# DIRAC INEQUALITY FOR HIGHEST WEIGHT HARISH-CHANDRA MODULES II 

Pavle Pandžićć, Ana Prlić, Vladimír Souček and Vít Tuček

(Communicated by J. Pečarić)


#### Abstract

Let $G$ be a connected simply connected noncompact exceptional simple Lie group of Hermitian type. In this paper, we work with the Dirac inequality which is a very useful tool for the classification of unitary highest weight modules.


## 1. Introduction

Let $G$ be a connected simply connected noncompact exceptional simple Lie group of Hermitian type. That means that $G$ is either of type $E_{6}$ or of type $E_{7}$. Let $\Theta$ be a Cartan involution of $G$ and let $K$ be the group of fixed points of $\Theta$. Then $K / Z$ is a maximal compact subgroup of $G / Z$, where $Z$ denotes the center of $G$.

We will denote by $\mathfrak{g}_{0}$ the Lie algebra of $G$ and by $\mathfrak{k}_{0}$ the Lie algebra of $K$. Let $\mathfrak{g}_{0}=\mathfrak{k}_{0} \oplus \mathfrak{p}_{0}$ be the Cartan decomposition and let $\mathfrak{t}_{0}$ be a Cartan subalgebra of $\mathfrak{k}_{0}$. Our assumptions on $G$ imply that $\mathfrak{t}_{0}$ is also a Cartan subalgebra of $\mathfrak{g}_{0}$. We delete the subscript 0 to denote complexifications.

Let $\Delta_{\mathfrak{g}}^{+} \supset \Delta_{\mathfrak{k}}^{+}$denote fixed sets of positive respectively positive compact roots. Since the pair $(G, K)$ is Hermitian, we have a $K$-invariant decomposition $\mathfrak{p}=\mathfrak{p}^{+} \oplus \mathfrak{p}^{-}$ and $\mathfrak{p}^{ \pm}$are abelian subalgebras of $\mathfrak{p}$. Let $\rho$ denote the half sum of positive roots for $\mathfrak{g}$.

We will consider $\lambda \in \mathfrak{t}^{*}$ which are $\Delta_{\mathfrak{k}}^{+}$-dominant integral $\left(\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{N} \cup\{0\}\right.$, $\forall \alpha \in \Delta_{\mathfrak{k}}^{+}$). Let $N(\boldsymbol{\lambda})$ denote the generalized Verma module. From definition $N(\boldsymbol{\lambda}) \simeq$ $S\left(\mathfrak{p}^{-}\right) \otimes F_{\lambda}$, where $F_{\lambda}$ is the irreducible $\mathfrak{k}$-module with highest weight $\lambda$. The generalized Verma module $N(\lambda)$ is a highest weight module. In case $N(\lambda)$ is not irreducible, we will consider the irreducible quotient $L(\lambda)$ of $N(\lambda)$. Our main goal is to determine those weights $\lambda$ which correspond to unitarizable $L(\lambda)$ using the Dirac inequality. We consider only real highest weights $\lambda$ since this is a necessary condition for unitarity.

To learn more about highest weight modules see [1], [2], [3], [4], [5], [10].
The $K$-types of $S\left(\mathfrak{p}^{-}\right)$are called the Schmid modules. For each of the Lie algebras in Table 2, the general Schmid module $s$ is a nonnegative integer combination of the

[^0]so called basic Schmid modules. The basic Schmid modules for each exceptional Lie algebra $\mathfrak{g}_{0}$ for which $(G, K)$ is a Hermitian symmetric pair are given in Table 2. To learn more about the Schmid modules see [13].

The Dirac operator is an element of $U(\mathfrak{g}) \otimes C(\mathfrak{p})$ defined as $D=\sum_{i} b_{i} \otimes d_{i}$ where $b_{i}$ is a basis of $\mathfrak{p}$ and $d_{i}$ is the dual basis of $\mathfrak{p}$ with respect to the Killing form $B$. The Dirac operator acts on the tensor product $X \otimes S$ where $X$ is a $(\mathfrak{g}, K)$-module, and $S$ is the spin module for $C(\mathfrak{p})$. The square of the Dirac operator is:

$$
D^{2}=-\left(\operatorname{Cas}_{\mathfrak{g}} \otimes 1+\|\rho\|^{2}\right)+\left(\operatorname{Cas}_{\mathfrak{k}_{\Delta}}+\left\|\rho_{\mathfrak{k}}^{2}\right\|\right)
$$

where $\rho_{\mathfrak{k}}$ is a half sum of the compact positive roots. To learn more about the Dirac operators in representation theory see [6], [8], [9], [7]).

If a $(\mathfrak{g}, K)$-module is unitary, then $D$ is self adjoint with respect to an inner product, so $D^{2} \geqslant 0$. By the formula for $D^{2}$ the Dirac inequality becomes explicit on any $K$-type $F_{\tau}$ of $L(\lambda) \otimes S$

$$
\left\|\tau+\rho_{\mathfrak{k}}\right\|^{2} \geqslant\|\lambda+\rho\|^{2}
$$

In [3] it was proved that $L(\lambda)$ is unitary if and only if $D^{2}>0$ on $F_{\mu} \otimes \bigwedge^{\text {top }} \mathfrak{p}^{+}$for any $K$-type $F_{\mu}$ of $L(\lambda)$ other than $F_{\lambda}$, that is if and only if

$$
\|\mu+\rho\|^{2}>\|\lambda+\rho\|^{2}
$$

The following theorem gives us motivation to study the Dirac inequality (see [11] for the case of classical Lie groups):

THEOREM 1.1. Let us assume that $\mathfrak{g}, \rho, \lambda, s$ are as in tables 1 and 2.
(1) Let $s_{0}$ be a Schmid module such that the strict Dirac inequality

$$
\begin{equation*}
\left\|(\lambda-s)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} \tag{1.1}
\end{equation*}
$$

holds for any Schmid module s of strictly lower level than $s_{0}$, and such that

$$
\left\|\left(\lambda-s_{0}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2} .
$$

Then $L(\lambda)$ is not unitary.
(2) If

$$
\begin{equation*}
\left\|(\lambda-s)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} \tag{1.2}
\end{equation*}
$$

holds for all Schmid modules $s$, then $N(\lambda)$ is irreducible and unitary.
In Theorem 1.1, $(\lambda-s)^{+}$is the unique $\mathfrak{k}$-dominant $W_{\mathfrak{k}}$-conjugate of $\lambda-s$, which means that $(\lambda-s)^{+}$is as in the third column of Table 2.

The proof of the above theorem requires some tools from representation theory, so we will omit it in this paper and prove it in [12].

In Table 1, $s_{\alpha}(\lambda)=\lambda-\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha$ is the reflection of $\lambda$ with respect to the hyperplane orthogonal to a root $\alpha, W_{\mathfrak{k}}$ is the Weyl group of $\mathfrak{k}$ generated by the $s_{\alpha}$ and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$.

Table 1: $\rho$ and $W_{\mathfrak{k}}$

| Lie algebra | $\rho$ | generators of $W_{\mathfrak{k}}$ |
| :---: | :---: | :---: |
| $\mathfrak{e}_{6}$ | $(0,1,2,3,4,-4,-4,4)$ | $s_{\varepsilon_{i} \pm \varepsilon_{j}}, 5 \geqslant i>j$ |
| $\mathfrak{e}_{7}$ | $\left(0,1,2,3,4,5,-\frac{17}{2}, \frac{17}{2}\right)$ | $s_{\varepsilon_{i} \pm \varepsilon_{j}}, 5 \geqslant i>j$, |
| $s_{\frac{1}{2}\left(\varepsilon_{8}-\varepsilon_{7}-\varepsilon_{6}-\varepsilon_{5}-\varepsilon_{4}-\varepsilon_{3}-\varepsilon_{2}+\varepsilon_{1}\right)}$ |  |  |

Table 2: The weights of basic Schmid modules and the condition for the $\mathfrak{k}$-highest weights $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$

| Lie algebra | basic Schmid modules | highest weights |
| :---: | :---: | :---: |
| $\mathfrak{e}_{6}$ | $s_{1}=\frac{1}{2}(1,1,1,1,1,-1,-1,1)$, <br> $s_{2}=(0,0,0,0,1,-1,-1,1)$ | $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{6},-\lambda_{6}\right)$ <br> $\left\|\lambda_{1}\right\| \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{5}$ <br> $\lambda_{i}-\lambda_{j} \in \mathbb{Z}, 2 \lambda_{i} \in \mathbb{Z}, i, j \leqslant 5$. |
|  |  | $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7},-\lambda_{7}\right)$ <br> $\left\|\lambda_{1}\right\| \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{5}$ <br> $\mathfrak{e}_{7}$ |
|  | $s_{1}=(0,0,0,0,0,0,-1,1)$, |  |
| $s_{2}=(0,0,0,0,1,1,-1,1)$, |  |  |
| $s_{3}=(0,0,0,0,0,2,-1,1)$ | $\lambda_{i}-\lambda_{j} \in \mathbb{Z}, 2 \lambda_{i} \in \mathbb{Z}, i, j \leqslant 5$ <br> and $\frac{1}{2}\left(\lambda_{8}-\sum_{i=2}^{7} \lambda_{i}+\lambda_{1}\right) \in \mathbb{N}_{0}$ |  |

Here $\lambda$ and $\rho$ are elements of $\mathfrak{t}^{*}$ which is identified with $\mathbb{C}^{n}$, and $\varepsilon_{i}$ denotes the projection to the $i$-th coordinate. The roots are certain functionals on $t^{*}$ and the relevant ones are those in the subscripts of the reflections $s$ in Table 1, like $\varepsilon_{i}-\varepsilon_{j}$ or $\varepsilon_{i}+\varepsilon_{j}$.

We will frequently use the following lemma in our calculations (see [11]):
LEMMA 1.1. Let $\mathfrak{g}$ be one of the Lie algebras listed in the above tables. Let $\mu$ and $v$ be weights as in Table 2. Let $w_{1}, w_{2} \in W_{\mathfrak{k}}$. Then

$$
\left\|\left(w_{1} \mu-w_{2} v\right)^{+}+\rho\right\|^{2} \geqslant\left\|(\mu-v)^{+}+\rho\right\|^{2} .
$$

In Lemma 1.1, $\left(w_{1} \mu-w_{2} v\right)^{+}$is the unique dominant $W_{\mathfrak{k}}$-conjugate of $w_{1} \mu-w_{2} v$, which means $\left(w_{1} \mu-w_{2} v\right)^{+}$is as in the third column of Table 2. The proof requires some representation theory and we leave it for [12].

## 2. Dirac inequalities

### 2.1. Dirac inequality for $\mathfrak{e}_{6}$

The basic Schmid $\mathfrak{k}$-modules in $S\left(\mathfrak{p}^{-}\right)$have lowest weight $-s_{i}, i=1,2$, where

$$
\begin{aligned}
& s_{1}=\beta_{1}=\frac{1}{2}(1,1,1,1,1,-1,-1,1) \\
& s_{2}=\beta_{1}+\beta_{2}=(0,0,0,0,1,-1,-1,1)
\end{aligned}
$$

The highest weight $(\mathfrak{g}, K)$-modules have highest weights of the form

$$
\begin{array}{ll}
\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{6},-\lambda_{6}\right), & \left|\lambda_{1}\right| \leqslant \lambda_{2} \leqslant \lambda_{3} \leqslant \lambda_{4} \leqslant \lambda_{5} \\
& \lambda_{i}-\lambda_{j} \in \mathbb{Z}, 2 \lambda_{i} \in \mathbb{Z}, \quad i, j \in\{1,2,3,4,5\}
\end{array}
$$

In this case

$$
\rho=(0,1,2,3,4,-4,-4,4) .
$$

The basic necessary condition for unitarity is the Dirac inequality

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2} \geqslant\|\lambda+\rho\|^{2}
$$

As before, we write $\left(\lambda-s_{1}\right)^{+}=\lambda-\gamma_{1}$. Then the Dirac inequality is equivalent to

$$
2\left\langle\gamma_{1} \mid \lambda+\rho\right\rangle \leqslant\left\|\gamma_{1}\right\|^{2}
$$

We have

$$
\begin{aligned}
& \lambda-s_{1}=\left(\lambda_{1}-\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}+\frac{1}{2}, \lambda_{6}+\frac{1}{2},-\lambda_{6}-\frac{1}{2}\right) \\
& \lambda+\rho=\left(\lambda_{1}, \lambda_{2}+1, \lambda_{3}+2, \lambda_{4}+3, \lambda_{5}+4, \lambda_{6}-4, \lambda_{6}-4,-\lambda_{6}+4\right)
\end{aligned}
$$

There are eight cases.
Case 1.1: $\lambda_{1}+\lambda_{2} \geqslant 1$. In this case $\gamma_{1}=s_{1}$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i}+20 \leqslant 3 \lambda_{6}
$$

Case 1.2: $\lambda_{2}=-\lambda_{1}, \lambda_{3}-\lambda_{2} \geqslant 1$. In this case $\gamma_{1}=\frac{1}{2}(-1,-1,1,1,1,-1,-1,1)$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i}+18 \leqslant 3 \lambda_{6}
$$

Case 1.3: $\lambda_{3}=\lambda_{2}=-\lambda_{1}, \lambda_{2}>0, \lambda_{4}-\lambda_{2} \geqslant 1$. In this case $\gamma_{1}=\frac{1}{2}(-1,1,-1,1,1$, $-1,-1,1)$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i}+16 \leqslant 3 \lambda_{6}
$$

Case 1.4: $\lambda_{3}=\lambda_{2}=\lambda_{1}=0, \lambda_{4} \geqslant 1$. In this case $\gamma_{1}=\frac{1}{2}(1,-1,-1,1,1,-1,-1,1)$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i}+14 \leqslant 3 \lambda_{6}
$$

Case 1.5: $\lambda_{4}=\lambda_{3}=\lambda_{2}=-\lambda_{1}, \lambda_{2}>0, \lambda_{5}-\lambda_{2} \geqslant 1$. In this case $\gamma_{1}=\frac{1}{2}(-1,1,1$, $-1,1,-1,-1,1)$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i}+14 \leqslant 3 \lambda_{6}
$$

Case 1.6: $\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}=0, \lambda_{5}-\lambda_{2} \geqslant 1$. In this case $\gamma_{1}=\frac{1}{2}(-1,-1,-1$, $-1,1,-1,-1,1)$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i}+8 \leqslant 3 \lambda_{6}
$$

Case 1.7: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=-\lambda_{1}, \lambda_{2}>0$. In this case $\gamma_{1}=\frac{1}{2}(-1,1,1,1,-1$, $-1,-1,1)$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i}+12 \leqslant 3 \lambda_{6}
$$

Case 1.8: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}=0$. In this case $\gamma_{1}=\frac{1}{2}(1,-1,-1,-1,-1,-1$, $-1,1)$. The basic inequality is equivalent to

$$
\sum_{i=1}^{5} \lambda_{i} \leqslant 3 \lambda_{6}
$$

i.e. $\lambda_{6} \geqslant 0$.

Now we are going to see in which cases the Dirac inequality holds for $s_{2}$. We have

$$
\lambda-s_{2}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}-1, \lambda_{6}+1, \lambda_{6}+1,-\lambda_{6}-1\right)
$$

We write $\left(\lambda-s_{2}\right)^{+}=\lambda-\gamma_{2}$. Then the Dirac inequality for $s_{2}$

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2} \geqslant\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
2\left\langle\gamma_{2}, \lambda+\rho\right\rangle \leqslant\left\|\gamma_{2}\right\|^{2}
$$

There are seven cases.

Case 2.1: $\lambda_{5} \neq \lambda_{4}$. In this case $\gamma_{2}=s_{2}$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+14 \leqslant 3 \lambda_{6}
$$

Case 2.2: $\lambda_{5}=\lambda_{4}>\lambda_{3}$. In this case $\gamma_{2}=(0,0,0,1,0,-1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+13 \leqslant 3 \lambda_{6} .
$$

Case 2.3: $\lambda_{5}=\lambda_{4}=\lambda_{3}>\lambda_{2}$. In this case $\gamma_{2}=(0,0,1,0,0,-1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+12 \leqslant 3 \lambda_{6}
$$

Case 2.4: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}>\left|\lambda_{1}\right|$. In this case $\gamma_{2}=(0,1,0,0,0,-1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+11 \leqslant 3 \lambda_{6}
$$

Case 2.5: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}>0$. In this case $\gamma_{2}=(1,0,0,0,0,-1,-1,1)$. The basic inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+10 \leqslant 3 \lambda_{6} .
$$

Case 2.6: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=-\lambda_{1}>0$. In this case $\gamma_{2}=(-1,0,0,0,0,-1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+10 \leqslant 3 \lambda_{6}
$$

Case 2.7: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}=0$. In this case $\gamma_{2}=(0,0,0,0,-1,-1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+6 \leqslant 3 \lambda_{6}
$$

i.e. $\lambda_{6} \geqslant 2$.

It is easy to see that in the cases $1.1,1.2,1.3,1.4,1.5$ and 1.7 if the Dirac inequality holds for $s_{1}$ then it also holds for $s_{2}$, since

$$
\lambda_{5} \leqslant \sum_{i=1}^{5} \lambda_{i}
$$

Therefore we have three basic cases:
Case 1: $\lambda_{i}=0, i \in\{1,2,3,4,5\}$.

In this case the basic Dirac inequality can be written as

$$
\lambda_{6} \geqslant 0 .
$$

The Dirac inequality for the second basic Schmid module is equivalent to

$$
\lambda_{6} \geqslant 2
$$

Case 2: $\lambda_{i}=0, i \in\{1,2,3,4\}, \lambda_{5} \neq 0$.
In this case the basic Dirac inequality can be written as

$$
\lambda_{5}+8 \leqslant 3 \lambda_{6} .
$$

The Dirac inequality for the second basic Schmid module is equivalent to

$$
\lambda_{5}+14 \leqslant 3 \lambda_{6} .
$$

Case 3: $\lambda$ is of type $1.1,1.2,1.3,1.4,1.5$ or 1.7, i.e. $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \neq(0,0,0,0)$. The Dirac inequality for the second basic Schmid module is automatically satisfied if the basic Dirac inequality holds.

Let
$s_{a, b}=a s_{1}+b s_{2}=\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \frac{a}{2}+b,-\frac{a}{2}-b,-\frac{a}{2}-b, \frac{a}{2}+b\right), \quad a, b \in \mathbb{N}_{0}, \quad a+b>0$ be a general Schmid module.

THEOREM 2.1. (Case 1) Let $\lambda$ be the highest weight of the form $\lambda=(0,0,0,0,0$, $\left.\lambda_{6}, \lambda_{6},-\lambda_{6}\right)$.

1. If $\lambda_{6}>2$ then $\lambda$ satisfies the strict Dirac inequality

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} \quad \forall a, b \in \mathbb{N}_{0}, a+b \neq 0
$$

2. If $0<\lambda_{6}<2$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

and the strict Dirac inequality holds for any Schmid module of strictly lower level than $s_{2}$.
3. If $\lambda_{6}<0$ than the basic Dirac inequality fails.

Proof.

1. We have

$$
\lambda-s_{a, b}=\left(-\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2}-b, \lambda_{6}+\frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b,-\lambda_{6}-\frac{a}{2}-b\right),
$$

and therefore

$$
\begin{aligned}
\left(\lambda-s_{a, b}\right)^{+} & =\left(-\frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b,-\lambda_{6}-\frac{a}{2}-b\right) \\
& =\lambda-\left(\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2}-b,-\frac{a}{2}-b,-\frac{a}{2}-b, \frac{a}{2}+b\right) .
\end{aligned}
$$

Then the strict Dirac inequality

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
2\left\langle\gamma_{a, b} \mid \lambda+\rho\right\rangle<\left\|\gamma_{a, b}\right\|^{2}
$$

where $\gamma_{a, b}=\left(\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2}-b,-\frac{a}{2}-b,-\frac{a}{2}-b, \frac{a}{2}+b\right)$ and this inequality is equivalent to

$$
-2 a^{2}-4 b^{2}-4 a b-10 a-8 b<3\left(\lambda_{6}-4\right)(a+2 b)
$$

Since $\lambda_{6}>2,3\left(\lambda_{6}-4\right)(a+2 b)>-6(a+2 b)$. Furthermore, the inequality

$$
-2 a^{2}-4 b^{2}-4 a b-10 a-8 b \leqslant-6(a+2 b)
$$

holds for all $a, b \in \mathbb{N}_{0}, a+b \neq 0$. So the strict Dirac inequality holds for any Schmid module $s_{a, b}$.
2. If $0<\lambda_{6}<2$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

Since the level of $s_{2}$ is equal to two, and the level of $a s_{1}+b s_{2}$ is equal to $a+2 b$, the only Schmid module of strictly lower level than $s_{2}$ is $s_{1}$.
For $s_{1}$ we have $\lambda_{6}>0$, which implies

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

3. If $\lambda_{6}<0$ than the basic Dirac inequality obviously fails since the basic Dirac inequality in Case 1 is equivalent to $\lambda_{6} \geqslant 0$.

THEOREM 2.2. (Case 2) Let $\lambda$ be the highest weight of the form $\lambda=(0,0,0,0$, $\left.\lambda_{5}, \lambda_{6}, \lambda_{6},-\lambda_{6}\right)$

1. If $3 \lambda_{6}-\lambda_{5}>14$ than $\lambda$ satisfies the strict Dirac inequality

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} \quad \forall a, b \in \mathbb{N}_{0}, a+b \neq 0
$$

2. If $8<3 \lambda_{6}-\lambda_{5}<14$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

and the strict Dirac inequality holds for any Schmid module of strictly lower level than $s_{2}$.
3. If $3 \lambda_{6}-\lambda_{5}<8$ than the basic Dirac inequality fails.

## Proof.

1. We have

$$
\lambda-s_{a, b}=\left(-\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2}, \lambda_{5}-\frac{a}{2}-b, \lambda_{6}+\frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b,-\lambda_{6}-\frac{a}{2}-b\right),
$$

and therefore

$$
\begin{aligned}
& \left(\lambda-s_{a, b}\right)^{+} \\
= & \left\{\begin{array}{l}
\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \lambda_{5}-\frac{a}{2}-b, \lambda_{6}+\frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b,-\lambda_{6}-\frac{a}{2}-b\right), \lambda_{5}>a+b \\
\left(\lambda_{5}-\frac{a}{2}-b, \frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \lambda_{6}+\frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b,-\lambda_{6}-\frac{a}{2}-b\right), b \leqslant \lambda_{5} \leqslant a+b \\
\left(-\frac{a}{2}, \frac{a}{2}, \frac{a}{2}, \frac{a}{2},-\lambda_{5}+\frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b, \lambda_{6}+\frac{a}{2}+b,-\lambda_{6}-\frac{a}{2}-b\right), \lambda_{5}<b
\end{array}\right. \\
= & \left\{\begin{array}{l}
\lambda-\left(-\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2}, \frac{a}{2}+b,-\frac{a}{2}-b,-\frac{a}{2}-b, \frac{a}{2}+b\right), \lambda_{5}>a+b \\
\lambda-\left(-\lambda_{5}+\frac{a}{2}+b,-\frac{a}{2},-\frac{a}{2},-\frac{a}{2}, \lambda_{5}-\frac{a}{2},-\frac{a}{2}-b,-\frac{a}{2}-b, \frac{a}{2}+b\right), b \leqslant \lambda_{5} \leqslant a+b \\
\lambda-\left(\frac{a}{2},-\frac{a}{2},-\frac{a}{2},-\frac{a}{2}, 2 \lambda_{5}-\frac{a}{2}-b,-\frac{a}{2}-b,-\frac{a}{2}-b, \frac{a}{2}+b\right), \lambda_{5}<b .
\end{array}\right.
\end{aligned}
$$

Then the strict Dirac inequality

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
\left\{\begin{array}{l}
2 a^{2}+4 b^{2}+4 a b-10 a-32 b+\left(3 \lambda_{6}-\lambda_{5}\right)(a+2 b)>0, \lambda_{5}>a+b \\
2 a^{2}+4 b^{2}+4 a b-2 a-24 b+\left(3 \lambda_{6}-\lambda_{5}\right)(a+2 b)-8 \lambda_{5}>0, b \leqslant \lambda_{5} \leqslant a+b \\
2 a^{2}+4 b^{2}+4 a b-2 a-16 b+\left(3 \lambda_{6}-\lambda_{5}\right)(a+2 b)-16 \lambda_{5}>0, \lambda_{5}<b
\end{array}\right.
$$

Since $3 \lambda_{6}-\lambda_{5}>14$, then $\left(3 \lambda_{6}-\lambda_{5}\right)(a+2 b)>14 a+28 b$. To prove the strict Dirac inequality it is enough to prove

$$
\left\{\begin{array}{l}
a^{2}+2 b^{2}+2 a b+2 a-2 b \geqslant 0, \lambda_{5}>a+b \\
a^{2}+2 b^{2}+2 a b+2 a-2 b \geqslant 0, b \leqslant \lambda_{5} \leqslant a+b \\
a^{2}+2 b^{2}+2 a b+6 a-2 b \geqslant 0, \lambda_{5}<b
\end{array}\right.
$$

This is true for all $a, b \in \mathbb{N}_{0},(a, b) \neq(0,0)$. So the strict Dirac inequality holds for any Schmid module $s_{a, b}$.
2. If $8<3 \lambda_{6}-\lambda_{5}<14$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

Since $s_{1}$ is the only Schmid module of strictly lower level than $s_{2}$, and for $s_{1}$ we have $3 \lambda_{6}-\lambda_{5}>8$, it follows that

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

3. If $3 \lambda_{6}-\lambda_{5}<8$ than the basic Dirac inequality obviously fails since in Case 2 the basic Dirac inequality is equivalent to $3 \lambda_{6}-\lambda_{5} \geqslant 8$.

LEMMA 2.1. Let $\lambda$ be a highest weight such that $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right) \neq(0,0,0,0,0)$ and

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} .
$$

Then

$$
\left\|\left(\lambda^{\prime}-s_{2}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

where $\lambda^{\prime}=\left(\lambda-s_{2}\right)^{+}$. If $\lambda_{i}^{\prime}=0$ for $i=1,2,3,4,5$, then

$$
\left\|\left(\lambda^{\prime}-s_{a, b}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}, \quad \forall a, b \in \mathbb{N}_{0}, \quad a+b \neq 0
$$

Proof. We have

$$
\lambda^{\prime}=\left\{\begin{array}{l}
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}-1, \lambda_{6}+1, \lambda_{6}+1,-\lambda_{6}-1\right), \lambda \text { as in case } 2.1 \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{5}-1, \lambda_{5}, \lambda_{6}+1, \lambda_{6}+1,-\lambda_{6}-1\right), \lambda \text { as in case } 2.2 \\
\left(\lambda_{1}, \lambda_{2}, \lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{6}+1, \lambda_{6}+1,-\lambda_{6}-1\right), \lambda \text { as in case } 2.3 \\
\left(\lambda_{1}, \lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}+1, \lambda_{6}+1,-\lambda_{6}-1\right), \lambda \text { as in case } 2.4 \\
\left(\lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}+1, \lambda_{6}+1,-\lambda_{6}-1\right), \lambda \text { as in case } 2.5 \\
\left(-\lambda_{5}+1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}+1, \lambda_{6}+1,-\lambda_{6}-1\right), \lambda \text { as in case } 2.6
\end{array}\right.
$$

If $\lambda^{\prime}$ is as in case $2.1\left(\lambda_{5}^{\prime} \neq \lambda_{4}^{\prime}\right)$, then $\lambda$ is either as in case 2.1 or as in case 2.2 . We have

$$
\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\lambda_{5}-3 \lambda_{6}-4<-14-4=-18, \lambda \text { as in case } 2.1 \\
\lambda_{5}-3 \lambda_{6}-3<-13-3=-16, \lambda \text { as in case } 2.2
\end{array}\right.
$$

Thus, $\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}<-14$. It follows that the strict Dirac inequality holds for the second basic Schmid module.

If $\lambda^{\prime}$ is as in case $2.2\left(\lambda_{5}^{\prime}=\lambda_{4}^{\prime}>\lambda_{3}^{\prime}\right)$, then $\lambda$ is either as in case 2.1 or as in case 2.3. We have

$$
\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\lambda_{5}-3 \lambda_{6}-4<-14-4=-18, \lambda \text { as in case } 2.1 \\
\lambda_{5}-3 \lambda_{6}-3<-12-3=-15, \lambda \text { as in case } 2.3
\end{array}\right.
$$

Thus, $\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}<-13$. It follows that the strict Dirac inequality holds for the second basic Schmid module.

If $\lambda^{\prime}$ is as in case $2.3\left(\lambda_{5}^{\prime}=\lambda_{4}^{\prime}=\lambda_{3}^{\prime}>\lambda_{2}^{\prime}\right)$, then $\lambda$ is either as in case 2.1 or as in case 2.4 . We have

$$
\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\lambda_{5}-3 \lambda_{6}-4<-14-4=-18, \lambda \text { as in case } 2.1 \\
\lambda_{5}-3 \lambda_{6}-3<-11-3=-14, \lambda \text { as in case } 2.4
\end{array}\right.
$$

Thus, $\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}<-12$. It follows that the strict Dirac inequality holds for the second basic Schmid module.

If $\lambda^{\prime}$ is as in case $2.4\left(\lambda_{5}^{\prime}=\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}>\left|\lambda_{1}^{\prime}\right|\right)$, then $\lambda$ is either as in case 2.1 or as in case 2.5 or as in case 2.6. We have

$$
\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\lambda_{5}-3 \lambda_{6}-4<-14-4=-18, \lambda \text { as in case } 2.1 \\
\lambda_{5}-3 \lambda_{6}-3<-10-3=-13, \lambda \text { as in case } 2.5 \text { or as in case } 2.6
\end{array}\right.
$$

Thus, $\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}<-11$. It follows that the strict Dirac inequality holds for the second basic Schmid module.

If $\lambda^{\prime}$ is as in case 2.5 or as in case $2.6\left(\lambda_{5}^{\prime}=\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=\left|\lambda_{1}^{\prime}\right|>0\right)$, then $\lambda$ is either as in case 2.1 or as in case 2.5 (for $\lambda_{1}=\frac{1}{2}$ ) or as in case 2.6 (for $\lambda_{1}=\frac{1}{2}$ ). We have

$$
\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\lambda_{5}-3 \lambda_{6}-4<-14-4=-18, \lambda \text { as in case } 2.1 \\
\lambda_{5}-3 \lambda_{6}-3<-10-3=-13, \lambda \text { as in case } 2.5 \text { or as in case } 2.6
\end{array}\right.
$$

Thus, $\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}<-10$. It follows that the strict Dirac inequality holds for the second basic Schmid module.

If $\lambda^{\prime}$ is as in case $2.7\left(\lambda_{5}^{\prime}=\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=\lambda_{1}^{\prime}=0\right)$, then $\lambda=\left(0,0,0,0,1, \lambda_{6}, \lambda_{6}\right.$, $-\lambda_{6}$ ) and $1-3 \lambda_{6}<-14$, that is $\lambda_{6}>5$ and $\lambda_{6}^{\prime}=\lambda_{6}+1>6>2$. The strict Dirac inequality holds for the second basic Schmid module.

It follows from theorem 2.1 that

$$
\left\|\left(\lambda^{\prime}-s_{a, b}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime}+\rho\right\|^{2}>0 \quad \forall a, b \in \mathbb{N}_{0} \quad a+b \neq 0
$$

Lemma 2.2. Let $\lambda$ be a highest weight such that $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \neq(0,0,0,0)$ and

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

Then

$$
\left\|\left(\lambda^{\prime}-s_{1}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

where $\lambda^{\prime}=\left(\lambda-s_{1}\right)^{+}$. If $\lambda_{i}^{\prime}=0$ for $i=1,2,3,4$, then

$$
\left\|\left(\lambda^{\prime}-s_{a, b}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}, \quad \forall a, b \in \mathbb{N}_{0}, \quad a+b \neq 0
$$

Proof. We have
$\lambda^{\prime}=\left\{\begin{array}{l}\left(\lambda_{1}-\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}+\frac{1}{2}, \lambda_{6}+\frac{1}{2},-\lambda_{6}-\frac{1}{2}\right), \lambda \text { as in case } 1.1 \\ \left(-\lambda_{2}+\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}+\frac{1}{2}, \lambda_{6}+\frac{1}{2},-\lambda_{6}-\frac{1}{2}\right), \lambda \text { as in case } 1.2 \\ \left(-\lambda_{2}+\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}+\frac{1}{2}, \lambda_{6}+\frac{1}{2},-\lambda_{6}-\frac{1}{2}\right), \lambda \text { as in case } 1.3 \\ \left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}+\frac{1}{2}, \lambda_{6}+\frac{1}{2},-\lambda_{6}-\frac{1}{2}\right), \lambda \text { as in case } 1.4 \\ \left(-\lambda_{2}+\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}+\frac{1}{2}, \lambda_{6}+\frac{1}{2},-\lambda_{6}-\frac{1}{2}\right), \lambda \text { as in case } 1.5 \\ \left(-\lambda_{2}+\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \lambda_{6}+\frac{1}{2}, \lambda_{6}+\frac{1}{2},-\lambda_{6}-\frac{1}{2}\right), \lambda \text { as in case } 1.7\end{array}\right.$

If $\lambda^{\prime}$ is as in case $1.1\left(\lambda_{1}^{\prime}+\lambda_{2}^{\prime} \geqslant 1\right)$, then $\lambda$ is either as in case 1.1 or as in case 1.2. We have

$$
\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24, \lambda \text { as in case } 1.1 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-18-2=-20, \lambda \text { as in case } 1.2
\end{array}\right.
$$

Thus, $\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}<-20$. It follows that the strict basic Dirac inequality holds.
If $\lambda^{\prime}$ is as in case $1.2\left(-\lambda_{1}^{\prime}=\lambda_{2}^{\prime}, \lambda_{3}^{\prime}-\lambda_{2}^{\prime} \geqslant 1\right)$, then $\lambda$ is either as in case 1.1 or as in case 1.3. We have

$$
\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24, \lambda \text { as in case } 1.1 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-16-2=-18, \lambda \text { as in case } 1.3
\end{array}\right.
$$

Thus, $\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}<-18$. It follows that the strict basic Dirac inequality holds.
If $\lambda^{\prime}$ is as in case $1.3\left(\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=-\lambda_{1}^{\prime}, \lambda_{2}^{\prime}>0, \lambda_{4}^{\prime}-\lambda_{2}^{\prime} \geqslant 1\right)$, then $\lambda$ is either as in case 1.1 or as in case 1.4 or as in case 1.5 . We have

$$
\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24, \lambda \text { as in case } 1.1 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-14-2=-16, \lambda \text { as in case } 1.4 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-14-2=-16, \lambda \text { as in case } 1.5
\end{array}\right.
$$

Thus, $\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}<-16$. It follows that the strict basic Dirac inequality holds.
If $\lambda^{\prime}$ is as in case $1.4\left(\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\lambda_{3}^{\prime}=0, \lambda_{4}^{\prime}>0\right)$, then $\lambda$ is either as in case 1.1 or as in case 1.5 . We have

$$
\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24, \lambda \text { as in case } 1.1 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-14-2=-16, \lambda \text { as in case } 1.5
\end{array}\right.
$$

Thus, $\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}<-14$. It follows that the strict basic Dirac inequality holds.
If $\lambda^{\prime}$ is as in case $1.5\left(\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=-\lambda_{1}^{\prime}, \lambda_{2}^{\prime}>0, \lambda_{5}^{\prime}-\lambda_{2}^{\prime} \geqslant 1\right)$, then $\lambda$ is either as in case 1.1 or as in case 1.4 or as in case 1.7. We have

$$
\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24, \lambda \text { as in case } 1.1 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-14-2=-16, \lambda \text { as in case } 1.4 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-12-2=-14, \lambda \text { as in case } 1.7
\end{array}\right.
$$

Thus, $\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}<-14$. It follows that the strict basic Dirac inequality holds.
If $\lambda^{\prime}$ is as in case $1.6\left(\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=\lambda_{1}^{\prime}=0, \lambda_{5}^{\prime}-\lambda_{2}^{\prime} \geqslant 1\right)$, then $\lambda$ is either as in case 1.1 or as in case 1.7. We have
$\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}=\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24, \lambda \text { as in case } 1.1 \\ \sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-12-2=-14, \lambda \text { as in case } 1.7\end{array}\right.$
Thus, $\lambda_{5}^{\prime}-3 \lambda_{6}^{\prime}<-14$. It follows that the strict Dirac inequality for the second basic Schmid module holds and thus, from the proof of theorem 2.2 we have

$$
\left\|\left(\lambda^{\prime}-s_{a, b}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime}+\rho\right\|^{2}>0 \quad \forall a, b \in \mathbb{N}_{0}, \quad a+b \neq 0
$$

If $\lambda^{\prime}$ is as in case $1.7\left(\lambda_{5}^{\prime}=\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=-\lambda_{1}^{\prime}, \lambda_{2}^{\prime}>0\right)$, then $\lambda$ is either as in case 1.1 or as in case 1.4. We have

$$
\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\left\{\begin{array}{l}
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24, \lambda \text { as in case } 1.1 \\
\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-2<-14-2=-16, \lambda \text { as in case } 1.4
\end{array}\right.
$$

Thus, $\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}<-12$. It follows that the strict basic Dirac inequality holds.
If $\lambda^{\prime}$ is as in case $1.8\left(\lambda_{5}^{\prime}=\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=\lambda_{1}^{\prime}=0\right)$, then $\lambda$ is as in case 1.1. We have

$$
-3 \lambda_{6}^{\prime}=\sum_{i=1}^{5} \lambda_{i}^{\prime}-3 \lambda_{6}^{\prime}=\sum_{i=1}^{5} \lambda_{i}-3 \lambda_{6}-4<-20-4=-24
$$

Thus, $\lambda_{6}^{\prime}>8>2$. The strict Dirac inequality holds for the second basic Schmid module.

It follows from theorem 2.1 that

$$
\left\|\left(\lambda^{\prime}-s_{a, b}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime}+\rho\right\|^{2}>0 \quad \forall a, b \in \mathbb{N}_{0} \quad a+b \neq 0 .
$$

Theorem 2.3. (Case 3) Let $\lambda$ be the highest weight as in Case 3, i.e., $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right.$, $\left.\lambda_{4}\right) \neq(0,0,0,0)$ such that strict basic Dirac inequality holds. Then

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall a, b \in \mathbb{N}_{0},(a, b) \neq(0,0) .
$$

Proof. Let $\lambda$ be as in Case 3, and let us assume that the strict basic Dirac inequality holds. First we will prove that in this case we have

$$
\begin{equation*}
\left\|\left(\lambda-s_{0, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall b \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

Let us denote $\lambda^{\prime}=\left(\lambda-s_{2}\right)^{+}$. We have already proved that if $\lambda$ is in Case 3 and the strict basic Dirac inequality holds, then the strict Dirac inequality also holds for $s_{2}$. So we have

$$
\left\|\lambda^{\prime}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

Let us assume that $b>1$. Let $w \in W_{\mathfrak{e}}$ be such that $\lambda-s_{2}=w\left(\lambda-s_{2}\right)^{+}$. From Lemma 1.1 we have

$$
\begin{aligned}
\left\|\left(\lambda-s_{0, b}\right)^{+}+\rho\right\|^{2} & =\left\|\left(\lambda-s_{2}-s_{0, b-1}\right)^{+}+\rho\right\|^{2}=\left\|\left(w\left(\lambda-s_{2}\right)^{+}-s_{0, b-1}\right)^{+}+\rho\right\|^{2} \\
& \geqslant\left\|\left(\left(\lambda-s_{2}\right)^{+}-s_{0, b-1}\right)^{+}+\rho\right\|^{2}=\left\|\left(\lambda^{\prime}-s_{0, b-1}\right)^{+}+\rho\right\|^{2} .
\end{aligned}
$$

It follows from the last two inequalities that

$$
\begin{equation*}
\left\|\left(\lambda-s_{0, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>\left\|\left(\lambda^{\prime}-s_{0, b-1}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime}+\rho\right\|^{2} \quad \forall b>1 \tag{2.2}
\end{equation*}
$$

If $\lambda_{i}^{\prime}=0$ for $i=1,2,3,4,5$, then it follows from lemma 2.1 that

$$
\left\|\left(\lambda^{\prime}-s_{0, b-1}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}, \quad \forall b>1
$$

and it follows from (2.2) that

$$
\left\|\left(\lambda-s_{0, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0, \quad \forall b>1
$$

Since $\left\|\lambda^{\prime}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}$, we have

$$
\left\|\left(\lambda-s_{0, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0, \quad \forall b \in \mathbb{N}
$$

If $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}, \lambda_{4}^{\prime}, \lambda_{5}^{\prime}\right) \neq(0,0,0,0,0)$ and if $b>2$ then it follows from lemma 2.1 and from (2.2) that

$$
\left\|\left(\lambda^{\prime}-s_{0, b-1}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime}+\rho\right\|^{2}>\left\|\left(\lambda^{\prime \prime}-s_{0, b-2}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime \prime}+\rho\right\|^{2}
$$

where $\lambda^{\prime \prime}=\left(\lambda^{\prime}-s_{2}\right)^{+}$. By induction, it follows

$$
\left\|\left(\lambda-s_{0, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall b \in \mathbb{N} .
$$

Now we will prove that if $\lambda$ is as in Case 3 , and the strict basic Dirac inequality holds, then

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall a, b \in \mathbb{N}_{0},(a, b) \neq(0,0)
$$

Let us denote $\tilde{\lambda}=\left(\lambda-s_{1}\right)^{+}$. We have

$$
\|\tilde{\lambda}+\rho\|^{2}>\|\lambda+\rho\|^{2}
$$

Let us assume that $a>1$ or $a=1, b>0$. Let $\tilde{w} \in W_{\mathfrak{k}}$ be such that $\lambda-s_{1}=\tilde{w}\left(\lambda-s_{1}\right)^{+}$. It follows from Lemma 1.1 that

$$
\begin{aligned}
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2} & =\left\|\left(\lambda-s_{1}-s_{a-1, b}\right)^{+}+\rho\right\|^{2}=\left\|\left(\tilde{w}\left(\lambda-s_{1}\right)^{+}-s_{a-1, b}\right)^{+}+\rho\right\|^{2} \\
& \geqslant\left\|\left(\left(\lambda-s_{1}\right)^{+}-s_{a-1, b}\right)^{+}+\rho\right\|^{2}=\left\|\left(\tilde{\lambda}-s_{a-1, b}\right)^{+}+\rho\right\|^{2} .
\end{aligned}
$$

It follows from the last two inequalities that

$$
\begin{equation*}
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>\left\|\left(\tilde{\lambda}-s_{a-1, b}\right)^{+}+\rho\right\|^{2}-\|\tilde{\lambda}+\rho\|^{2} \tag{2.3}
\end{equation*}
$$

If $\tilde{\lambda}_{i}=0$ for $i=1,2,3,4$, then it follows from lemma 2.2 that

$$
\left\|\left(\tilde{\lambda}-s_{a-1, b}\right)^{+}+\rho\right\|^{2}>\|\tilde{\lambda}+\rho\|^{2}
$$

and it follows from (2.3) that

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall a, b \in \mathbb{N}_{0}, a+b \neq 0
$$

If $\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \tilde{\lambda}_{3}, \tilde{\lambda}_{4}\right) \neq(0,0,0,0)$ and $a>1$, then it follows from lemma 2.2 and from (2.3) that

$$
\left\|\left(\tilde{\lambda}-s_{a-1, b}\right)^{+}+\rho\right\|^{2}-\|\tilde{\lambda}+\rho\|^{2}>\left\|\left(\bar{\lambda}-s_{a-2, b}\right)^{+}+\rho\right\|^{2}-\|\bar{\lambda}+\rho\|^{2}
$$

where $\bar{\lambda}=\left(\tilde{\lambda}-s_{1}\right)^{+}$. By induction and by (2.1), it follows that

$$
\left\|\left(\lambda-s_{a, b}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall a, b \in \mathbb{N}_{0},(a, b) \neq(0,0)
$$

### 2.2. Dirac inequality for $\mathfrak{e}_{7}$

The basic Schmid $\mathfrak{k}$-modules in $S\left(\mathfrak{p}^{-}\right)$have lowest weights $-s_{i}, i=1,2,3$, where

$$
\begin{aligned}
& s_{1}=\beta_{1}=(0,0,0,0,0,0,-1,1) \\
& s_{2}=\beta_{1}+\beta_{2}=(0,0,0,0,1,1,-1,1) \\
& s_{3}=\beta_{1}+\beta_{2}+\beta_{3}=(0,0,0,0,0,2,-1,1)
\end{aligned}
$$

The highest weight $(\mathfrak{g}, K)$-modules have highest weight of the form

$$
\begin{aligned}
& \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7},-\lambda_{7}\right), \quad\left|\lambda_{1}\right| \leqslant \lambda_{2} \leqslant \lambda_{3} \leqslant \lambda_{4} \leqslant \lambda_{5} \\
& \quad \lambda_{i}-\lambda_{j} \in \mathbb{Z}, 2 \lambda_{i} \in \mathbb{Z}, 1 \leqslant i \leqslant j \leqslant 5 \\
& \frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}+\sum_{i=1}^{5}(-1)^{n(i)} \lambda_{i}\right) \in \mathbb{N}_{0}, \quad \sum_{n=1}^{5} n(i) \text { even, }
\end{aligned}
$$

which can be written more shortly as

$$
\begin{aligned}
& \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7},-\lambda_{7}\right), \quad\left|\lambda_{1}\right| \leqslant \lambda_{2} \leqslant \lambda_{3} \leqslant \lambda_{4} \leqslant \lambda_{5} \\
& \lambda_{i}-\lambda_{j} \in \mathbb{Z}, 2 \lambda_{i} \in \mathbb{Z}, 1 \leqslant i \leqslant j \leqslant 5 \\
& \frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right) \in \mathbb{N}_{0}
\end{aligned}
$$

In this case

$$
\rho=\left(0,1,2,3,4,5,-\frac{17}{2}, \frac{17}{2}\right)
$$

The basic necessary condition for unitarity is the Dirac inequality

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2} \geqslant\|\lambda+\rho\|^{2}
$$

As before, we write $\left(\lambda-s_{1}\right)^{+}=\lambda-\gamma_{1}$. Then the Dirac inequality is equivalent to

$$
2\left\langle\gamma_{1}, \lambda+\rho\right\rangle \leqslant\left\|\gamma_{1}\right\|^{2}
$$

We have

$$
\begin{aligned}
& \lambda-s_{1}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}+1,-\lambda_{7}-1\right) \\
& \lambda+\rho=\left(\lambda_{1}, \lambda_{2}+1, \lambda_{3}+2, \lambda_{4}+3, \lambda_{5}+4, \lambda_{6}+5, \lambda_{7}-\frac{17}{2},-\lambda_{7}+\frac{17}{2}\right)
\end{aligned}
$$

There are two basic cases.
Case 1.1: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right) \geqslant 1$. In this case $\gamma_{1}=s_{1}$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant 8
$$

Case 1.2: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0$. We have

$$
\begin{aligned}
& s_{\alpha_{1}}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}+1,-\lambda_{7}-1\right) \\
& =\left(\lambda_{1}+\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
\end{aligned}
$$

In this case we have eight subcases.
Case 1.2.1: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0, \lambda_{1}<\lambda_{2}$.
In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(\lambda_{1}+\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
$$

and $\gamma_{1}=\frac{1}{2}(-1,1,1,1,1,1,-1,1)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant \frac{15}{2}
$$

Case 1.2.2: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0, \lambda_{1}=\lambda_{2}<\lambda_{3}$.
In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(\lambda_{2}-\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
$$

and $\gamma_{1}=\frac{1}{2}(1,-1,1,1,1,1,-1,1)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant 7
$$

Case 1.2.3: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0,0<\lambda_{1}=\lambda_{2}=\lambda_{3}<$ $\lambda_{4}$.

In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(\lambda_{3}-\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{3}+\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
$$

and $\gamma_{1}=\frac{1}{2}(1,1,-1,1,1,1,-1,1)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant \frac{13}{2}
$$

Case 1.2.4: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0,0=\lambda_{1}=\lambda_{2}=\lambda_{3}<$ $\lambda_{4}$.

In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
$$

and $\gamma_{1}=\frac{1}{2}(-1,-1,-1,1,1,1,-1,1)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant 6
$$

Case 1.2.5: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0,0<\lambda_{1}=\lambda_{2}=\lambda_{3}=$ $\lambda_{4}<\lambda_{5}$.

In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(\lambda_{4}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{4}+\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
$$

and $\gamma_{1}=\frac{1}{2}(1,1,1,-1,1,1,-1,1)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant 6
$$

Case 1.2.6: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0,0=\lambda_{1}=\lambda_{2}=\lambda_{3}=$ $\lambda_{4}<\lambda_{5}$. We have

$$
\begin{gathered}
s_{\alpha_{1}} s_{\varepsilon_{2}-\varepsilon_{1}} s_{\varepsilon_{3}+\varepsilon_{4}}\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right) \\
=\left(0,0,0,0, \lambda_{5}-1, \lambda_{6}-1, \lambda_{7},-\lambda_{7}\right) .
\end{gathered}
$$

In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(0,0,0,0, \lambda_{5}-1, \lambda_{6}-1, \lambda_{7},-\lambda_{7}\right)
$$

and $\gamma_{1}=(0,0,0,0,1,1,0,0)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant 4
$$

Case 1.2.7: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0,0<\lambda_{1}=\lambda_{2}=\lambda_{3}=$ $\lambda_{4}=\lambda_{5}$.

In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(\lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}+\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
$$

and $\gamma_{1}=\frac{1}{2}(1,1,1,1,-1,1,-1,1)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant \frac{11}{2}
$$

Case 1.2.8: $\frac{1}{2}\left(\lambda_{8}-\lambda_{7}-\lambda_{6}-\lambda_{5}-\lambda_{4}-\lambda_{3}-\lambda_{2}+\lambda_{1}\right)=0,0=\lambda_{1}=\lambda_{2}=\lambda_{3}=$ $\lambda_{4}=\lambda_{5}$. We have

$$
\begin{gathered}
s_{\varepsilon_{5}-\varepsilon_{1}} s_{\alpha_{1}} s_{\varepsilon_{2}+\varepsilon_{3}} s_{\varepsilon_{4}+\varepsilon_{5}}\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right) \\
=\left(0,0,0,0,1, \lambda_{6}-1, \lambda_{7},-\lambda_{7}\right)
\end{gathered}
$$

In this case

$$
\left(\lambda-s_{1}\right)^{+}=\left(0,0,0,0,1, \lambda_{6}-1, \lambda_{7},-\lambda_{7}\right)
$$

and $\gamma_{1}=(0,0,0,0,-1,1,0,0)$. The basic inequality is equivalent to

$$
\lambda_{7} \geqslant 0 .
$$

Now we are going to see in which cases the Dirac inequality holds for $s_{2}$. We have

$$
\lambda-s_{2}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}-1, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right) .
$$

We write $\left(\lambda-s_{2}\right)^{+}=\lambda-\gamma_{2}$. Then the Dirac inequality for $s_{2}$

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2} \geqslant\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
2\left\langle\gamma_{2}, \lambda+\rho\right\rangle \leqslant\left\|\gamma_{2}\right\|^{2}
$$

There are seven cases.
Case 2.1: $\lambda_{5}>\lambda_{4}$. In this case $\gamma_{2}=s_{2}$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+24 \leqslant 0
$$

Case 2.2: $\lambda_{5}=\lambda_{4}>\lambda_{3}$. In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{5}-1, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

and $\gamma_{2}=(0,0,0,1,0,1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+23 \leqslant 0
$$

Case 2.3: $\lambda_{5}=\lambda_{4}=\lambda_{3}>\lambda_{2}$. In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(\lambda_{1}, \lambda_{2}, \lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

and $\gamma_{2}=(0,0,1,0,0,1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+22 \leqslant 0
$$

Case 2.4: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}>\left|\lambda_{1}\right|$. In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(\lambda_{1}, \lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

and $\gamma_{2}=(0,1,0,0,0,1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+21 \leqslant 0
$$

Case 2.5: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}>0$. We have two subcases:

Case 2.5.1: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}>0, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}-\lambda_{6}-\lambda_{7}+\lambda_{8}\right)$ $\geqslant 1$.

In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(\lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

and $\gamma_{2}=(1,0,0,0,0,1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+20 \leqslant 0
$$

Case 2.5.2: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}>0, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}-\lambda_{6}-\lambda_{7}+\lambda_{8}\right)$ $=0$. We have

$$
\begin{aligned}
& s_{\alpha_{1}}\left(\lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right) \\
& =\left(\lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{3}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
\end{aligned}
$$

In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(\lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{3}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right)
$$

and $\gamma_{2}=\frac{1}{2}(1,1,1,1,1,3,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+19 \leqslant 0
$$

Case 2.6: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=-\lambda_{1}>0$. In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(-\lambda_{5}+1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

and $\gamma_{2}=(-1,0,0,0,0,1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+20 \leqslant 0
$$

Case 2.7: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}=0$. We have two subcases:
Case 2.7.1: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}=0, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}-\lambda_{6}-\lambda_{7}+\lambda_{8}\right)$ $\geqslant 1$.

In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(0,0,0,0,1, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

and $\gamma_{2}=(0,0,0,0,-1,1,-1,1)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+16 \leqslant 0
$$

Case 2.7.2: $\lambda_{5}=\lambda_{4}=\lambda_{3}=\lambda_{2}=\lambda_{1}=0, \frac{1}{2}\left(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}-\lambda_{6}-\lambda_{7}+\lambda_{8}\right)$ $=0$. We have

$$
\begin{aligned}
& s_{\varepsilon_{5}-\varepsilon_{4}} s_{\varepsilon_{4}+\varepsilon_{5}}\left(0,0,0,0,-1, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right) \\
& \quad=\left(0,0,0,0,1, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right) \\
& s_{\alpha_{1}} s_{\varepsilon_{2}-\varepsilon_{1}} s_{\varepsilon_{3}+\varepsilon_{4}} s_{\alpha_{1}}\left(0,0,0,0,1, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right) \\
& \quad=\left(0,0,0,0,0, \lambda_{6}-2, \lambda_{7},-\lambda_{7}\right)
\end{aligned}
$$

In this case

$$
\left(\lambda-s_{2}\right)^{+}=\left(0,0,0,0,0, \lambda_{6}-2, \lambda_{7},-\lambda_{7}\right)
$$

and $\gamma_{2}=(0,0,0,0,0,2,0,0)$. The Dirac inequality for $s_{2}$ is equivalent to

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7}+8 \leqslant 0
$$

i.e. $\lambda_{7} \geqslant 2$.

Now we are going to see in which cases the Dirac inequality holds for $s_{3}$. We have

$$
\lambda-s_{3}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}-2, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

and therefore $\left(\lambda-s_{3}\right)^{+}=\lambda-s_{3}$. Then the Dirac inequality for $s_{3}$

$$
\left\|\left(\lambda-s_{3}\right)^{+}+\rho\right\|^{2} \geqslant\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
2\left\langle s_{3}, \lambda+\rho\right\rangle \leqslant\left\|s_{3}\right\|^{2}
$$

i.e.,

$$
\lambda_{6}-\lambda_{7}+12 \leqslant 0
$$

It is easy to see that in cases $1.1,1.2 .1,1.2 .2,1.2 .3,1.2 .4,1.2 .5$ or 1.2 .7 if the Dirac inequality holds for $s_{1}$ then it also holds for $s_{2}$. Let us assume that the Dirac inequality holds for $s_{1}$. We have

$$
\lambda_{5}+\lambda_{6} \leqslant \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-2 \lambda_{7} \leqslant-2 \lambda_{7},
$$

i.e.

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7} \leqslant-4 \lambda_{7} \leqslant(-4) \cdot \frac{11}{2}=-22
$$

and therefore the Dirac inequality obviously holds for $s_{2}$ if $\lambda$ is in one of the cases $2.3,2.4,2.5,2.6$ or 2.7 . If $\lambda$ is in case 2.1 or in case 2.2 and also in one of the cases $1.1,1.2 .1,1.2 .2,1.2 .3,1.2 .4$ or 1.2 .5 (if $\lambda$ is in case 2.1 or 2.2 , then $\lambda$ can not be in case 1.2 .7 ) and the Dirac inequality holds for $s_{1}$ then $\lambda_{7} \geqslant 6$ and therefore

$$
\lambda_{5}+\lambda_{6}-2 \lambda_{7} \leqslant-4 \lambda_{7} \leqslant(-4) \cdot 6=-24
$$

so the Dirac inequality holds for $s_{2}$.

Furthermore, in cases $1.1,1.2 .1,1.2 .2,1.2 .3,1.2 .4,1.2 .5$ or 1.2.7 if the Dirac inequality holds for $s_{1}$ then it also holds for $s_{3}$, since $\lambda_{6} \leqslant \lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}-\lambda_{5}-2 \lambda_{7} \leqslant$ $-2 \lambda_{7}$ and therefore

$$
\lambda_{6}-\lambda_{7}+12 \leqslant-3 \lambda_{7}+12 \leqslant(-3) \cdot \frac{11}{2}+12<0
$$

Therefore, we have three basic cases:
Case 1: $\lambda_{i}=0, i \in\{1,2,3,4,5\}, \lambda_{6}=-2 \lambda_{7}$ (case 1.2.8)
In this case the basic Dirac inequality can be written as

$$
\lambda_{7} \geqslant 0
$$

The Dirac inequality for the second basic Schmid module is equivalent to

$$
\lambda_{7} \geqslant 2
$$

The Dirac inequality for the third basic Schmid module is equivalent to

$$
\lambda_{7} \geqslant 4
$$

It is clear that if the Dirac inequality holds for the third basic Schmid module, then it automatically holds for the first and the second basic Schmid module.

Case 2: $\lambda_{i}=0, i \in\{1,2,3,4\}, \lambda_{5}>0,-\lambda_{5}-\lambda_{6}-2 \lambda_{7}=0$ (case 1.2.6)
In this case the basic Dirac inequality can be written as

$$
\lambda_{7} \geqslant 4
$$

The Dirac inequality for the second basic Schmid module is equivalent to

$$
\lambda_{7} \geqslant 6
$$

The Dirac inequality for the third basic Schmid module is equivalent to

$$
\lambda_{6}-\lambda_{7}+12 \leqslant 0
$$

If the Dirac inequality holds for the second basic Schmid module, then it automatically holds for the first and the third basic Schmid module, since

$$
\lambda_{6}-\lambda_{7}+12=-\lambda_{5}-3 \lambda_{7}+12 \leqslant-3 \lambda_{7}+12 \leqslant-18+12<0
$$

Case 3: $\lambda$ is of type $1.1,1.2 .1,1.2 .2,1.2 .3,1.2 .4,1.2 .5$ or 1.2.7. The Dirac inequality for the second and the third Schmid module is automatically satisfied if the basic Dirac inequality holds.

Let

$$
\begin{aligned}
s_{a, b, c} & =a s_{1}+b s_{2}+c s_{3} \\
& =(0,0,0,0, b, b+2 c,-a-b-c, a+b+c), a, b, c \in \mathbb{N}_{0}, a+b+c>0
\end{aligned}
$$

be a general Schmid module.

THEOREM 2.4. (Case 1) Let $\lambda$ be the highest weight of the form $\lambda=(0,0,0,0,0$, $\left.-2 \lambda_{7}, \lambda_{7},-\lambda_{7}\right)$.

1. If $\lambda_{7}>4$ then $\lambda$ satisfies the strict Dirac inequality for any Schmid module $s_{a, b, c}$, i.e.

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}, a, b, c \in \mathbb{N}_{0},(a, b, c) \neq(0,0,0)
$$

2. If $2<\lambda_{7}<4$ then

$$
\left\|\left(\lambda-s_{3}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

and the strict Dirac inequality holds for any Schmid module of strictly lower level than $s_{3}$.
3. If $0<\lambda_{7}<2$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

and the strict Dirac inequality holds for any Schmid module of strictly lower level than $s_{2}$.
4. If $\lambda_{7}<0$ than the basic Dirac inequality fails.

## Proof.

1. We have

$$
\begin{aligned}
\lambda-s_{a, b, c} & =\left(0,0,0,0,-b,-2 \lambda_{7}-b-2 c, \lambda_{7}+a+b+c,-\lambda_{7}-a-b-c\right) \\
& s_{\varepsilon_{5}-\varepsilon_{1}} s_{\alpha_{1}} s_{\varepsilon_{4}-\varepsilon_{1}} s_{\varepsilon_{4}+\varepsilon_{5}} s_{\varepsilon_{2}+\varepsilon_{3}} s_{\alpha_{1}} s_{\varepsilon_{5}-\varepsilon_{4}} s_{\varepsilon_{4}+\varepsilon_{5}}\left(\lambda-s_{a, b, c}\right) \\
& =\left(0,0,0,0, a,-2 \lambda_{7}-a-2 b-2 c, \lambda_{7}+c,-\lambda_{7}-c\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\left(\lambda-s_{a, b, c}\right)^{+} & =\left(0,0,0,0, a,-2 \lambda_{7}-a-2 b-2 c, \lambda_{7}+c,-\lambda_{7}-c\right) \\
& =\lambda-(0,0,0,0,-a, a+2 b+2 c,-c, c)
\end{aligned}
$$

Then the strict Dirac inequality

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
2\left\langle\gamma_{a, b, c}, \lambda+\rho\right\rangle<\left\|\gamma_{a, b, c}\right\|^{2}
$$

where $\gamma_{a, b, c}=(0,0,0,0,-a, a+2 b+2 c,-c, c)$ and this inequality is equivalent to

$$
2\left(-2 \lambda_{7}(a+2 b+3 c)+a+10 b+27 c\right)<a^{2}+(a+2 b+2 c)^{2}+2 c^{2}
$$

Since $\lambda_{7}>4,-2 \lambda_{7}(a+2 b+3 c)<-8(a+2 b+3 c)$. We see that the inequality

$$
2(-8(a+2 b+3 c)+a+10 b+27 c) \leqslant a^{2}+(a+2 b+2 c)^{2}+2 c^{2}
$$

holds for all $a, b, c \in \mathbb{N}_{0}, a+b+c \neq 0$. So the strict Dirac inequality holds for any Schmid module $s_{a, b, c}$.
2. If $2<\lambda_{7}<4$ then

$$
\left\|\left(\lambda-s_{3}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2} .
$$

Since the level of $s_{i}$ is equal to $i$ where $i \in\{1,2,3\}$, and the level of $a s_{1}+b s_{2}+$ $c s_{3}$ is equal to $a+2 b+3 c$, the only Schmid modules of strictly lower level than $s_{3}$ are $s_{1}, s_{2}$ and $2 s_{1}$. For $s_{i}, i \in\{1,2\}$, we have $\lambda_{7}>2>0$, i.e.

$$
\left\|\left(\lambda-s_{i}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

We have $\left(\lambda-2 s_{1}\right)^{+}=\lambda-(0,0,0,0,-2,2,0,0)$. Therefore, the strict Dirac inequality for $2 s_{1}$ is equivalent to $\lambda_{7}>-\frac{1}{2}$, which is true since $2<\lambda_{7}<4$.
3. If $0<\lambda_{7}<2$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2} .
$$

Since the level of $s_{2}$ is equal to 2 and the level of $a s_{1}+b s_{2}+c s_{3}$ is equal to $a+2 b+3 c$, the only Schmid module of strictly lower level than $s_{2}$ is $s_{1}$. For $s_{1}$ we have $\lambda_{7}>0$, which implies

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

4. If $\lambda_{7}<0$ than the basic Dirac inequality obviously fails since in Case 1 the basic Dirac inequality is equivalent to $\lambda_{7} \geqslant 0$.

THEOREM 2.5. (Case 2) Let $\lambda$ be the highest weight of the form $\lambda=\left(0,0,0,0, \lambda_{5}\right.$, $\left.\lambda_{6}, \lambda_{7},-\lambda_{7}\right)$ such that $\lambda_{5}>0$ and $-\lambda_{5}-\lambda_{6}-2 \lambda_{7}=0$.

1. If $\lambda_{7}>6$ than $\lambda$ satisfies the strict Dirac inequality for any Schmid module $s_{a, b, c}$, i.e.

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}, a, b, c \in \mathbb{N}_{0},(a, b, c) \neq(0,0,0)
$$

2. If $4<\lambda_{7}<6$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

and the strict Dirac inequality holds strictly for any Schmid module of strictly lower level than $s_{2}$.
3. If $\lambda_{7}<4$ than the basic Dirac inequality fails.

## Proof.

1. We have

$$
\begin{aligned}
& \lambda-s_{a, b, c}=\left(0,0,0,0, \lambda_{5}-b, \lambda_{6}-b-2 c, \lambda_{7}+a+b+c,-\lambda_{7}-a-b-c\right) \\
& s_{\alpha_{1}} s_{\varepsilon_{3}+\varepsilon_{4}} s_{\varepsilon_{2}-\varepsilon_{1}} s_{\alpha_{1}}\left(\lambda-s_{a, b, c}\right) \\
& \quad=\left(0,0,0,0, \lambda_{5}-a-b, \lambda_{6}-a-b-2 c, \lambda_{7}+b+c,-\lambda_{7}-b-c\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \left(\lambda-s_{a, b, c}\right)^{+} \\
& =\left\{\begin{array}{l}
\left(0,0,0,0, \lambda_{5}-a-b, \lambda_{6}-a-b-2 c, \lambda_{7}+b+c,-\lambda_{7}-b-c\right), \lambda_{5}>a+b \\
\left(0,0,0,0,-\lambda_{5}+a+b, \lambda_{6}-a-b-2 c, \lambda_{7}+b+c,-\lambda_{7}-b-c\right), b \leqslant \lambda_{5} \leqslant a+b \\
s_{\alpha_{1}} s_{\varepsilon_{3}+\varepsilon_{4}} s_{\varepsilon_{2}-\varepsilon_{1}} s_{\alpha_{1}}\left(0,0,0,0,-\lambda_{5}+a+b, \lambda_{6}-a-b-2 c, \lambda_{7}+b+c,-\lambda_{7}-b-c\right) \\
=\left(0,0,0,0, a, \lambda_{5}+\lambda_{6}-a-2 b-2 c, \lambda_{5}+\lambda_{7}+c,-\lambda_{5}-\lambda_{7}-c\right), \lambda_{5}<b
\end{array}\right. \\
& =\left\{\begin{array}{l}
\lambda-(0,0,0,0, a+b, a+b+2 c,-b-c, b+c), \lambda_{5}>a+b \\
\lambda-\left(0,0,0,0,2 \lambda_{5}-a-b, a+b+2 c,-b-c, b+c\right), b \leqslant \lambda_{5} \leqslant a+b \\
\lambda-\left(0,0,0,0, \lambda_{5}-a,-\lambda_{5}+a+2 b+2 c,-\lambda_{5}-c, \lambda_{5}+c\right), \lambda_{5}<b .
\end{array}\right.
\end{aligned}
$$

Then the strict Dirac inequality

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
\left\{\begin{array}{l}
-2 \lambda_{5} c-2 \lambda_{7}(a+2 b+3 c)+9 a+26 b+27 c \\
\quad<(a+b)^{2}+2(a+b) c+2 c^{2}+(b+c)^{2} \\
\lambda_{5}>a+b \\
-2 \lambda_{5} c-2 \lambda_{7}(a+2 b+3 c)+8 \lambda_{5}+a+18 b+27 c \\
\quad<(a+b)^{2}+2(a+b) c+2 c^{2}+(b+c)^{2} \\
b \leqslant \lambda_{5} \leqslant a+b \\
-2 \lambda_{5} c-2 \lambda_{7}(a+2 b+3 c)+16 \lambda_{5}+a+10 b+27 c \\
\quad<a^{2}+2 a(b+c)+c^{2}+2(b+c)^{2} \\
\lambda_{5}<b
\end{array}\right.
$$

Let us assume that $\lambda_{7}>6$. Since $\lambda_{5} \geqslant 0$, to prove the strict Dirac inequality it is enough to prove

$$
\left\{\begin{array}{l}
-3 a+2 b-9 c \leqslant(a+b)^{2}+2(a+b) c+2 c^{2}+(b+c)^{2}, \lambda_{5}>a+b \\
-3 a+2 b-9 c \leqslant(a+b)^{2}+2(a+b) c+2 c^{2}+(b+c)^{2}, b \leqslant \lambda_{5} \leqslant a+b \\
-11 a+2 b-9 c \leqslant a^{2}+2 a(b+c)+c^{2}+2(b+c)^{2}, \lambda_{5}<b
\end{array}\right.
$$

This is true for all $a, b, c \in \mathbb{N}_{0},(a, b, c) \neq(0,0,0)$. So the strict Dirac inequality holds for any Schmid module $s_{a, b, c}$.
2. If $4<\lambda_{7}<6$ then

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}<\|\lambda+\rho\|^{2}
$$

Since $s_{1}$ is the only Schmid module of strictly lower level than $s_{2}$ and for $s_{1}$ we have $\lambda_{7}>4$, it follows that

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

3. If $\lambda_{7}<4$ than the basic Dirac inequality obviously fails since in Case 2 the basic Dirac inequality is equivalent to $\lambda_{7} \geqslant 4$.

Lemma 2.3. Let $\lambda$ be a highest weight such that

$$
\left\|\left(\lambda-s_{3}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

Then

$$
\left\|\left(\lambda^{\prime}-s_{3}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

where $\lambda^{\prime}=\left(\lambda-s_{3}\right)^{+}$.

Proof. We have

$$
\lambda^{\prime}=\left(\lambda-s_{3}\right)^{+}=\lambda-s_{3}=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}-2, \lambda_{7}+1,-\lambda_{7}-1\right)
$$

The strict Dirac inequality

$$
\left\|\left(\lambda^{\prime}-s_{3}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

is equivalent to

$$
\lambda_{6}^{\prime}-\lambda_{7}^{\prime}+12<0
$$

and this is equivalent to

$$
\lambda_{6}-\lambda_{7}+9<0
$$

which is true since

$$
\lambda_{6}-\lambda_{7}+12<0
$$

Lemma 2.4. Let $\lambda$ be a highest weight such that $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right)=(0,0,0,0,0)$ and

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} .
$$

Then

$$
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} \quad \forall b \in \mathbb{N} .
$$

Proof. We have $\lambda-s_{0, b, 0}=\left(0,0,0,0,-b, \lambda_{6}-b, \lambda_{7}+b,-\lambda_{7}-b\right)$. Now we have two cases.

Case 1: $-\lambda_{6}-2 \lambda_{7}-2 b \geqslant 0$.
In this case

$$
\left(\lambda-s_{0, b, 0}\right)^{+}=\left(0,0,0,0, b, \lambda_{6}-b, \lambda_{7}+b,-\lambda_{7}-b\right)=\lambda-(0,0,0,0,-b, b,-b, b)
$$

The strict Dirac inequality

$$
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
2\langle\gamma, \lambda+\rho\rangle<\|\gamma\|^{2}
$$

where $\gamma=(0,0,0,0,-b, b,-b, b)$ and the last inequality is equivalent to

$$
\lambda_{6}-2 \lambda_{7}+18<2 b
$$

Since in this case $-\lambda_{6}-2 \lambda_{7}-2 b \geqslant 0$, then $\lambda$ is not in case 2.7.2.. Therefore, $\lambda$ is in case 2.7.1. Since the strict Dirac inequality holds for the second basic Schmid module, we have $\lambda_{6}-2 \lambda_{7}+16<0$ and therefore $\lambda_{6}-2 \lambda_{7}+18<2 \leqslant 2 b$.

Case 2: $-\lambda_{6}-2 \lambda_{7}-2 b<0$.
Then

$$
\begin{aligned}
& s_{\alpha_{1}} s_{\varepsilon_{3}+\varepsilon_{4}} s_{\varepsilon_{2}-\varepsilon_{1}} s_{\alpha_{1}}\left(0,0,0,0, b, \lambda_{6}-b, \lambda_{7}+b,-\lambda_{7}-b\right) \\
& =\left(0,0,0,0,-\frac{\lambda_{6}+2 \lambda_{7}}{2}, \frac{\lambda_{6}}{2}-\lambda_{7}-2 b,-\frac{\lambda_{6}}{2}, \frac{\lambda_{6}}{2}\right)
\end{aligned}
$$

so

$$
\left(\lambda-s_{0, b, 0}\right)^{+}=\left(0,0,0,0,-\frac{\lambda_{6}+2 \lambda_{7}}{2}, \frac{\lambda_{6}}{2}-\lambda_{7}-2 b,-\frac{\lambda_{6}}{2}, \frac{\lambda_{6}}{2}\right)=\lambda-\gamma^{\prime}
$$

where $\gamma^{\prime}=\left(0,0,0,0, \frac{\lambda_{6}}{2}+\lambda_{7}, \frac{\lambda_{6}}{2}+\lambda_{7}+2 b, \lambda_{7}+\frac{\lambda_{6}}{2},-\lambda_{7}-\frac{\lambda_{6}}{2}\right)$. The strict Dirac inequality

$$
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

is equivalent to

$$
\begin{equation*}
-2\left(\lambda_{6}+2 \lambda_{7}\right)<b\left(\lambda_{7}-\frac{\lambda_{6}}{2}+b-5\right) \tag{2.4}
\end{equation*}
$$

Since in this case we have $-\lambda_{6}-2 \lambda_{7}<2 b$, it is enough to prove

$$
4 b \leqslant b\left(\lambda_{7}-\frac{\lambda_{6}}{2}+b-5\right)
$$

The last inequality is equivalent to

$$
\lambda_{6}-2 \lambda_{7}+18 \leqslant 2 b
$$

If $\lambda$ is in case 2.7.1, then we have

$$
\lambda_{6}-2 \lambda_{7}+16<0
$$

since we assumed that the strict Dirac inequality holds for the second basic Schmid module. Therefore

$$
\lambda_{6}-2 \lambda_{7}+18<2 \leqslant 2 b
$$

If $\lambda$ is in case 2.7.2, then we have $\lambda_{6}+2 \lambda_{7}=0$, so inequality (2.4) is equivalent to

$$
\lambda_{6}-2 \lambda_{7}<2 b-10
$$

Since we assumed that the strict Dirac inequality holds for the second basic Schmid module, we have

$$
\lambda_{6}-2 \lambda_{7}<-8
$$

and therefore

$$
\lambda_{6}-2 \lambda_{7}<2-10 \leqslant 2 b-10
$$

Lemma 2.5. Let $\lambda$ be a highest weight such that $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right) \neq(0,0,0,0,0)$ and

$$
\left\|\left(\lambda-s_{2}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

Then

$$
\left\|\left(\lambda^{\prime}-s_{2}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

where $\lambda^{\prime}=\left(\lambda-s_{2}\right)^{+}$. If $\lambda_{i}^{\prime}=0$ for $i=1,2,3,4,5$, then

$$
\left\|\left(\lambda^{\prime}-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}, \quad \forall b \in \mathbb{N}
$$

Proof. We have
$\lambda^{\prime}=\left\{\begin{array}{l}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}-1, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right), \lambda \text { as in case } 2.1 \\ \left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{5}-1, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right), \lambda \text { as in case } 2.2 \\ \left(\lambda_{1}, \lambda_{2}, \lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right), \lambda \text { as in case } 2.3 \\ \left(\lambda_{1}, \lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right), \lambda \text { as in case } 2.4 \\ \left(\lambda_{5}-1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right), \lambda \text { as in case } 2.5 .1 . \\ \left(\lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{3}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right), \lambda \text { as in case 2.5.2. } \\ \left(-\lambda_{5}+1, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{5}, \lambda_{6}-1, \lambda_{7}+1,-\lambda_{7}-1\right), \lambda \text { as in case } 2.6\end{array}\right.$
Therefore,

$$
\lambda_{5}^{\prime}+\lambda_{6}^{\prime}-2 \lambda_{7}^{\prime}=\left\{\begin{array}{l}
\lambda_{5}+\lambda_{6}-2 \lambda_{7}-4, \lambda \text { as in case } 2.1 \\
\lambda_{5}+\lambda_{6}-2 \lambda_{7}-3, \lambda \text { as in case } 2.2,2.3,2.4,2.5 .1,2.5 .2,2.6
\end{array}\right.
$$

Since the strict Dirac inequality holds for the second basic Schmid module, we have

$$
\lambda_{5}^{\prime}+\lambda_{6}^{\prime}-2 \lambda_{7}^{\prime}<\left\{\begin{array}{l}
-28, \lambda \text { as in case } 2.1 \\
-26, \lambda \text { as in case } 2.2 \\
-25, \lambda \text { as in case } 2.3 \\
-24, \lambda \text { as in case } 2.4 \\
-23, \lambda \text { as in case } 2.5 .1 \text { or } 2.6 \\
-22, \lambda \text { as in case } 2.5 .2 .
\end{array}\right.
$$

It is clear that

$$
\left\|\left(\lambda^{\prime}-s_{2}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

if $\lambda$ is in one of the cases $2.1,2.2,2.3$ or 2.4. If $\lambda$ is as in case 2.5 .1 or 2.6 , then $\lambda^{\prime}$ is not as in case 2.1 and therefore

$$
\left\|\left(\lambda^{\prime}-s_{2}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

If $\lambda$ is as in case 2.5 .2 , then $\lambda^{\prime}$ is not as in case 2.1 or 2.2 and therefore

$$
\left\|\left(\lambda^{\prime}-s_{2}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

So the strict Dirac inequality holds for the second basic Schmid module for the weight $\lambda^{\prime}$.

If $\lambda_{5}^{\prime}=\lambda_{4}^{\prime}=\lambda_{3}^{\prime}=\lambda_{2}^{\prime}=\lambda_{1}^{\prime}=0$, then it follows from lemma 2.4 that

$$
\left\|\left(\lambda^{\prime}-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2} \quad \forall b \in \mathbb{N}
$$

Lemma 2.6. Let $\lambda$ be a highest weight such that $\lambda$ is as in case 3 and

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} .
$$

Then

$$
\left\|\left(\lambda^{\prime}-s_{1}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

where $\lambda^{\prime}=\left(\lambda-s_{1}\right)^{+}$. If $\lambda^{\prime}$ is as in Case 1 or Case 2, then

$$
\left\|\left(\lambda^{\prime}-s_{a, b, c}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}, \quad \forall a, b, c \in \mathbb{N}_{0}, \quad a+b+c \neq 0
$$

Proof. We have
$\lambda^{\prime}=\left\{\begin{array}{l}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}+1,-\lambda_{7}-1\right), \lambda \text { as in case } 1.1 \\ \left(\lambda_{1}+\frac{1}{2}, \lambda_{2}-\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right), \lambda \text { as in case } 1.2 .1 \\ \left(\lambda_{2}-\frac{1}{2}, \lambda_{2}+\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right), \lambda \text { as in case } 1.2 .2 \\ \left(\lambda_{3}-\frac{1}{2}, \lambda_{3}-\frac{1}{2}, \lambda_{3}+\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right), \lambda \text { as in case } 1.2 .3 \\ \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right), \lambda \text { as in case } 1.2 .4 \\ \left(\lambda_{4}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{4}-\frac{1}{2}, \lambda_{4}+\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right), \lambda \text { as in case } 1.2 .5 \\ \left(\lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}-\frac{1}{2}, \lambda_{5}+\frac{1}{2}, \lambda_{6}-\frac{1}{2}, \lambda_{7}+\frac{1}{2},-\lambda_{7}-\frac{1}{2}\right), \lambda \text { as in case } 1.2 .7\end{array}\right.$
Since

$$
\left\|\left(\lambda-s_{1}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

it follows that

$$
\lambda_{7}^{\prime}>\left\{\begin{array}{l}
9, \lambda \text { as in case } 1.1  \tag{2.5}\\
8, \lambda \text { as in case } 1.2 .1 \\
7+\frac{1}{2}, \lambda \text { as in case } 1.2 .2 \\
7, \lambda \text { as in case } 1.2 .3 \\
6+\frac{1}{2}, \lambda \text { as in case } 1.2 .4 \\
6+\frac{1}{2}, \lambda \text { as in case } 1.2 .5 \\
6, \lambda \text { as in case 1.2.7 }
\end{array}\right.
$$

It is clear that

$$
\left\|\left(\lambda^{\prime}-s_{1}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

if $\lambda$ is as in case 1.1 or 1.2.1. If $\lambda$ is as in case 1.2 .2 , then $\lambda^{\prime}$ is not as in case 1.1 . Also if $\lambda$ is as in case 1.2 .3 , then $\lambda^{\prime}$ is neither as in case 1.1 nor as in case 1.2.1. If $\lambda$ is as in case 1.2 .4 or 1.2 .5 , then $\lambda^{\prime}$ is not in any of the cases $1.1,1.2 .1,1.2$.2. If $\lambda$
is in case 1.2.7, then $\lambda^{\prime}$ is in none of the cases $1.1,1.2 .1,1.2 .2,1.2$.3. It follows from (2.5) that

$$
\left\|\left(\lambda^{\prime}-s_{1}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

Furthermore, it follows from (2.5) that if $\lambda$ is as in Case 3, then $\lambda_{7}^{\prime}>6$. Therefore, it follows from the proof of theorem 2.4 and the proof of theorem 2.5 that if $\lambda^{\prime}$ is as in Case 1 (case 1.2.8.) or as in Case 2 (case 1.2.6.), then

$$
\left\|\left(\lambda^{\prime}-s_{a, b, c}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2} \quad \forall a, b, c \in \mathbb{N}_{0}, a+b+c \neq 0
$$

Theorem 2.6. (Case 3) Let $\lambda$ be the highest weight as in Case 3 such that the strict basic Dirac inequality holds. Then

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}, a, b, c \in \mathbb{N}_{0},(a, b, c) \neq(0,0,0)
$$

Proof. Let $\lambda$ be as in Case 3, and let us assume that the strict basic Dirac inequality holds. First we will prove that in this case we have

$$
\begin{equation*}
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall b \in \mathbb{N} \tag{2.6}
\end{equation*}
$$

Let us denote $\lambda^{\prime}=\left(\lambda-s_{2}\right)^{+}$. We have already proved that if $\lambda$ is in Case 3 and the strict basic Dirac inequality holds, then the strict Dirac inequality also holds for $s_{2}$. So we have

$$
\begin{equation*}
\left\|\lambda^{\prime}+\rho\right\|^{2}>\|\lambda+\rho\|^{2} \tag{2.7}
\end{equation*}
$$

If $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=0$ then (2.6) obviously follows from Lemma 2.4. Let us assume that $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right) \neq(0,0,0,0,0)$. From Lemma 2.5 it follows that

$$
\begin{equation*}
\left\|\left(\lambda^{\prime}-s_{2}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2} \tag{2.8}
\end{equation*}
$$

Let us assume that $b>1$ ((2.6) obviously holds for $b=1$ since $\left.s_{0, b, 0}=s_{2}\right)$. Let $w \in W_{\mathfrak{k}}$ be such that $\lambda-s_{2}=w\left(\lambda-s_{2}\right)^{+}$. From Lemma 1.1 we have

$$
\begin{aligned}
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2} & =\left\|\left(\lambda-s_{2}-s_{0, b-1,0}\right)^{+}+\rho\right\|^{2} \\
& =\left\|\left(w\left(\lambda-s_{2}\right)^{+}-s_{0, b-1,0}\right)^{+}+\rho\right\|^{2} \\
& \geqslant\left\|\left(\left(\lambda-s_{2}\right)^{+}-s_{0, b-1,0}\right)^{+}+\rho\right\|^{2} \\
& =\left\|\left(\lambda^{\prime}-s_{0, b-1,0}\right)^{+}+\rho\right\|^{2}
\end{aligned}
$$

It follows from the last inequality and (2.7) that

$$
\begin{equation*}
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>\left\|\left(\lambda^{\prime}-s_{0, b-1,0}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime}+\rho\right\|^{2} \tag{2.9}
\end{equation*}
$$

If $\lambda_{i}^{\prime}=0$ for $i=1,2,3,4,5$, then it follows from Lemma 2.4 and (2.8)

$$
\left\|\left(\lambda^{\prime}-s_{0, b-1,0}\right)^{+}+\rho\right\|^{2}>\left\|\lambda^{\prime}+\rho\right\|^{2}
$$

and by (2.9)

$$
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0
$$

If $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}, \lambda_{4}^{\prime}, \lambda_{5}^{\prime}\right) \neq(0,0,0,0,0)$ and $b=2$, then (2.6) follows from (2.9) and (2.8).

If $\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \lambda_{3}^{\prime}, \lambda_{4}^{\prime}, \lambda_{5}^{\prime}\right) \neq(0,0,0,0,0)$ and $b>2$, then we have

$$
\left\|\left(\lambda^{\prime}-s_{0, b-1,0}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime}+\rho\right\|^{2}>\left\|\left(\lambda^{\prime \prime}-s_{0, b-2,0}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime \prime}+\rho\right\|^{2}
$$

where $\lambda^{\prime \prime}=\left(\lambda^{\prime}-s_{2}\right)^{+}$. By induction, it follows that

$$
\left\|\left(\lambda-s_{0, b, 0}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall b \in \mathbb{N} .
$$

Now we will prove that

$$
\begin{equation*}
\left\|\left(\lambda-s_{0, b, c}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall b, c \in \mathbb{N}_{0}, b+c \neq 0 \tag{2.10}
\end{equation*}
$$

Let us denote $\lambda^{\prime \prime \prime}=\left(\lambda-s_{3}\right)^{+}$. Since $\lambda$ is in Case 3, it is easy to check that $\lambda^{\prime \prime \prime}$ is also in Case 3. We have already proved that if $\lambda$ is in Case 3 and the strict basic Dirac inequality holds, then the strict Dirac inequality also holds for $s_{3}$. So we have

$$
\left\|\lambda^{\prime \prime \prime}+\rho\right\|^{2}>\|\lambda+\rho\|^{2}
$$

Let $w^{\prime} \in W_{k}$ be such that $\lambda-s_{3}=w^{\prime}\left(\lambda-s_{3}\right)^{+}$. From Lemma (1.1) we have

$$
\begin{aligned}
\left\|\left(\lambda-s_{0, b, c}\right)^{+}+\rho\right\|^{2} & =\left\|\left(\lambda-s_{3}-s_{0, b, c-1}\right)^{+}+\rho\right\|^{2} \\
& =\left\|\left(w^{\prime}\left(\lambda-s_{3}\right)^{+}-s_{0, b, c-1}\right)^{+}+\rho\right\|^{2} \\
& \geqslant\left\|\left(\left(\lambda-s_{3}\right)^{+}-s_{0, b, c-1}\right)^{+}+\rho\right\|^{2} \\
& =\left\|\left(\lambda^{\prime \prime \prime}-s_{0, b, c-1}\right)^{+}+\rho\right\|^{2},
\end{aligned}
$$

if $c>1$. From the last two inequalities it follows that

$$
\begin{gather*}
\left\|\left(\lambda-s_{0, b, c}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>\left\|\left(\lambda^{\prime \prime \prime}-s_{0, b, c-1}\right)^{+}+\rho\right\|^{2}-\left\|\lambda^{\prime \prime \prime}+\rho\right\|^{2} \\
\forall b, c \in \mathbb{N}_{0}, b+c \neq 0 \tag{2.11}
\end{gather*}
$$

Now (2.10) follows from Lemma 2.3, (2.2) and (2.6) by induction on $c$.
Now we will prove that if $\lambda$ is in Case 3, and the strict basic Dirac inequality holds, then

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall a, b, c \in \mathbb{N}_{0},(a, b, c) \neq(0,0,0)
$$

Lat us assume that $a>0$ (if $a=0$, the last inequality is exactly (2.10)). Let us denote $\tilde{\lambda}=\left(\lambda-s_{1}\right)^{+}$. We have

$$
\|\tilde{\lambda}+\rho\|^{2}>\|\lambda+\rho\|^{2}
$$

Let $\tilde{w} \in W_{k}$ be such that $\lambda-s_{1}=\tilde{w}\left(\lambda-s_{1}\right)^{+}$. From Corollary 2.9 we have

$$
\begin{aligned}
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2} & =\left\|\left(\lambda-s_{1}-s_{a-1, b, c}\right)^{+}+\rho\right\|^{2} \\
& =\left\|\left(\tilde{w}\left(\lambda-s_{1}\right)^{+}-s_{a-1, b, c}\right)^{+}+\rho\right\|^{2} \\
& \geqslant\left\|\left(\left(\lambda-s_{1}\right)^{+}-s_{a-1, b, c}\right)^{+}+\rho\right\|^{2} \\
& =\left\|\left(\tilde{\lambda}-s_{a-1, b, c}\right)^{+}+\rho\right\|^{2} .
\end{aligned}
$$

From the last two inequalities it follows that

$$
\begin{equation*}
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>\left\|\left(\tilde{\lambda}-s_{a-1, b, c}\right)^{+}+\rho\right\|^{2}-\|\tilde{\lambda}+\rho\|^{2} . \tag{2.12}
\end{equation*}
$$

If $\tilde{\lambda}$ is in Case 1 or Case 2 , then it follows from lemma 2.6 that

$$
\left\|\left(\tilde{\lambda}-s_{a-1, b, c}\right)^{+}+\rho\right\|^{2}>\|\tilde{\lambda}+\rho\|^{2}
$$

and from (2.12) it follows that

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall a, b, c \in \mathbb{N}_{0}, a+b+c \neq 0 .
$$

If $\tilde{\lambda}$ is in Case 3 and $a>1$ then it follows from Lemma 2.6 and (2.12) that

$$
\left\|\left(\tilde{\lambda}-s_{a-1, b, c}\right)^{+}+\rho\right\|^{2}-\|\tilde{\lambda}+\rho\|^{2}>\left\|\left(\bar{\lambda}-s_{a-2, b, c}\right)^{+}+\rho\right\|^{2}-\|\bar{\lambda}+\rho\|^{2}
$$

where $\bar{\lambda}=\left(\tilde{\lambda}-s_{1}\right)^{+}$. By induction on $a$ and by (2.10), it follows

$$
\left\|\left(\lambda-s_{a, b, c}\right)^{+}+\rho\right\|^{2}-\|\lambda+\rho\|^{2}>0 \quad \forall a, b, c \in \mathbb{N}_{0},(a, b, c) \neq(0,0,0)
$$

## REFERENCES

[1] J. Adams, Unitary highest weight modules, Adv. Math. 63 (1987), 113-137.
[2] M. Davidson, T. Enright, R. Stanke, Differential operators and highest weight representations, Memoirs of AMS, 455, 1991.
[3] T. Enright, R. Howe, N. Wallach, A classification of unitary highest weight modules, in Representation theory of reductive groups, Park City, Utah, 1982, Birkhäuser, Boston, 1983, 97-143.
[4] T. Enright, A. Joseph, An intrinsic analysis of unitarizable highest weight modules, Mathematische Annalen 288.4, 1990, 571-594.
[5] T. J. Enright, B. Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94.
[6] J.-S. HuANG, Dirac cohomology, elliptic representations and endoscopy, in Representations of Reductive Groups, in Honor of 60th Birthday of David Vogan, M. Nevins, P. Trapa (eds), Birkhäuser, 2015.
[7] J.-S. Huang, Y.-F. Kang and P. Pandžić, Dirac cohomology of some Harish-Chandra modules, Transform. Groups 14 (2009), 163-173.
[8] J.-S. HUANG, P. PANDžıć, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.
[9] J.-S. Huang, P. Pandžić, Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhauser, 2006.
[10] H. P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules, J. Funct. Anal. 52 (1983), 385-412.
[11] P. Pandžıć, A. Prlić, V. Souček, V. Tuček, Dirac inequality for highest weight Harish-Chandra modules I, Math. Inequalities Appl. 26 (1) (2023), 233-265.
[12] P. Pandžıć, A. Prlić, V. Souček, V. Tuček, On the classification of unitary highest weight modules, in preparation
[13] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math. 9 (1969/1970), 61-80.
(Received October 11, 2022)
Pavle Pandžić
Department of Mathematics
Faculty of Science, University of Zagreb
Bijenička 30, 10000 Zagreb, Croatia
e-mail: pandzic@math.hr
Ana Prlić
Department of Mathematics
Faculty of Science, University of Zagreb
Bijenička 30, 10000 Zagreb, Croatia
e-mail: anaprlic@math.hr
Vladimír Souček
Matematický ústav UK
Sokolovská 83, 18675 Praha 8, Czech Republic
e-mail: soucek@karlin.mff.cuni.cz
Vit Tuček
Department of Mathematics
Faculty of Science, University of Zagreb
Bijenička 30, 10000 Zagreb, Croatia
e-mail: vit.tucek@gmail.com


[^0]:    Mathematics subject classification (2020): 22E47.
    Keywords and phrases: Unitary highest weight modules, Dirac inequality.
    P. Pandžić, A. Prlić are and V. Tuček were supported by the QuantiXLie Center of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004). V. Souček is supported by the grant GACR GX19-28628.

    * Corresponding author.

