ2,λ5−1,λ5,λ5,λ6 +1,λ6 +1,−λ6−1), λ as in case 2.3

(λ1,λ5−1,λ5,λ5,λ5,λ6 +1,λ6 +1,−λ6−1), λ as in case 2.4

(λ5−1,λ5,λ5,λ5,λ5,λ6 +1,λ6 +1,−λ6−1), λ as in case 2.5

(−λ5 +1,λ5,λ5,λ5,λ5,λ6 +1,λ6 +1,−λ6−1), λ as in case 2.6

If λ ′ is as in case 2.1 (λ ′
5 = λ ′

4 ), then λ is either as in case 2.1 or as in case 2.2. We
have

λ ′
5−3λ ′

6 =

{
λ5−3λ6−4 < −14−4 = −18, λ as in case 2.1

λ5−3λ6−3 < −13−3 = −16, λ as in case 2.2

Thus, λ ′
5 − 3λ ′

6 < −14. It follows that the strict Dirac inequality holds for the second
basic Schmid module.

If λ ′ is as in case 2.2 (λ ′
5 = λ ′

4 > λ ′
3 ), then λ is either as in case 2.1 or as in case

2.3. We have

λ ′
5−3λ ′

6 =

{
λ5−3λ6−4 < −14−4 = −18, λ as in case 2.1

λ5−3λ6−3 < −12−3 = −15, λ as in case 2.3

Thus, λ ′
5 − 3λ ′

6 < −13. It follows that the strict Dirac inequality holds for the second
basic Schmid module.

If λ ′ is as in case 2.3 (λ ′
5 = λ ′

4 = λ ′
3 > λ ′

2 ), then λ is either as in case 2.1 or as in
case 2.4. We have

λ ′
5−3λ ′

6 =

{
λ5−3λ6−4 < −14−4 = −18, λ as in case 2.1

λ5−3λ6−3 < −11−3 = −14, λ as in case 2.4

Thus, λ ′
5 − 3λ ′

6 < −12. It follows that the strict Dirac inequality holds for the second
basic Schmid module.
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If λ ′ is as in case 2.4 (λ ′
5 = λ ′

4 = λ ′
3 = λ ′

2 > |λ ′
1|), then λ is either as in case 2.1

or as in case 2.5 or as in case 2.6. We have

λ ′
5−3λ ′

6 =

{
λ5−3λ6−4 < −14−4 = −18, λ as in case 2.1

λ5−3λ6−3 < −10−3 = −13, λ as in case 2.5 or as in case 2.6

Thus, λ ′
5 − 3λ ′

6 < −11. It follows that the strict Dirac inequality holds for the second
basic Schmid module.

If λ ′ is as in case 2.5 or as in case 2.6 (λ ′
5 = λ ′

4 = λ ′
3 = λ ′

2 = |λ ′
1| > 0), then λ is

either as in case 2.1 or as in case 2.5 (for λ1 = 1
2 ) or as in case 2.6 (for λ1 = 1

2 ). We
have

λ ′
5−3λ ′

6 =

{
λ5−3λ6−4 < −14−4 = −18, λ as in case 2.1

λ5−3λ6−3 < −10−3 = −13, λ as in case 2.5 or as in case 2.6

Thus, λ ′
5 − 3λ ′

6 < −10. It follows that the strict Dirac inequality holds for the second
basic Schmid module.

If λ ′ is as in case 2.7 (λ ′
5 = λ ′

4 = λ ′
3 = λ ′

2 = λ ′
1 = 0), then λ = (0,0,0,0,1,λ6,λ6,

−λ6) and 1− 3λ6 < −14, that is λ6 > 5 and λ ′
6 = λ6 + 1 > 6 > 2. The strict Dirac

inequality holds for the second basic Schmid module.
It follows from theorem 2.1 that

‖(λ ′ − sa,b)+ + ρ‖2−‖λ ′+ ρ‖2 > 0 ∀a,b ∈ N0 a+b = 0. �

LEMMA 2.2. Let λ be a highest weight such that (λ1,λ2,λ3,λ4) = (0,0,0,0) and

‖(λ − s1)+ + ρ‖2 > ‖λ + ρ‖2.

Then

‖(λ ′ − s1)+ + ρ‖2 > ‖λ ′+ ρ‖2,

where λ ′ = (λ − s1)+ . If λ ′
i = 0 for i = 1,2,3,4 , then

‖(λ ′ − sa,b)+ + ρ‖2 > ‖λ ′ + ρ‖2, ∀a,b ∈ N0, a+b = 0.

Proof. We have

λ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ1− 1
2 ,λ2− 1

2 ,λ3− 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6+ 1

2 ,λ6+ 1
2 ,−λ6− 1

2 ), λ as in case 1.1

(−λ2+ 1
2 ,λ2+ 1

2 ,λ3− 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6+ 1

2 ,λ6+ 1
2 ,−λ6− 1

2 ), λ as in case 1.2

(−λ2+ 1
2 ,λ2− 1

2 ,λ2+ 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6+ 1

2 ,λ6+ 1
2 ,−λ6− 1

2 ), λ as in case 1.3

(− 1
2 , 1

2 , 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6+ 1

2 ,λ6+ 1
2 ,−λ6− 1

2), λ as in case 1.4

(−λ2+ 1
2 ,λ2− 1

2 ,λ2− 1
2 ,λ2+ 1

2 ,λ5− 1
2 ,λ6+ 1

2 ,λ6+ 1
2 ,−λ6− 1

2 ), λ as in case 1.5

(−λ2+ 1
2 ,λ2− 1

2 ,λ2− 1
2 ,λ2− 1

2 ,λ2+ 1
2 ,λ6+ 1

2 ,λ6+ 1
2 ,−λ6− 1

2 ), λ as in case 1.7
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If λ ′ is as in case 1.1 (λ ′
1 + λ ′

2 � 1), then λ is either as in case 1.1 or as in case 1.2.
We have

5∑
i=1

λ ′
i −3λ ′

6 =

{∑5
i=1 λi −3λ6−4 < −20−4 = −24, λ as in case 1.1∑5
i=1 λi −3λ6−2 < −18−2 = −20, λ as in case 1.2

Thus,
∑5

i=1 λ ′
i −3λ ′

6 < −20. It follows that the strict basic Dirac inequality holds.
If λ ′ is as in case 1.2 (−λ ′

1 = λ ′
2,λ

′
3 −λ ′

2 � 1), then λ is either as in case 1.1 or
as in case 1.3. We have

5∑
i=1

λ ′
i −3λ ′

6 =

{∑5
i=1 λi −3λ6−4 < −20−4 = −24, λ as in case 1.1∑5
i=1 λi −3λ6−2 < −16−2 = −18, λ as in case 1.3

Thus,
∑5

i=1 λ ′
i −3λ ′

6 < −18. It follows that the strict basic Dirac inequality holds.
If λ ′ is as in case 1.3 (λ ′

3 = λ ′
2 = −λ ′

1,λ ′
2 > 0,λ ′

4−λ ′
2 � 1), then λ is either as in

case 1.1 or as in case 1.4 or as in case 1.5. We have

5∑
i=1

λ ′
i −3λ ′

6 =

⎧⎪⎨
⎪⎩
∑5

i=1 λi−3λ6−4 < −20−4 = −24, λ as in case 1.1∑5
i=1 λi−3λ6−2 < −14−2 = −16, λ as in case 1.4∑5
i=1 λi−3λ6−2 < −14−2 = −16, λ as in case 1.5

Thus,
∑5

i=1 λ ′
i −3λ ′

6 < −16. It follows that the strict basic Dirac inequality holds.
If λ ′ is as in case 1.4 (λ ′

1 = λ ′
2 = λ ′

3 = 0,λ ′
4 > 0), then λ is either as in case 1.1

or as in case 1.5. We have

5∑
i=1

λ ′
i −3λ ′

6 =

{∑5
i=1 λi −3λ6−4 < −20−4 = −24, λ as in case 1.1∑5
i=1 λi −3λ6−2 < −14−2 = −16, λ as in case 1.5

Thus,
∑5

i=1 λ ′
i −3λ ′

6 < −14. It follows that the strict basic Dirac inequality holds.
If λ ′ is as in case 1.5 (λ ′

4 = λ ′
3 = λ ′

2 = −λ ′
1,λ

′
2 > 0,λ ′

5−λ ′
2 � 1), then λ is either

as in case 1.1 or as in case 1.4 or as in case 1.7. We have

5∑
i=1

λ ′
i −3λ ′

6 =

⎧⎪⎨
⎪⎩
∑5

i=1 λi−3λ6−4 < −20−4 = −24, λ as in case 1.1∑5
i=1 λi−3λ6−2 < −14−2 = −16, λ as in case 1.4∑5
i=1 λi−3λ6−2 < −12−2 = −14, λ as in case 1.7

Thus,
∑5

i=1 λ ′
i −3λ ′

6 < −14. It follows that the strict basic Dirac inequality holds.
If λ ′ is as in case 1.6 (λ ′

4 = λ ′
3 = λ ′

2 = λ ′
1 = 0,λ ′

5−λ ′
2 � 1), then λ is either as in

case 1.1 or as in case 1.7. We have

λ ′
5−3λ ′

6 =
5∑

i=1

λ ′
i −3λ ′

6 =

{∑5
i=1 λi−3λ6−4 < −20−4 = −24, λ as in case 1.1∑5
i=1 λi−3λ6−2 < −12−2 = −14, λ as in case 1.7

Thus, λ ′
5 − 3λ ′

6 < −14. It follows that the strict Dirac inequality for the second basic
Schmid module holds and thus, from the proof of theorem 2.2 we have

‖(λ ′ − sa,b)+ + ρ‖2−‖λ ′+ ρ‖2 > 0 ∀a,b ∈ N0, a+b = 0.
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If λ ′ is as in case 1.7 (λ ′
5 = λ ′

4 = λ ′
3 = λ ′

2 = −λ ′
1,λ

′
2 > 0), then λ is either as in

case 1.1 or as in case 1.4. We have

5∑
i=1

λ ′
i −3λ ′

6 =

{∑5
i=1 λi −3λ6−4 < −20−4 = −24, λ as in case 1.1∑5
i=1 λi −3λ6−2 < −14−2 = −16, λ as in case 1.4

Thus,
∑5

i=1 λ ′
i −3λ ′

6 < −12. It follows that the strict basic Dirac inequality holds.
If λ ′ is as in case 1.8 (λ ′

5 = λ ′
4 = λ ′

3 = λ ′
2 = λ ′

1 = 0), then λ is as in case 1.1. We
have

−3λ ′
6 =

5∑
i=1

λ ′
i −3λ ′

6 =
5∑

i=1

λi−3λ6−4 < −20−4 = −24

Thus, λ ′
6 > 8 > 2. The strict Dirac inequality holds for the second basic Schmid

module.
It follows from theorem 2.1 that

‖(λ ′ − sa,b)+ + ρ‖2−‖λ ′+ ρ‖2 > 0 ∀a,b ∈ N0 a+b = 0. �

THEOREM 2.3. (Case 3) Let λ be the highest weight as in Case 3, i.e., (λ1,λ2,λ3,
λ4) = (0,0,0,0) such that strict basic Dirac inequality holds. Then

‖(λ − sa,b)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀a,b ∈ N0,(a,b) = (0,0).

Proof. Let λ be as in Case 3, and let us assume that the strict basic Dirac inequal-
ity holds. First we will prove that in this case we have

‖(λ − s0,b)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀b ∈ N. (2.1)

Let us denote λ ′ = (λ − s2)+ . We have already proved that if λ is in Case 3 and the
strict basic Dirac inequality holds, then the strict Dirac inequality also holds for s2 . So
we have

‖λ ′ + ρ‖2 > ‖λ + ρ‖2.

Let us assume that b > 1. Let w ∈Wk be such that λ −s2 = w(λ −s2)+ . From Lemma
1.1 we have

‖(λ − s0,b)+ + ρ‖2 = ‖(λ − s2− s0,b−1)+ + ρ‖2 = ‖(w(λ − s2)+− s0,b−1)+ + ρ‖2

� ‖((λ − s2)+ − s0,b−1)+ + ρ‖2 = ‖(λ ′ − s0,b−1)+ + ρ‖2.

It follows from the last two inequalities that

‖(λ − s0,b)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ ′ − s0,b−1)+ + ρ‖2−‖λ ′+ ρ‖2 ∀b > 1 (2.2)

If λ ′
i = 0 for i = 1,2,3,4,5, then it follows from lemma 2.1 that

‖(λ ′ − s0,b−1)+ + ρ‖2 > ‖λ ′ + ρ‖2, ∀b > 1,
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and it follows from (2.2) that

‖(λ − s0,b)+ + ρ‖2−‖λ + ρ‖2 > 0, ∀b > 1.

Since ‖λ ′ + ρ‖2 > ‖λ + ρ‖2 , we have

‖(λ − s0,b)+ + ρ‖2−‖λ + ρ‖2 > 0, ∀b ∈ N.

If (λ ′
1,λ

′
2,λ

′
3,λ

′
4,λ

′
5) = (0,0,0,0,0) and if b > 2 then it follows from lemma 2.1 and

from (2.2) that

‖(λ ′ − s0,b−1)+ + ρ‖2−‖λ ′+ ρ‖2 > ‖(λ ′′ − s0,b−2)+ + ρ‖2−‖λ ′′+ ρ‖2,

where λ ′′ = (λ ′ − s2)+ . By induction, it follows

‖(λ − s0,b)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀b ∈ N.

Now we will prove that if λ is as in Case 3, and the strict basic Dirac inequality
holds, then

‖(λ − sa,b)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀a,b ∈ N0,(a,b) = (0,0).

Let us denote λ̃ = (λ − s1)+ . We have

‖λ̃ + ρ‖2 > ‖λ + ρ‖2.

Let us assume that a > 1 or a= 1, b > 0. Let w̃∈Wk be such that λ −s1 = w̃(λ −s1)+ .
It follows from Lemma 1.1 that

‖(λ − sa,b)+ + ρ‖2 = ‖(λ − s1− sa−1,b)+ + ρ‖2 = ‖(w̃(λ − s1)+− sa−1,b)+ + ρ‖2

� ‖((λ − s1)+ − sa−1,b)+ + ρ‖2 = ‖(λ̃ − sa−1,b)+ + ρ‖2.

It follows from the last two inequalities that

‖(λ − sa,b)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ̃ − sa−1,b)+ + ρ‖2−‖λ̃ + ρ‖2. (2.3)

If λ̃i = 0 for i = 1,2,3,4, then it follows from lemma 2.2 that

‖(λ̃ − sa−1,b)+ + ρ‖2 > ‖λ̃ + ρ‖2,

and it follows from (2.3) that

‖(λ − sa,b)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀a,b ∈ N0, a+b = 0.

If (λ̃1, λ̃2, λ̃3, λ̃4) = (0,0,0,0) and a > 1, then it follows from lemma 2.2 and from
(2.3) that

‖(λ̃ − sa−1,b)+ + ρ‖2−‖λ̃ + ρ‖2 > ‖(λ − sa−2,b)+ + ρ‖2−‖λ + ρ‖2,

where λ = (λ̃ − s1)+ . By induction and by (2.1), it follows that

‖(λ − sa,b)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀a,b ∈ N0,(a,b) = (0,0). �
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2.2. Dirac inequality for e7

The basic Schmid k-modules in S(p−) have lowest weights −si , i = 1,2,3, where

s1 = β1 = (0,0,0,0,0,0,−1,1),
s2 = β1 + β2 = (0,0,0,0,1,1,−1,1),
s3 = β1 + β2 + β3 = (0,0,0,0,0,2,−1,1).

The highest weight (g,K)-modules have highest weight of the form

λ = (λ1,λ2,λ3,λ4,λ5,λ6,λ7,−λ7), |λ1| � λ2 � λ3 � λ4 � λ5,

λi−λ j ∈ Z, 2λi ∈ Z, 1 � i � j � 5

1
2

(
λ8−λ7−λ6 +

5∑
i=1

(−1)n(i)λi

)
∈ N0,

5∑
n=1

n(i) even,

which can be written more shortly as

λ = (λ1,λ2,λ3,λ4,λ5,λ6,λ7,−λ7), |λ1| � λ2 � λ3 � λ4 � λ5,

λi−λ j ∈ Z, 2λi ∈ Z, 1 � i � j � 5

1
2

(λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) ∈ N0.

In this case

ρ =
(

0,1,2,3,4,5,−17
2

,
17
2

)
.

The basic necessary condition for unitarity is the Dirac inequality

||(λ − s1)+ + ρ ||2 � ||λ + ρ ||2.

As before, we write (λ − s1)+ = λ − γ1 . Then the Dirac inequality is equivalent to

2〈γ1 , λ + ρ〉� ‖γ1‖2.

We have

λ − s1 = (λ1,λ2,λ3,λ4,λ5,λ6,λ7 +1,−λ7−1)

λ + ρ =
(

λ1,λ2 +1,λ3 +2,λ4 +3,λ5 +4,λ6 +5,λ7− 17
2

,−λ7 +
17
2

)

There are two basic cases.

Case 1.1: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) � 1. In this case γ1 = s1 .

The basic inequality is equivalent to

λ7 � 8.
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Case 1.2: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0. We have

sα1 (λ1,λ2,λ3,λ4,λ5,λ6,λ7 +1,−λ7−1)

=
(

λ1 +
1
2
,λ2− 1

2
,λ3− 1

2
,λ4 − 1

2
,λ5− 1

2
,λ6− 1

2
,λ7 +

1
2
,−λ7− 1

2

)
.

In this case we have eight subcases.

Case 1.2.1: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, λ1 < λ2 .

In this case

(λ − s1)+ =
(

λ1 +
1
2
,λ2− 1

2
,λ3 − 1

2
,λ4− 1

2
,λ5− 1

2
,λ6 − 1

2
,λ7 +

1
2
,−λ7− 1

2

)

and γ1 = 1
2 (−1,1,1,1,1,1,−1,1) . The basic inequality is equivalent to

λ7 � 15
2

.

Case 1.2.2: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, λ1 = λ2 < λ3 .

In this case

(λ − s1)+ =
(

λ2− 1
2
,λ2 +

1
2
,λ3 − 1

2
,λ4− 1

2
,λ5− 1

2
,λ6 − 1

2
,λ7 +

1
2
,−λ7− 1

2

)

and γ1 = 1
2 (1,−1,1,1,1,1,−1,1) . The basic inequality is equivalent to

λ7 � 7.

Case 1.2.3: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, 0 < λ1 = λ2 = λ3 <

λ4 .
In this case

(λ − s1)+ =
(

λ3− 1
2
,λ3− 1

2
,λ3 +

1
2
,λ4− 1

2
,λ5− 1

2
,λ6 − 1

2
,λ7 +

1
2
,−λ7− 1

2

)

and γ1 = 1
2 (1,1,−1,1,1,1,−1,1) . The basic inequality is equivalent to

λ7 � 13
2

.

Case 1.2.4: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, 0 = λ1 = λ2 = λ3 <

λ4 .
In this case

(λ − s1)+ =
(

1
2
,
1
2
,
1
2
,λ4− 1

2
,λ5− 1

2
,λ6− 1

2
,λ7 +

1
2
,−λ7− 1

2

)
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and γ1 = 1
2 (−1,−1,−1,1,1,1,−1,1) . The basic inequality is equivalent to

λ7 � 6.

Case 1.2.5: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, 0 < λ1 = λ2 = λ3 =

λ4 < λ5 .
In this case

(λ − s1)+ =
(

λ4− 1
2
,λ4− 1

2
,λ4 − 1

2
,λ4 +

1
2
,λ5− 1

2
,λ6 − 1

2
,λ7 +

1
2
,−λ7− 1

2

)

and γ1 = 1
2 (1,1,1,−1,1,1,−1,1) . The basic inequality is equivalent to

λ7 � 6.

Case 1.2.6: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, 0 = λ1 = λ2 = λ3 =

λ4 < λ5 . We have

sα1sε2−ε1sε3+ε4

(
1
2
,−1

2
,−1

2
,−1

2
,λ5− 1

2
,λ6− 1

2
,λ7 +

1
2
,−λ7− 1

2

)
=(0,0,0,0,λ5−1,λ6−1,λ7,−λ7) .

In this case

(λ − s1)+ = (0,0,0,0,λ5−1,λ6−1,λ7,−λ7)

and γ1 = (0,0,0,0,1,1,0,0) . The basic inequality is equivalent to

λ7 � 4.

Case 1.2.7: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, 0 < λ1 = λ2 = λ3 =

λ4 = λ5 .
In this case

(λ − s1)+ =
(

λ5− 1
2
,λ5− 1

2
,λ5 − 1

2
,λ5− 1

2
,λ5 +

1
2
,λ6 − 1

2
,λ7 +

1
2
,−λ7− 1

2

)

and γ1 = 1
2 (1,1,1,1,−1,1,−1,1) . The basic inequality is equivalent to

λ7 � 11
2

.

Case 1.2.8: 1
2 (λ8−λ7−λ6−λ5−λ4−λ3−λ2 + λ1) = 0, 0 = λ1 = λ2 = λ3 =

λ4 = λ5 . We have

sε5−ε1sα1sε2+ε3sε4+ε5

(
1
2
,−1

2
,−1

2
,−1

2
,−1

2
,λ6− 1

2
,λ7 +

1
2
,−λ7− 1

2

)
=(0,0,0,0,1,λ6−1,λ7,−λ7) .
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In this case
(λ − s1)+ = (0,0,0,0,1,λ6−1,λ7,−λ7)

and γ1 = (0,0,0,0,−1,1,0,0) . The basic inequality is equivalent to

λ7 � 0.

Now we are going to see in which cases the Dirac inequality holds for s2 . We have

λ − s2 = (λ1,λ2,λ3,λ4,λ5−1,λ6−1,λ7 +1,−λ7−1).

We write (λ − s2)+ = λ − γ2 . Then the Dirac inequality for s2

‖(λ − s2)+ + ρ‖2 � ‖λ + ρ‖2

is equivalent to
2〈γ2,λ + ρ〉� ‖γ2‖2

There are seven cases.

Case 2.1: λ5 > λ4 . In this case γ2 = s2 . The Dirac inequality for s2 is equivalent
to

λ5 + λ6−2λ7 +24 � 0.

Case 2.2: λ5 = λ4 > λ3 . In this case

(λ − s2)+ = (λ1,λ2,λ3,λ5−1,λ5,λ6−1,λ7 +1,−λ7−1)

and γ2 = (0,0,0,1,0,1,−1,1) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +23 � 0.

Case 2.3: λ5 = λ4 = λ3 > λ2 . In this case

(λ − s2)+ = (λ1,λ2,λ5−1,λ5,λ5,λ6−1,λ7 +1,−λ7−1)

and γ2 = (0,0,1,0,0,1,−1,1) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +22 � 0.

Case 2.4: λ5 = λ4 = λ3 = λ2 > |λ1| . In this case

(λ − s2)+ = (λ1,λ5 −1,λ5,λ5,λ5,λ6−1,λ7 +1,−λ7−1)

and γ2 = (0,1,0,0,0,1,−1,1) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +21 � 0.

Case 2.5: λ5 = λ4 = λ3 = λ2 = λ1 > 0. We have two subcases:
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Case 2.5.1: λ5 = λ4 = λ3 = λ2 = λ1 > 0, 1
2 (λ1−λ2−λ3−λ4−λ5−λ6−λ7 + λ8)

� 1.
In this case

(λ − s2)+ = (λ5−1,λ5,λ5,λ5,λ5,λ6−1,λ7 +1,−λ7−1)

and γ2 = (1,0,0,0,0,1,−1,1) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +20 � 0.

Case 2.5.2: λ5 = λ4 = λ3 = λ2 = λ1 > 0, 1
2 (λ1−λ2−λ3−λ4−λ5−λ6−λ7 + λ8)

= 0. We have

sα1 (λ5−1,λ5,λ5,λ5,λ5,λ6−1,λ7 +1,−λ7−1)

=
(

λ5− 1
2
,λ5− 1

2
,λ5− 1

2
,λ5− 1

2
,λ5− 1

2
,λ6− 3

2
,λ7 +

1
2
,−λ7− 1

2

)

In this case

(λ − s2)+ =
(

λ5− 1
2
,λ5− 1

2
,λ5 − 1

2
,λ5− 1

2
,λ5− 1

2
,λ6 − 3

2
,λ7 +

1
2
,−λ7− 1

2

)

and γ2 = 1
2 (1,1,1,1,1,3,−1,1) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +19 � 0.

Case 2.6: λ5 = λ4 = λ3 = λ2 = −λ1 > 0. In this case

(λ − s2)+ = (−λ5 +1,λ5,λ5,λ5,λ5,λ6 −1,λ7 +1,−λ7−1)

and γ2 = (−1,0,0,0,0,1,−1,1) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +20 � 0.

Case 2.7: λ5 = λ4 = λ3 = λ2 = λ1 = 0. We have two subcases:

Case 2.7.1: λ5 = λ4 = λ3 = λ2 = λ1 = 0, 1
2 (λ1−λ2−λ3−λ4−λ5−λ6−λ7 + λ8)

� 1.
In this case

(λ − s2)+ = (0,0,0,0,1,λ6−1,λ7 +1,−λ7−1)

and γ2 = (0,0,0,0,−1,1,−1,1) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +16 � 0.
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Case 2.7.2: λ5 = λ4 = λ3 = λ2 = λ1 = 0, 1
2 (λ1−λ2−λ3−λ4−λ5−λ6−λ7 + λ8)

= 0. We have

sε5−ε4sε4+ε5 (0,0,0,0,−1,λ6−1,λ7 +1,−λ7−1)
= (0,0,0,0,1,λ6−1,λ7 +1,−λ7−1)

sα1sε2−ε1sε3+ε4sα1 (0,0,0,0,1,λ6−1,λ7 +1,−λ7−1)
= (0,0,0,0,0,λ6−2,λ7,−λ7) .

In this case
(λ − s2)+ = (0,0,0,0,0,λ6−2,λ7,−λ7)

and γ2 = (0,0,0,0,0,2,0,0) . The Dirac inequality for s2 is equivalent to

λ5 + λ6−2λ7 +8 � 0,

i.e. λ7 � 2.
Now we are going to see in which cases the Dirac inequality holds for s3 . We have

λ − s3 = (λ1,λ2,λ3,λ4,λ5,λ6−2,λ7 +1,−λ7−1),

and therefore (λ − s3)+ = λ − s3 . Then the Dirac inequality for s3

‖(λ − s3)+ + ρ‖2 � ‖λ + ρ‖2

is equivalent to
2〈s3,λ + ρ〉� ‖s3‖2,

i.e.,
λ6−λ7 +12 � 0.

It is easy to see that in cases 1.1,1.2.1,1.2.2,1.2.3,1.2.4,1.2.5 or 1.2.7 if the Dirac
inequality holds for s1 then it also holds for s2 . Let us assume that the Dirac inequality
holds for s1 . We have

λ5 + λ6 � λ1−λ2−λ3−λ4−2λ7 � −2λ7,

i.e.

λ5 + λ6−2λ7 � −4λ7 � (−4)·11
2

= −22,

and therefore the Dirac inequality obviously holds for s2 if λ is in one of the cases
2.3, 2.4, 2.5, 2.6 or 2.7. If λ is in case 2.1 or in case 2.2 and also in one of the cases
1.1,1.2.1,1.2.2,1.2.3,1.2.4 or 1.2.5 (if λ is in case 2.1 or 2.2, then λ can not be in
case 1.2.7) and the Dirac inequality holds for s1 then λ7 � 6 and therefore

λ5 + λ6−2λ7 � −4λ7 � (−4)·6 = −24,

so the Dirac inequality holds for s2 .
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Furthermore, in cases 1.1,1.2.1,1.2.2,1.2.3,1.2.4,1.2.5 or 1.2.7 if the Dirac in-
equality holds for s1 then it also holds for s3 , since λ6 � λ1−λ2−λ3−λ4−λ5−2λ7 �
−2λ7 and therefore

λ6−λ7 +12 � −3λ7 +12 � (−3)·11
2

+12 < 0.

Therefore, we have three basic cases:

Case 1: λi = 0, i ∈ {1,2,3,4,5},λ6 = −2λ7 (case 1.2.8)
In this case the basic Dirac inequality can be written as

λ7 � 0.

The Dirac inequality for the second basic Schmid module is equivalent to

λ7 � 2.

The Dirac inequality for the third basic Schmid module is equivalent to

λ7 � 4.

It is clear that if the Dirac inequality holds for the third basic Schmid module, then it
automatically holds for the first and the second basic Schmid module.

Case 2: λi = 0, i ∈ {1,2,3,4}, λ5 > 0, −λ5−λ6−2λ7 = 0 (case 1.2.6)
In this case the basic Dirac inequality can be written as

λ7 � 4.

The Dirac inequality for the second basic Schmid module is equivalent to

λ7 � 6.

The Dirac inequality for the third basic Schmid module is equivalent to

λ6−λ7 +12 � 0.

If the Dirac inequality holds for the second basic Schmid module, then it automatically
holds for the first and the third basic Schmid module, since

λ6−λ7 +12 = −λ5−3λ7 +12 � −3λ7 +12 � −18+12 < 0.

Case 3: λ is of type 1.1,1.2.1,1.2.2,1.2.3,1.2.4,1.2.5 or 1.2.7. The Dirac in-
equality for the second and the third Schmid module is automatically satisfied if the
basic Dirac inequality holds.

Let

sa,b,c = as1 +bs2 + cs3

= (0,0,0,0,b,b+2c,−a−b− c,a+b+ c), a,b,c ∈ N0, a+b+ c > 0

be a general Schmid module.
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THEOREM 2.4. (Case 1) Let λ be the highest weight of the form λ = (0,0,0,0,0,
−2λ7,λ7,−λ7) .

1. If λ7 > 4 then λ satisfies the strict Dirac inequality for any Schmid module sa,b,c ,
i.e.

‖(λ − sa,b,c)+ + ρ‖2 > ‖λ + ρ‖2, a,b,c ∈ N0, (a,b,c) = (0,0,0)

2. If 2 < λ7 < 4 then
‖(λ − s3)+ + ρ‖2 < ‖λ + ρ‖2

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than s3 .

3. If 0 < λ7 < 2 then
‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2

and the strict Dirac inequality holds for any Schmid module of strictly lower level
than s2 .

4. If λ7 < 0 than the basic Dirac inequality fails.

Proof.

1. We have

λ − sa,b,c = (0,0,0,0,−b,−2λ7−b−2c,λ7 +a+b+ c,−λ7−a−b− c)
sε5−ε1sα1sε4−ε1sε4+ε5sε2+ε3sα1sε5−ε4sε4+ε5(λ − sa,b,c)
= (0,0,0,0,a,−2λ7−a−2b−2c,λ7+ c,−λ7− c)

and therefore

(λ − sa,b,c)+ = (0,0,0,0,a,−2λ7−a−2b−2c,λ7+ c,−λ7− c)
= λ − (0,0,0,0,−a,a+2b+2c,−c,c).

Then the strict Dirac inequality

‖(λ − sa,b,c)+ + ρ‖2 > ‖λ + ρ‖2

is equivalent to
2
〈
γa,b,c , λ + ρ

〉
< ||γa,b,c||2,

where γa,b,c = (0,0,0,0,−a,a+2b+2c,−c,c) and this inequality is equivalent
to

2(−2λ7(a+2b+3c)+a+10b+27c)< a2 +(a+2b+2c)2+2c2.

Since λ7 > 4, −2λ7(a+2b+3c)< −8(a+2b+3c) . We see that the inequality

2(−8(a+2b+3c)+a+10b+27c)� a2 +(a+2b+2c)2+2c2

holds for all a,b,c ∈ N0,a+ b+ c = 0. So the strict Dirac inequality holds for
any Schmid module sa,b,c .
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2. If 2 < λ7 < 4 then
‖(λ − s3)+ + ρ‖2 < ‖λ + ρ‖2.

Since the level of si is equal to i where i ∈ {1,2,3} , and the level of as1 +bs2 +
cs3 is equal to a+2b+3c , the only Schmid modules of strictly lower level than
s3 are s1,s2 and 2s1 . For si, i ∈ {1,2} , we have λ7 > 2 > 0, i.e.

‖(λ − si)+ + ρ‖2 > ‖λ + ρ‖2.

We have (λ −2s1)+ = λ − (0,0,0,0,−2,2,0,0) . Therefore, the strict Dirac in-
equality for 2s1 is equivalent to λ7 > − 1

2 , which is true since 2 < λ7 < 4.

3. If 0 < λ7 < 2 then
‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2.

Since the level of s2 is equal to 2 and the level of as1 + bs2 + cs3 is equal to
a+2b+3c , the only Schmid module of strictly lower level than s2 is s1 . For s1

we have λ7 > 0, which implies

‖(λ − s1)+ + ρ‖2 > ‖λ + ρ‖2.

4. If λ7 < 0 than the basic Dirac inequality obviously fails since in Case 1 the basic
Dirac inequality is equivalent to λ7 � 0. �

THEOREM 2.5. (Case 2) Let λ be the highest weight of the form λ = (0,0,0,0,λ5,
λ6,λ7,−λ7) such that λ5 > 0 and −λ5−λ6−2λ7 = 0 .

1. If λ7 > 6 than λ satisfies the strict Dirac inequality for any Schmid module
sa,b,c , i.e.

‖(λ − sa,b,c)+ + ρ‖2 > ‖λ + ρ‖2, a,b,c ∈ N0, (a,b,c) = (0,0,0)

2. If 4 < λ7 < 6 then
‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2

and the strict Dirac inequality holds strictly for any Schmid module of strictly
lower level than s2 .

3. If λ7 < 4 than the basic Dirac inequality fails.

Proof.

1. We have

λ − sa,b,c = (0,0,0,0,λ5−b,λ6−b−2c,λ7+a+b+ c,−λ7−a−b− c)
sα1sε3+ε4sε2−ε1sα1(λ − sa,b,c)

= (0,0,0,0,λ5−a−b,λ6−a−b−2c,λ7+b+ c,−λ7−b− c)
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and therefore

(λ − sa,b,c)+

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0,0,0,0,λ5−a−b,λ6−a−b−2c,λ7+b+ c,−λ7−b− c), λ5 > a+b

(0,0,0,0,−λ5+a+b,λ6−a−b−2c,λ7+b+c,−λ7−b−c) , b � λ5 � a+b

sα1sε3+ε4sε2−ε1sα1 (0,0,0,0,−λ5+a+b,λ6−a−b−2c, λ7+b+c,−λ7−b−c)
= (0,0,0,0,a,λ5 + λ6−a−2b−2c,λ5+ λ7 + c,−λ5−λ7− c) , λ5 < b

=

⎧⎪⎨
⎪⎩

λ − (0,0,0,0,a+b,a+b+2c,−b− c,b+ c), λ5 > a+b

λ − (0,0,0,0,2λ5−a−b,a+b+2c,−b− c,b+ c), b � λ5 � a+b

λ − (0,0,0,0,λ5−a,−λ5 +a+2b+2c,−λ5− c,λ5 + c) , λ5 < b.

Then the strict Dirac inequality

‖(λ − sa,b,c)+ + ρ‖2 > ‖λ + ρ‖2

is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2λ5c−2λ7(a+2b+3c)+9a+26b+27c

< (a+b)2 +2(a+b)c+2c2+(b+ c)2,

λ5 > a+b

−2λ5c−2λ7(a+2b+3c)+8λ5+a+18b+27c

< (a+b)2 +2(a+b)c+2c2+(b+ c)2,

b � λ5 � a+b

−2λ5c−2λ7(a+2b+3c)+16λ5+a+10b+27c

< a2 +2a(b+ c)+ c2+2(b+ c)2,

λ5 < b

Let us assume that λ7 > 6. Since λ5 � 0, to prove the strict Dirac inequality it is
enough to prove⎧⎪⎨
⎪⎩
−3a+2b−9c� (a+b)2 +2(a+b)c+2c2+(b+ c)2, λ5 > a+b

−3a+2b−9c� (a+b)2 +2(a+b)c+2c2+(b+ c)2, b � λ5 � a+b

−11a+2b−9c� a2 +2a(b+ c)+ c2+2(b+ c)2, λ5 < b

.

This is true for all a,b,c ∈ N0,(a,b,c) = (0,0,0) . So the strict Dirac inequality
holds for any Schmid module sa,b,c .

2. If 4 < λ7 < 6 then
‖(λ − s2)+ + ρ‖2 < ‖λ + ρ‖2.

Since s1 is the only Schmid module of strictly lower level than s2 and for s1 we
have λ7 > 4, it follows that

‖(λ − s1)+ + ρ‖2 > ‖λ + ρ‖2.



DIRAC INEQUALITY 753

3. If λ7 < 4 than the basic Dirac inequality obviously fails since in Case 2 the basic
Dirac inequality is equivalent to λ7 � 4. �

LEMMA 2.3. Let λ be a highest weight such that

‖(λ − s3)+ + ρ‖2 > ‖λ + ρ‖2.

Then
‖(λ ′ − s3)+ + ρ‖2 > ‖λ ′+ ρ‖2,

where λ ′ = (λ − s3)+ .

Proof. We have

λ ′ = (λ − s3)+ = λ − s3 = (λ1,λ2,λ3,λ4,λ5,λ6−2,λ7 +1,−λ7−1).

The strict Dirac inequality

‖(λ ′ − s3)+ + ρ‖2 > ‖λ ′ + ρ‖2

is equivalent to
λ ′

6−λ ′
7 +12 < 0

and this is equivalent to
λ6−λ7 +9 < 0,

which is true since
λ6−λ7 +12 < 0. �

LEMMA 2.4. Let λ be a highest weight such that (λ1,λ2,λ3,λ4,λ5)= (0,0,0,0,0)
and

‖(λ − s2)+ + ρ‖2 > ‖λ + ρ‖2.

Then
‖(λ − s0,b,0)+ + ρ‖2 > ‖λ + ρ‖2 ∀b ∈ N.

Proof. We have λ − s0,b,0 = (0,0,0,0,−b,λ6−b,λ7 +b,−λ7−b) . Now we have
two cases.

Case 1: −λ6−2λ7−2b � 0.
In this case

(λ − s0,b,0)+ = (0,0,0,0,b,λ6−b,λ7 +b,−λ7−b) = λ − (0,0,0,0,−b,b,−b,b).

The strict Dirac inequality

‖(λ − s0,b,0)+ + ρ‖2 > ‖λ + ρ‖2

is equivalent to
2〈γ , λ + ρ〉< ‖γ‖2,
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where γ = (0,0,0,0,−b,b,−b,b) and the last inequality is equivalent to

λ6−2λ7 +18 < 2b.

Since in this case −λ6−2λ7−2b � 0, then λ is not in case 2.7.2. . Therefore, λ is in
case 2.7.1. Since the strict Dirac inequality holds for the second basic Schmid module,
we have λ6−2λ7 +16 < 0 and therefore λ6−2λ7 +18 < 2 � 2b .

Case 2: −λ6−2λ7−2b < 0.
Then

sα1sε3+ε4sε2−ε1sα1(0,0,0,0,b,λ6−b,λ7 +b,−λ7−b)

=
(

0,0,0,0,−λ6 +2λ7

2
,

λ6

2
−λ7−2b,−λ6

2
,

λ6

2

)
,

so

(λ − s0,b,0)+ =
(

0,0,0,0,−λ6 +2λ7

2
,

λ6

2
−λ7−2b,−λ6

2
,

λ6

2

)
= λ − γ ′,

where γ ′ =
(
0,0,0,0, λ6

2 + λ7,
λ6
2 + λ7 +2b,λ7 + λ6

2 ,−λ7− λ6
2

)
. The strict Dirac in-

equality
‖(λ − s0,b,0)+ + ρ‖2 > ‖λ + ρ‖2

is equivalent to

−2(λ6 +2λ7) < b

(
λ7− λ6

2
+b−5

)
. (2.4)

Since in this case we have −λ6−2λ7 < 2b , it is enough to prove

4b � b

(
λ7− λ6

2
+b−5

)
.

The last inequality is equivalent to

λ6−2λ7 +18 � 2b.

If λ is in case 2.7.1, then we have

λ6−2λ7 +16 < 0,

since we assumed that the strict Dirac inequality holds for the second basic Schmid
module. Therefore

λ6−2λ7 +18 < 2 � 2b.

If λ is in case 2.7.2, then we have λ6 +2λ7 = 0, so inequality (2.4) is equivalent to

λ6−2λ7 < 2b−10.

Since we assumed that the strict Dirac inequality holds for the second basic Schmid
module, we have

λ6−2λ7 < −8

and therefore
λ6−2λ7 < 2−10 � 2b−10. �
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LEMMA 2.5. Let λ be a highest weight such that (λ1,λ2,λ3,λ4,λ5) = (0,0,0,0,0)
and

‖(λ − s2)+ + ρ‖2 > ‖λ + ρ‖2.

Then
‖(λ ′ − s2)+ + ρ‖2 > ‖λ ′+ ρ‖2,

where λ ′ = (λ − s2)+ . If λ ′
i = 0 for i = 1,2,3,4,5 , then

‖(λ ′ − s0,b,0)+ + ρ‖2 > ‖λ ′ + ρ‖2, ∀b ∈ N.

Proof. We have

λ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ1,λ2,λ3,λ4,λ5−1,λ6−1,λ7 +1,−λ7−1), λ as in case 2.1

(λ1,λ2,λ3, λ5−1,λ5,λ6−1,λ7 +1,−λ7−1), λ as in case 2.2

(λ1,λ2,λ5−1,λ5,λ5,λ6−1,λ7 +1,−λ7−1), λ as in case 2.3

(λ1,λ5−1,λ5,λ5,λ5,λ6−1,λ7 +1,−λ7−1), λ as in case 2.4

(λ5−1,λ5,λ5,λ5,λ5,λ6−1,λ7 +1,−λ7−1), λ as in case 2.5.1.

(λ5− 1
2 ,λ5− 1

2 ,λ5− 1
2 ,λ5− 1

2 ,λ5− 1
2 ,λ6− 3

2 ,λ7+ 1
2 ,−λ7− 1

2 ), λ as in case 2.5.2.

(−λ5 +1,λ5,λ5,λ5,λ5,λ6−1,λ7 +1,−λ7−1), λ as in case 2.6

Therefore,

λ ′
5 + λ ′

6−2λ ′
7 =

{
λ5 + λ6−2λ7−4, λ as in case 2.1

λ5 + λ6−2λ7−3, λ as in case 2.2, 2.3, 2.4, 2.5.1, 2.5.2, 2.6

Since the strict Dirac inequality holds for the second basic Schmid module, we have

λ ′
5 + λ ′

6−2λ ′
7 <

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−28, λ as in case 2.1

−26, λ as in case 2.2

−25, λ as in case 2.3

−24, λ as in case 2.4

−23, λ as in case 2.5.1 or 2.6

−22, λ as in case 2.5.2..

It is clear that
‖(λ ′ − s2)+ + ρ‖2 > ‖λ ′ + ρ‖2

if λ is in one of the cases 2.1,2.2,2.3 or 2.4. If λ is as in case 2.5.1 or 2.6, then λ ′
is not as in case 2.1 and therefore

‖(λ ′ − s2)+ + ρ‖2 > ‖λ ′+ ρ‖2.

If λ is as in case 2.5.2, then λ ′ is not as in case 2.1 or 2.2 and therefore

‖(λ ′ − s2)+ + ρ‖2 > ‖λ ′+ ρ‖2.
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So the strict Dirac inequality holds for the second basic Schmid module for the
weight λ ′ .

If λ ′
5 = λ ′

4 = λ ′
3 = λ ′

2 = λ ′
1 = 0, then it follows from lemma 2.4 that

‖(λ ′ − s0,b,0)+ + ρ‖2 > ‖λ ′ + ρ‖2 ∀b ∈ N. �

LEMMA 2.6. Let λ be a highest weight such that λ is as in case 3 and

‖(λ − s1)+ + ρ‖2 > ‖λ + ρ‖2.

Then
‖(λ ′ − s1)+ + ρ‖2 > ‖λ ′+ ρ‖2,

where λ ′ = (λ − s1)+ . If λ ′ is as in Case 1 or Case 2, then

‖(λ ′ − sa,b,c)+ + ρ‖2 > ‖λ ′ + ρ‖2, ∀a,b,c ∈ N0, a+b+ c = 0.

Proof. We have

λ ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(λ1,λ2,λ3,λ4,λ5,λ6,λ7+1,−λ7−1), λ as in case 1.1

(λ1+ 1
2 ,λ2− 1

2 ,λ3− 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6− 1

2 ,λ7+ 1
2 ,−λ7− 1

2 ), λ as in case 1.2.1

(λ2− 1
2 ,λ2+ 1

2 ,λ3− 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6− 1

2 ,λ7+ 1
2 ,−λ7− 1

2 ), λ as in case 1.2.2

(λ3− 1
2 ,λ3− 1

2 ,λ3+ 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6− 1

2 ,λ7+ 1
2 ,−λ7− 1

2 ), λ as in case 1.2.3

( 1
2 , 1

2 , 1
2 ,λ4− 1

2 ,λ5− 1
2 ,λ6− 1

2 ,λ7+ 1
2 ,−λ7− 1

2 ), λ as in case 1.2.4

(λ4− 1
2 ,λ4− 1

2 ,λ4− 1
2 ,λ4+ 1

2 ,λ5− 1
2 ,λ6− 1

2 ,λ7+ 1
2 ,−λ7− 1

2 ), λ as in case 1.2.5

(λ5− 1
2 ,λ5− 1

2 ,λ5− 1
2 ,λ5− 1

2 ,λ5+ 1
2 ,λ6− 1

2 ,λ7+ 1
2 ,−λ7− 1

2 ), λ as in case 1.2.7

Since
‖(λ − s1)+ + ρ‖2 > ‖λ + ρ‖2,

it follows that

λ ′
7 >

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9, λ as in case 1.1

8, λ as in case 1.2.1

7+ 1
2 , λ as in case 1.2.2

7, λ as in case 1.2.3

6+ 1
2 , λ as in case 1.2.4

6+ 1
2 , λ as in case 1.2.5

6, λ as in case 1.2.7

(2.5)

It is clear that
‖(λ ′ − s1)+ + ρ‖2 > ‖λ ′ + ρ‖2

if λ is as in case 1.1 or 1.2.1. If λ is as in case 1.2.2, then λ ′ is not as in case 1.1.
Also if λ is as in case 1.2.3, then λ ′ is neither as in case 1.1 nor as in case 1.2.1. If
λ is as in case 1.2.4 or 1.2.5, then λ ′ is not in any of the cases 1.1,1.2.1,1.2.2. If λ
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is in case 1.2.7, then λ ′ is in none of the cases 1.1,1.2.1,1.2.2,1.2.3. It follows from
(2.5) that

‖(λ ′ − s1)+ + ρ‖2 > ‖λ ′+ ρ‖2.

Furthermore, it follows from (2.5) that if λ is as in Case 3, then λ ′
7 > 6. Therefore, it

follows from the proof of theorem 2.4 and the proof of theorem 2.5 that if λ ′ is as in
Case 1 (case 1.2.8.) or as in Case 2 (case 1.2.6.), then

‖(λ ′ − sa,b,c)+ + ρ‖2 > ‖λ ′ + ρ‖2 ∀a,b,c ∈ N0, a+b+ c = 0. �

THEOREM 2.6. (Case 3) Let λ be the highest weight as in Case 3 such that the
strict basic Dirac inequality holds. Then

‖(λ − sa,b,c)+ + ρ‖2 > ‖λ + ρ‖2, a,b,c ∈ N0, (a,b,c) = (0,0,0)

Proof. Let λ be as in Case 3, and let us assume that the strict basic Dirac inequal-
ity holds. First we will prove that in this case we have

‖(λ − s0,b,0)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀b ∈ N. (2.6)

Let us denote λ ′ = (λ − s2)+ . We have already proved that if λ is in Case 3 and the
strict basic Dirac inequality holds, then the strict Dirac inequality also holds for s2 . So
we have

‖λ ′ + ρ‖2 > ‖λ + ρ‖2. (2.7)

If λ1 = λ2 = λ3 = λ4 = λ5 = 0 then (2.6) obviously follows from Lemma 2.4. Let us
assume that (λ1,λ2,λ3,λ4,λ5) = (0,0,0,0,0) . From Lemma 2.5 it follows that

‖(λ ′ − s2)+ + ρ‖2 > ‖λ ′+ ρ‖2. (2.8)

Let us assume that b > 1 ((2.6) obviously holds for b = 1 since s0,b,0 = s2 ). Let
w ∈Wk be such that λ − s2 = w(λ − s2)+ . From Lemma 1.1 we have

‖(λ − s0,b,0)+ + ρ‖2 = ‖(λ − s2− s0,b−1,0)+ + ρ‖2

= ‖(w(λ − s2)+ − s0,b−1,0)+ + ρ‖2

� ‖((λ − s2)+− s0,b−1,0)+ + ρ‖2

= ‖(λ ′ − s0,b−1,0)+ + ρ‖2.

It follows from the last inequality and (2.7) that

‖(λ − s0,b,0)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ ′ − s0,b−1,0)+ + ρ‖2−‖λ ′+ ρ‖2. (2.9)

If λ ′
i = 0 for i = 1,2,3,4,5, then it follows from Lemma 2.4 and (2.8)

‖(λ ′ − s0,b−1,0)+ + ρ‖2 > ‖λ ′+ ρ‖2.

and by (2.9)
‖(λ − s0,b,0)+ + ρ‖2−‖λ + ρ‖2 > 0.
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If (λ ′
1,λ

′
2,λ

′
3,λ

′
4,λ

′
5) = (0,0,0,0,0) and b = 2, then (2.6) follows from (2.9) and

(2.8).
If (λ ′

1,λ ′
2,λ ′

3,λ ′
4,λ ′

5) = (0,0,0,0,0) and b > 2, then we have

‖(λ ′ − s0,b−1,0)+ + ρ‖2−‖λ ′+ ρ‖2 > ‖(λ ′′ − s0,b−2,0)+ + ρ‖2−‖λ ′′+ ρ‖2,

where λ ′′ = (λ ′ − s2)+ . By induction, it follows that

‖(λ − s0,b,0)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀b ∈ N.

Now we will prove that

‖(λ − s0,b,c)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀b,c ∈ N0, b+ c = 0. (2.10)

Let us denote λ ′′′ = (λ − s3)+ . Since λ is in Case 3, it is easy to check that λ ′′′ is
also in Case 3. We have already proved that if λ is in Case 3 and the strict basic Dirac
inequality holds, then the strict Dirac inequality also holds for s3 . So we have

‖λ ′′′+ ρ‖2 > ‖λ + ρ‖2.

Let w′ ∈Wk be such that λ − s3 = w′(λ − s3)+ . From Lemma (1.1) we have

‖(λ − s0,b,c)+ + ρ‖2 = ‖(λ − s3− s0,b,c−1)+ + ρ‖2

= ‖(w′(λ − s3)+− s0,b,c−1)+ + ρ‖2

� ‖((λ − s3)+ − s0,b,c−1)+ + ρ‖2

= ‖(λ ′′′ − s0,b,c−1)+ + ρ‖2,

if c > 1. From the last two inequalities it follows that

‖(λ − s0,b,c)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ ′′′ − s0,b,c−1)+ + ρ‖2−‖λ ′′′+ ρ‖2

∀b,c ∈ N0,b+ c = 0 (2.11)

Now (2.10) follows from Lemma 2.3, (2.2) and (2.6) by induction on c .
Now we will prove that if λ is in Case 3, and the strict basic Dirac inequality

holds, then

‖(λ − sa,b,c)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀a,b,c ∈ N0,(a,b,c) = (0,0,0).

Lat us assume that a > 0 (if a = 0, the last inequality is exactly (2.10)). Let us denote
λ̃ = (λ − s1)+ . We have

‖λ̃ + ρ‖2 > ‖λ + ρ‖2.

Let w̃ ∈Wk be such that λ − s1 = w̃(λ − s1)+ . From Corollary 2.9 we have

‖(λ − sa,b,c)+ + ρ‖2 = ‖(λ − s1− sa−1,b,c)+ + ρ‖2

= ‖(w̃(λ − s1)+ − sa−1,b,c)+ + ρ‖2

� ‖((λ − s1)+− sa−1,b,c)+ + ρ‖2

= ‖(λ̃ − sa−1,b,c)+ + ρ‖2.
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From the last two inequalities it follows that

‖(λ − sa,b,c)+ + ρ‖2−‖λ + ρ‖2 > ‖(λ̃ − sa−1,b,c)+ + ρ‖2−‖λ̃ + ρ‖2. (2.12)

If λ̃ is in Case 1 or Case 2, then it follows from lemma 2.6 that

‖(λ̃ − sa−1,b,c)+ + ρ‖2 > ‖λ̃ + ρ‖2,

and from (2.12) it follows that

‖(λ − sa,b,c)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀a,b,c ∈ N0,a+b+ c = 0.

If λ̃ is in Case 3 and a > 1 then it follows from Lemma 2.6 and (2.12) that

‖(λ̃ − sa−1,b,c)+ + ρ‖2−‖λ̃ + ρ‖2 > ‖(λ − sa−2,b,c)+ + ρ‖2−‖λ + ρ‖2,

where λ = (λ̃ − s1)+ . By induction on a and by (2.10), it follows

‖(λ − sa,b,c)+ + ρ‖2−‖λ + ρ‖2 > 0 ∀a,b,c ∈ N0,(a,b,c) = (0,0,0). �
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[12] P. PANDŽIĆ, A. PRLIĆ, V. SOUČEK, V. TUČEK, On the classification of unitary highest weight
modules, in preparation

[13] W. SCHMID, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent.
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