CONSTRUCTING RIESZ-FISCHER SEQUENCES FROM A MINIMAL SEQUENCE IN A HILBERT SPACE \mathscr{H}

Elias Zikkos

(Communicated by I. Perić)

Abstract. In this paper we prove that if $U = \{u_n\}$ is a minimal sequence in a separable Hilbert space \mathscr{H} , then multiplying each vector u_n by an appropriate constant c_n , yields a family of functions $P := \{c_n \cdot u_n\}$, such that P is a Riesz-Fischer sequence in \mathscr{H} .

If U is a minimal and complete sequence in \mathcal{H} , therefore having a unique biorthogonal sequence $V = \{v_n\}$ in \mathcal{H} , then P is a complete Riesz-Fischer sequence in \mathcal{H} and its unique biorthogonal family $\{v_n/\overline{c_n}\}$ is a Bessel sequence in \mathcal{H} .

1. Introduction and result

Let \mathscr{H} be a separable Hilbert space endowed with an inner product \langle , \cdot, \rangle and a norm $|| \cdot ||$. Let $U := \{u_n\}_{n \in J}$ be a countable family of vectors in \mathscr{H} with $J \subset \mathbb{Z}$. We say that

(i) U is complete if the closed span of U in \mathcal{H} is equal to \mathcal{H} .

(*ii*) U is *minimal* if each u_n does not belong to the closed span of the remaining vectors of U in \mathcal{H} . That is, denoting the *distance* of u_n from $\overline{\text{span}}(U \setminus u_n)$ in \mathcal{H} by

$$D_n := \inf_{g \in \overline{\operatorname{span}}(U \setminus u_n)} ||u_n - g||, \tag{1}$$

then $D_n > 0$ for all $n \in J$.

REMARK 1. It is well known that $\{u_n\}_{n \in J}$ is a minimal sequence in \mathcal{H} if and only if it has a biorthogonal sequence $\{v_n\}_{n \in J}$ in \mathcal{H} , that is

$$\langle v_n, u_m \rangle = \begin{cases} 1, & m = n, \\ 0, & m \neq n. \end{cases}$$

An exact sequence in \mathcal{H} , that is a sequence which is both complete and minimal, has a unique biorthogonal sequence in \mathcal{H} .

Keywords and phrases: Riesz-Fischer sequence, minimal sequence, Bessel sequence, biorthogonal systems, complete sequence, uniformly minimal sequence.

Mathematics subject classification (2020): 42C15, 42C99.

(iii) U is uniformly minimal if

$$\inf_{n \in J} \frac{D_n}{||u_n||} > 0. \tag{2}$$

(iv) U is a *Bessel* sequence if there is a positive constant B so that the following upper frame condition holds:

$$\sum_{n\in J} |\langle f, u_n \rangle|^2 \leqslant B \cdot ||f||^2 \qquad \forall f \in \mathscr{H}.$$

REMARK 2. One may consult the books of Young [11], Christensen, [3], and Heil [4] for further reading on the above topics.

We also say that $U = \{u_n\}_{n \in J}$ is a *Riesz-Fischer* sequence (see [11, Chapter 4, Section 2]) if the *moment problem*

$$\langle f, u_n \rangle = a_n \qquad n \in J$$

has a solution $f \in \mathscr{H}$ for every sequence $\{a_n\}_{n \in J}$ in the space $l^2(J)$ where

$$l^{2}(J) := \left\{ \{a_{n}\}_{n \in J} : \sum_{n \in J} |a_{n}|^{2} < \infty \right\}.$$

We point out that (see [11, Chapter 4, Section 2, Theorem 3]) U is a Riesz-Fischer sequence in \mathcal{H} if and only if there exists a positive number A so that for any finite scalar sequence $\{\beta_n\}$ we have

$$A\sum |\beta_n|^2 \leq \left|\left|\sum \beta_n u_n\right|\right|^2$$

a result attributed to Nina Bari.

REMARK 3. It follows from the above inequality and (1) that a Riesz-Fischer sequence is also a minimal sequence.

Our goal in this article is to show that we can always construct a Riesz-Fischer sequence from a given minimal sequence U in \mathcal{H} , if we multiply each vector u_n by an appropriate constant c_n . We will prove the following result.

THEOREM 1. Let $U = \{u_n\}_{n \in J}$ be a minimal sequence in \mathscr{H} and let $\{D_n\}_{n \in J}$ be the Distances as in (1). Choose numbers $\{c_n\}_{n \in J}$ so that

$$\sum_{n\in J} \frac{1}{D_n \cdot |c_n|} < \infty.$$
(3)

Then the family

$$P := \{p_n : p_n = c_n \cdot u_n\}_{n \in J}$$

is a Riesz-Fischer sequence in the closed span of P in \mathcal{H} . Moreover, there is some A > 0 so that the following lower frame condition holds:

$$A \cdot ||f||^2 \leq \sum_{n \in J} |\langle f, p_n \rangle|^2 \qquad \forall f \in \overline{span}(P) \text{ in } \mathcal{H}.$$
(4)

The proof of Theorem 1 is given in Section 3 followed by some corollaries in case U is an exact sequence or uniformly minimal. The article ends with two examples in Section 4.

2. Connecting Riesz-Fischer sequences with Bessel sequences

In Casazza et al. [2], we find the following nice connection between Bessel sequences and Riesz-Fischer sequences.

PROPOSITION A. [2, Proposition 2.3, (ii)] The Riesz-Fischer sequences in \mathcal{H} are precisely the families for which a biorthogonal Bessel sequence exists.

Combining Proposition A with [3, Proposition 3.5.4] gives the following sufficient condition so that two biorthogonal families $\{v_n\}_{n \in J}$ and $\{u_n\}_{n \in J}$ are Bessel and Riesz-Fischer sequences respectively. We point out that Lemma 1 plays a crucial role for proving Theorem 1.

LEMMA 1. Consider two biorthogonal families $\{u_n\}_{n\in J}$ and $\{v_n\}_{n\in J}$ in \mathcal{H} and suppose there is some M > 0 so that

$$\sum_{n\in J} |\langle v_n, v_m \rangle| < M \qquad for \ all \quad m \in J.$$

Then $\{v_n\}_{n\in J}$ is a Bessel sequence in \mathscr{H} and $\{u_n\}_{n\in J}$ is a Riesz-Fischer sequence in \mathscr{H} .

We also note that the lower frame bound (4) follows from Casazza et al. [2, Theorem 3.2], restated below.

THEOREM A. Suppose that a family $U = \{u_n\}_{n \in J}$ in \mathcal{H} is a complete Riesz-Fischer sequence in \mathcal{H} . It then satisfies the following lower frame condition: there is some A > 0 so that

$$A \cdot ||f||^2 \leq \sum_{n \in J} |\langle f, u_n \rangle|^2 \quad \forall f \in \mathscr{H}.$$

REMARK 4. Some other interesting results on general sequences in \mathcal{H} , including Bessel sequences and Riesz-Fischer sequences, classifying them by frame-related operators are given in [1]. We point out that a sequence which is both Bessel and Riesz-Fischer is called a Riesz sequence (see Seip [8, p. 138]). It is well known, that a complete Riesz sequence in \mathcal{H} is a Riesz basis for \mathcal{H} . A nice characterization of such bases was given recently by Stoeva [9].

3. Proof of Theorem 1 and some Corollaries

3.1. Proof of Theorem 1

First we establish the known result that a minimal sequence has a biorthogonal sequence.

Consider a minimal family U in \mathscr{H} and let $\{D_n\}_{n\in J}$ be the Distances as in (1). Then $\overline{\operatorname{span}}(U \setminus u_n)$ in \mathscr{H} is a proper closed subspace of \mathscr{H} , hence there exists a unique element in $\overline{\operatorname{span}}(U \setminus u_n)$ in \mathscr{H} that we denote by q_n , so that

$$D_n = ||u_n - q_n||.$$

The function $u_n - q_n$ is orthogonal to all the elements of the closed span of $U \setminus u_n$ in \mathcal{H} , hence to q_n itself. Therefore

$$\langle u_n - q_n, u_n - q_n \rangle = \langle u_n - q_n, u_n \rangle$$

Hence

$$(D_n)^2 = \langle u_n - q_n, u_n \rangle.$$

Define now

$$v_n(t) := \frac{u_n(t) - q_n(t)}{(D_n)^2}.$$

It then follows that $\langle v_n, u_n \rangle = 1$ and v_n is orthogonal to all the elements of the system $U \setminus u_n$. Thus, the family $\{v_n : n \in J\}$ is biorthogonal to the family U in \mathcal{H} . Since $q_n \in \overline{\text{span}}(U \setminus u_n)$ in \mathcal{H} , then $v_n \in \overline{\text{span}}(U)$ in \mathcal{H} . One also has

$$||v_n|| = \frac{1}{D_n}$$

Next, for every $n \in J$ define

$$r_n(t) := \frac{v_n(t)}{\overline{c_n}}.$$

Then clearly the family $\{r_n : n \in J\}$ is biorthogonal to the family $P = \{c_n \cdot u_n : n \in J\}$ in \mathcal{H} . Also, since $v_n \in \overline{\text{span}}(U)$ in \mathcal{H} , then $r_n \in \overline{\text{span}}(P)$ in \mathcal{H} as well. Moreover, one has

$$||r_n|| = \frac{1}{D_n \cdot |c_n|}$$

Hence

$$|\langle r_n, r_m \rangle| \leq \frac{1}{D_n \cdot |c_n|} \cdot \frac{1}{D_m \cdot |c_m|} \qquad \forall n, m \in J.$$

Now, for every fixed $n \in J$ consider the series

$$\sum_{m\in J}|\langle r_n,r_m\rangle|.$$

We then get

$$\sum_{m \in J} |\langle r_n, r_m \rangle| < \frac{1}{D_n \cdot |c_n|} \cdot \sum_{m \in J} \frac{1}{D_m \cdot |c_m|}$$

Condition (3) implies the existence of a positive number M so that

$$\sum_{m \in J} |\langle r_n, r_m \rangle| < M \qquad \text{for all } n \in J.$$

Since $\overline{\text{span}}(P)$ in \mathcal{H} is itself a Hilbert space and each r_n belongs to $\overline{\text{span}}(P)$ in \mathcal{H} , it then follows by Lemma 1 that $\{r_n\}$ and $\{p_n\}$ are Bessel and Riesz-Fischer sequences respectively in $\overline{\text{span}}(P)$ in \mathcal{H} .

Moreover, since the family *P* is complete in $\overline{\text{span}}(P)$ in \mathcal{H} , then the lower frame condition (4) follows from Theorem A. The proof of Theorem 1 is now complete.

3.2. Riesz-Fischer sequences from exact sequences or from uniformly minimal sequences

Next we state two corollaries of Theorem 1 in case $U = \{u_n\}_{n \in J}$ is not just a minimal sequence in \mathcal{H} , but it is either exact or uniformly minimal.

Firstly, from Theorem 1, Proposition A, and the definition of a Bessel sequence, we get the following result.

COROLLARY 1. Let $U = \{u_n\}_{n \in J}$ be an exact sequence in \mathcal{H} , therefore it has a unique biorthogonal sequence $V = \{v_n\}_{n \in J}$. Let the sequence $\{c_n\}_{n \in J}$ satisfy (3). Then the family $\{c_n \cdot u_n\}_{n \in J}$ is an exact Riesz-Fischer sequence in \mathcal{H} and its unique biorthogonal family $\{\underline{v}_n\}_{n \in J}$ is a Bessel sequence in \mathcal{H} . Thus, there are some positive constants A and B so that the following lower frame and upper frame conditions hold:

$$\sum_{n\in J} |\langle f, c_n \cdot u_n \rangle|^2 \ge A \cdot ||f||^2 \qquad \forall f \in \mathscr{H},$$

and

$$\sum_{n \in J} |\langle f, \frac{v_n}{c_n} \rangle|^2 \leqslant B \cdot ||f||^2 \qquad \forall f \in \mathscr{H}.$$

Secondly, if U is a uniformly minimal sequence, combining Theorem 1 with (2) gives the following.

COROLLARY 2. Let $U = \{u_n\}_{n \in J}$ be a uniformly minimal sequence in \mathscr{H} and choose numbers $\{c_n\}_{n \in J}$ so that

$$\sum_{n\in J}\frac{1}{||u_n||\cdot|c_n|}<\infty.$$

Then the family $P = \{c_n \cdot u_n\}_{n \in J}$ is a Riesz-Fischer sequence in $\overline{span}(P)$ in \mathcal{H} .

If in addition $\inf_{n \in J} ||u_n|| > 0$, then the family P is a Riesz-Fischer sequence in $\overline{span}(P)$ in \mathcal{H} for any sequence $\{c_n\}_{n \in J}$ such that $\{1/c_n\}_{n \in J}$ belongs to the space $l^1(J)$ where

$$l^{1}(J) := \left\{ \{a_{n}\}_{n \in J} : \sum_{n \in J} |a_{n}| < \infty \right\}.$$

4. Examples

We end this paper with some examples involving either exponential systems $\{e^{i\lambda_n t}\}$ or $\{e^{\lambda_n t}\}$, $\lambda_n \in \mathbb{R}$, in the classical $L^2(a,b)$ spaces.

4.1. Example 1

Consider the exponential system $\{e^{i\lambda_n t}\}_{-\infty}^{\infty}$ where

$$\lambda_n = \begin{cases} n + \frac{1}{4} & n > 0\\ 0 & n = 0\\ n - \frac{1}{4} & n < 0 \end{cases}$$

The system $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ is a uniformly minimal sequence in $L^2(-\pi,\pi)$ (see [7, Theorem 5]) and it is also complete in $L^2(-\pi,\pi)$ (see [11, Chapter 3, Section 2, Theorem 4]). Hence it is exact in $L^2(-\pi,\pi)$.

REMARK 5. We note that by [10] the unique biorthogonal family to an exact exponential system $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ in $L^2(-\pi,\pi)$ is itself exact.

We also point out that the system $\{e^{i\lambda_n t}\}_{n\in\mathbb{Z}}$ is not a Riesz-Fischer sequence: if it were, it would also be a Bessel sequence (see [5, Proposition 1]). Combined with its completeness would mean that the system is a Riesz basis for $L^2(-\pi,\pi)$ but this is not the case (see [7, Theorem 4]).

On the other hand, it follows by Corollary 2 that the family

$$\{c_n \cdot e^{i\lambda_n t}\}_{nn\mathbb{Z}}$$
 where $\{1/c_n\}_{n\in J} \in l^1(J)$

is an exact Riesz-Fischer sequence in $L^2(-\pi,\pi)$. In other words, for every sequence $\{a_n\}_{-\infty}^{\infty}$ in the space $l^2(\mathbb{Z})$, there exists a function $f \in L^2(-\pi,\pi)$ so that

$$\int_{-\pi}^{\pi} f(t) \cdot c_n \cdot e^{i\lambda_n t} dt = a_n \quad n \in \mathbb{Z}.$$

4.2. Example 2

Let $\{\lambda_n\}_{n=1}^{\infty}$ be a strictly increasing sequence of positive real numbers, diverging to infinity, satisfying the following two conditions:

(I) $\sum_{n=1}^{\infty} 1/\lambda_n < \infty$.

(II) There is some c > 0 so that $\lambda_{n+1} - \lambda_n > c$ for all $n \in \mathbb{N}$.

Assuming these, and inspired by the celebrated Müntz-Szász theorem, Luxemburg and Korevaar [6], studied the properties of the exponential system $\{e^{\lambda_n t}\}_{n=1}^{\infty}$ in the spaces $L^p(a,b)$ for $p \ge 1$ and $-\infty < a < b < \infty$. They proved (see [6, relation (1.9)]) that the distance D_n of the function $e^{\lambda_n t}$ from the closed span of the remaining exponential functions in $L^2(a,b)$, satisfies the following lower bound: for every $\varepsilon > 0$, there is a positive constant m_{ε} which does not depend on $n \in \mathbb{N}$, so that

$$D_n \geqslant m_{\varepsilon} \cdot e^{(b-\varepsilon)\lambda_n}.$$
(5)

As a result, they characterized (see [6, Theorem 8.2]) the closed span of the system $\{e^{\lambda_n t}\}_{n=1}^{\infty}$ in the $L^p(a,b)$ spaces as follows.

THEOREM B. Let $\{\lambda_n\}_{n=1}^{\infty}$ satisfy conditions (I) and (II). Let f be in the space $L^p(a,b)$. Then f belongs to the closed span of the system $\{e^{\lambda_n t}\}_{n=1}^{\infty}$ in $L^p(a,b)$ if and only if f(x) = g(x) almost everywhere on (a,b), where g is an analytic function in the half plane $\Re z < b$, admitting the Dirichlet series representation

$$g(z) = \sum_{n=1}^{\infty} a_n e^{\lambda_n z} \qquad a_n \in \mathbb{C}, \quad \forall z \in \Re z < b,$$

with the series converging uniformly on compact subsets of the half plane $\Re z < b$.

Combining the above with Theorem 1 yields the following result.

THEOREM 2. Let $\{\lambda_n\}_{n=1}^{\infty}$ be a strictly sequence of positive real numbers diverging to infinity satisfying conditions (I) and (II). Consider the space $L^2(a,b)$ and choose non-zero constants c_n for n = 1, 2, ... such that,

$$\frac{1}{|c_n|} = O(e^{\alpha \lambda_n}) \qquad where \qquad \alpha < b. \tag{6}$$

Then, the system $\{c_n \cdot e^{\lambda_n t}\}_{n=1}^{\infty}$ is a Riesz-Fischer sequence in $\overline{span}(\{e^{\lambda_n t}\}_{n=1}^{\infty})$ in $L^2(a,b)$. In fact, for every sequence $A = \{a_n\}_{n=1}^{\infty}$ in the space $l^2(\mathbb{N})$, there exists an analytic function f_A in the half-plane $\Re z < b$, admitting a Dirichlet series representation of the form

$$f_A(z) = \sum_{n=1}^{\infty} d_{A,n} e^{\lambda_n z}, \qquad d_{A,n} \in \mathbb{C},$$

converging uniformly on compact subsets of the half-plane $\Re z < b$, such that $f_A \in L^2(a,b)$ and

$$\int_{a}^{b} f_{A}(t) \cdot c_{n} \cdot e^{\lambda_{n} t} dt = a_{n} \quad n \in \mathbb{N}.$$
(7)

Proof. Choose $\varepsilon = (b - \alpha)/4$ where $\alpha < b$ as in (6). Then, combining the lower bound (5) with (6), shows that condition (3) holds. Hence, it follows from Theorem 1 that the system $\{c_n \cdot e^{\lambda_n t}\}_{n=1}^{\infty}$ is a Riesz-Fischer sequence in $\overline{\text{span}}\{e^{\lambda_n t}\}_{n=1}^{\infty}$ in $L^2(a,b)$. Thus, for every sequence $A = \{a_n\}_{n=1}^{\infty}$ in the space $l^2(\mathbb{N})$, there is a function f_A in $\overline{\text{span}}\{e^{\lambda_n t}\}_{n=1}^{\infty}$ in $L^2(a,b)$ so that (7) is valid. By Theorem B, any function in this closure extends analytically in the half-plane $\Re z < b$, as a Dirichlet series. \Box

For example, for a fixed real number $\alpha < b$ and every sequence $A = \{a_n\}_{n=1}^{\infty}$ in the space $l^2(\mathbb{N})$, there exists a Dirichlet series

$$f_A(z) = \sum_{n=1}^{\infty} d_{A,n} e^{n^3 z}, \qquad d_{A,n} \in \mathbb{C},$$

analytic in the half-plane $\Re z < b$, with $f_A \in L^2(a,b)$, so that

$$\int_{a}^{b} f_{A}(t) \cdot e^{n^{3}t} dt = a_{n} \cdot e^{\alpha \cdot n^{3}} \quad n \in \mathbb{N}.$$

Acknowledgements. I would like to express my gratitude to the reviewer for valuable comments and remarks.

REFERENCES

- P. BALAZS, D. T. STOEVA, J.-P. ANTOINE, Classification of General Sequences by Frame-Related Operators, Sampl. Theory Signal Image Process. 10, 1–2 (2011), 151–170.
- [2] P. CASAZZA, O. CHRISTENSEN, S. LI, A. LINDNER, Riesz-Fischer sequences and lower frame bounds, Z. Anal. Anwendungen 21, 2 (2002), 305–314.
- [3] O. CHRISTENSEN, An introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis. Birkhäuser Boston, Inc., Boston, MA, xxii+440 pp., ISBN: 0-8176-4295-1.
- [4] C. HEIL, A basis theory primer, Applied and Numerical Harmonic Analysis, Expanded edn. Birkhäuser/Springer, New York, NY, xxvi+534 pp., ISBN: 978-0-8176-4686-8.
- [5] A. LINDNER, A universal constant for exponential Riesz sequences, Z. Anal. Anwend. 19, 2 (2000), 553–559.
- [6] W. A. J. LUXEMBURG, J. KOREVAAR, Entire functions and Müntz-Szász type approximation, Trans. Amer. Math. Soc. 157, 2 (1971), 23–37.
- [7] R. M. REDHEFFER, R. M. YOUNG, Completeness and Basis Properties of Complex Exponentials, Trans. Amer. Math. Soc. 277, 1 (1983), 93–111.
- [8] K. SEIP, On the connection between exponential bases and certain related sequences in $L^2(-\pi,\pi)$, J. Funct. Anal. **130**, 1 (1995), 131–160.
- [9] D. T. STOEVA, On a Characterization of Riesz Bases via Biorthogonal Sequences, J. Fourier Anal. Appl. 26, 4 (2020), article 67.
- [10] R. M. YOUNG, On complete biorthogonal systems, Proc. Amer. Math. Soc. 83, 3 (1981), 537–540.
- [11] R. M. YOUNG, An introduction to Nonharmonic Fourier Series, Revised first edition. Academic Press, Inc. San Diego, CA, xiv+234 pp., ISBN: 0-12-772955-0.

(Received December 16, 2022)

Elias Zikkos Department of Mathematics Khalifa University Abu Dhabi, United Arab Emirates e-mail: elias.zikkos@ku.ac.ae eliaszikkos@yahoo.com

Mathematical Inequalities & Applications www.ele-math.com mia@ele-math.com

768